Traffic: an Interplay between Models, Simulations, and Control Actions

Sven Maerivoet

Katholieke Universiteit Leuven Department of Electrical Engineering ESAT-SCD (SISTA)

Friday Seminar 05/03/2004

Overview

- Gathering traffic data
 - Available infrastructure
 - The nature of the measurements
- Modelling traffic flows
 - Macroscopic models
 - Microscopic models
- Simulating traffic flows
 - Microscopic simulators
- Controlling traffic flows
 - Available control actions

Gathering traffic data (1/3)

- Single/double loop detectors (embedded in the concrete)
- Gatso-meters

• Cameras

 (counting by 'hand')

• ISTA

Gathering traffic data (2/3)

• <u>Automation</u> is becoming a core business:

Gathering traffic data (3/3)

What is being measured ?

- **Density** (number of vehicles /kilometre) k
- Flow (number of vehicles /hour)

 $\longrightarrow \overline{v}$

• Average speed (kilometres/hour)

What do the measurements look like ?

A full week of measurements

Quality problems !

• Sometimes, a sensor gets 'stuck' for several days:

• Or the wrong values are being registered:

Traffic regimes

• Low density allows for safe overtaking:

• Higher densities complicate overtaking manoeuvres:

• Congested traffic results in **shock waves**:

Measurement correlations

• Example: traffic on the E17

"Fundamental diagram"

Regimes and fundamental diagrams

• In the (*k*,*q*) fundamental diagram:

Models of traffic flows

• The mathematical models are based on the consideration of a traffic flow:

– as a *whole*

macro-/mesoscopic flow models

as being composed of *individual vehicles* microscopic flow models

Macroscopic: fluid or gas ?

- Based on partial differential equations.
- *Fluid-dynamic* models consider a traffic flow as a **compressible fluid** (i.e., *continuum* models).
- <u>Gas-kinetic</u> models consider a traffic flow as a many particle system (= 'mesoscopic').

Americans vs. Germans: the former apply 'rocket science', the latter 'particle physics'.

Microscopic flow models

- Computationally very intensive !
- Many (unnecessary) parameters !
 Sensitivity analysis.
- Much harder to calibrate and validate than macro-/mesoscopic models !

Car following submodel

Example: traffic cellular automata

Car following submodel = set of local rules

Lane changing submodel

 \implies p(lane change) ~ f(Θ)

(critical) gap size(s), distance to on/off ramp, with $\Theta \ni \{ (desired) \text{ speed}, \}$ lane changing rules,

Routing

- 'Each vehicle needs to know where to go.'
- A lane changing submodel needs to do the practical implementation of routing:
 - mandatory lane changes
 - discretionary lane changes
- The actual routing happens on a higher level:
 - OD-matrices
 - *splitting rates* (also known as *turning fractions*)

OD-matrix

• **O** = **origin**, **D** = **destination**

DTA as a core business

Microscopic simulators (1/2)

Microscopic simulators (2/2)

• <u>Commercially:</u> *PARAMICS, AIMSUN, VISSIM, ...*

Controlling traffic flows ?

- Why **control** the traffic ?
 - postpone/eliminate traffic jams (if possible),
 - early detection and timely reaction to incidents,
 - pursue an environmental friendly policy,

- At this moment, Flanders works locally.
- In the future, we strive to control on a **network** level.

Prognosis of future traffic flows

Flanders' Traffic Centre

Controlling traffic lights

At the level of crossings

- At a *network* level (e.g., de " Leien " in Antwerp)
 → "traffic must leave the city centre as fast as possible"
- At a *corridor* level (e.g., the A12 Antwerp-Brussels)
 → "The good feeling: always green lights..." or "The bad feeling: I keep encountering red lights !"

Dynamical route guiding

- Dynamic routing information panels (DRIPs)
 - Travel times
 - Traffic jams (physical length **and time duration !**)
 - Alternative routes

Variable Message Signs (VMS)

• Dynamic speed limits (cfr. Dutch motorways)

Incident detection

- Closing of lanes; diverting traffic
- Rubbernecking effects on the opposite lane

Automatic incident detection

Other possible control actions

- Change the drivers' travel times (leave earlier, depart later, don't make the journey, ...).
- Road pricing and congestion charging.
- Public transport uses special lanes.
- Parking management.
- Lanes have a variable width.
- Detection of fog, snow, heavy rain, ...
 - Advanced Traffic Management Systems

Ramp metering

• "Try to control the inflow by drops."

The idea behind ramp metering

The idea behind ramp metering

Benefits of ramp metering

without control

with ramp metering

Ramp metering applied to the E17

Platoon driving: myth or reality ?

- Vehicles are supposed to drive *close to each other* (in platoons), with a *lower average speed*.
 - It might be safer...
 - BUT is it better (in terms of flow)?

For several years now, the police (i.e., 'zwaantjes') apply platoon driving at the E40 during the busy holidays (visits to the Northsea).

Towards a sustainable cost function

• Characterise the concept of 'sustainability', e.g.,

• **Important:** the SCF involves a *trade-off* !

environment friendly capacity throughput

Illustrative software demonstration

