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Abstract

In this paper, we focus on the different traffic flow models
that exist in literature. Due to our frequently encountered
confusion among traffic engineers and policy makers, this
paper goes into more detail about transportation planning
models on the one hand, and traffic flow models on the
other hand. The former deal with households that make
certain decisions which lead to transportation and the use
of infrastructure, as opposed to the latter which explicit-
ly describe the physical propagation of traffic flows in a
road network. Our goal is not to give a full account (as
that would be a dissertation of its own, given the broad-
ness of the field), but rather to impose upon the reader a
thorough feeling for the differences between transportati-
on planning and traffic flow models. Because of the high
course of progress over the last decade (or even during
the last five years), this paper tries to chronicle both past
models, as well as some of the latest developments in this
area.

PACS numbers: 89.40.-a

Keywords: land-use, trip-based, activity-based, trans-
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Due to our frequently encountered confusion among traf-
fic engineers and policy makers when it comes to trans-
portation planning models and the role that traffic flow
models play therein, this paper strives to alleviate that be-
wilderment. The material elaborated upon in this paper,
spans a broad range going from transportation planning
models that operate on a high level and deal with hou-
seholds that make certain decisions which lead to trans-
portation and the use of infrastructure, to traffic flow mo-
dels that explicitly describe the physical propagation of
traffic flows in a road network.

1 Transportation planning models

Before going into detail about the possible mathematical
models that describe the physical propagation of traffic
flows, it is worthwhile to cast a glance at a higher level,
where transportation planning models operate. The main
rationale behind transportation planning systems, is that
travellers within these systems are motivated by making
certain decisions about their wishes to participate in so-
cial, economical, and cultural activities. The ensemble of
these activities is called the activity system. Because the-
se activities are spatially separated (e.g., a person’s living
versus work area), the need for transportation arises. In
such a system, the so-called household activity patterns
form the main explanation for what is seen in the trans-
portation network.

These models have as their primary intent the performing
of impact and evaluation studies, and conducting ‘befo-
re and after’ analyses. The fact that such transportati-
on studies are necessary, follows from a counter-intuitive
example whereby improving the transportation system
(e.g., by making extra infrastructure available), can re-
sult in an increase of the travel times. This phenome-
non, i.e., allowing more flexible routing that results in
more congestion, is known as Braeß’ paradox, after Diet-
rich Braeß [33]. The underlying reason for this counter-
intuitive behaviour, is that people generally only selfishly
try to minimise their own travel times, instead of consi-
dering the effects they have on other people’s travel times
as well [228].

As transportation is inherently a temporal and spatial phe-
nomenon, we first take a look at the concept of land-use
models and their relation to the socio-economical beha-
viour of individual people. In the two subsequent sec-
tions, we consider two types of transportation planning
models, i.e., the classic trip-based models, and the class
of activity-based models, respectively. The section con-
cludes with a brief reflection on the economist’s view on
transportation systems.

1.1 Land use and socio-economical behavi-
our

As already stated, transportation demand arises because
of the desire to participate in a set of activities (e.g., so-
cial, economical, cultural, . . . ). In order to deduce this
derived transportation demand, it is necessary to map the
activity system and its spatial separations. This process is
commonly referred to as land use, mainly playing the role
of forging a relation between economical and geographi-
cal sciences. In general, land-use models seek to explain
the growth and layout of urban areas (which is not strict-
ly determined by economical activities alone, i.e., ethnic
considerations et cetera can be taken into account),

Because transportation has spatial interactions with land
use and vice versa, it can lead to a kind of chicken-and-
egg problem [252]. For example, building a new road will
attract some economical activity (e.g., shopping malls et
cetera), which can lead to a possible increase of the tra-
vel demand. This in turn, can lead to an increase of extra
economical activity (because of the well-suited location),
and so on, resulting in a local reorganisation of the spatial
structure. Resolving this chicken-and-egg paradox, is ty-
pically done by means of feedback and iterations between
land-use and transportation models, whereby the former
provide the basic starting conditions for the latter models
(with sometimes a reversal of the models’ roles).

In the following two sections, we first shed some light on
several of the archetypical land-use models, after which
we take a look at some of the more modern models for
land use in the context of geosimulation.

1.1.1 Classic land-use models

The discussion given in this section, talks about several
kinds of land-use models that — at their time — were
considered as landmark studies. That said, the models
presented here should be judged as being general in that
they deal with (pre-)industrial American societies in the
first part of the 20th century. They are devised to gain in-
sight into the general patterns that govern the growth and
evolution of a city. As such, they almost never ‘fit’ per-
fectly, leading to the obvious criticism that they are more
applicable to American cities than elsewhere. Notwith-
standing these objections, the models remain very use-
ful as explanations for the mechanisms underpinning the
socio-economical development of cities.

One of the oldest known models describing the relation
between economic markets and spatial distances, is that
of Johann Heinrich von Thünen [283]. As the model was
published in 1826, it presents a rather ‘pre-industrial’ ap-
proach: the main economical ingredients are based on
agricultural goods (e.g., tomatoes, apples, wheat, . . . ),
whereas the transportation system is composed of roads
on which carts pulled by horses, mules, or oxen ride.
The spatial layout of the model, assumes an isolated state
(self-sustaining and free of external influences), in which
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a central city location is surrounded by concentric regions
of respectively farmers, wilderness, field crops, and mea-
dows for grazing animals. All farmers aim for maximum
profits, with transportation costs proportionally with dis-
tance, thus determining the land use around the city cen-
tre.

Some 100 years later, inspired by von Thünen’s simple
and elegant model, Ernest W. Burgess developed what is
known as the concentric zone model [40]. It was based
on observations of the city of Chicago at the beginning
of the 20th century. As can be seen in the left part of
Fig. 1, Burgess considered the city as growing around a
central business district (CBD), with concentric zones of
respectively the industrial factories and the low-, middle-,
and high-class residents. The outermost ring denotes the
commuter zone, connecting the CBD with other cities.
As time progresses, the city develops and the radii of the-
se concentric zones would grow by processes of ‘invasi-
on’ and ‘succession’: an inner ring will expand, invading
an outer ring that in turn has to grow, in order to make
space.

Fifteen years after Burgess’ theory, Homer Hoyt intro-
duced refinements, resulting in the sector model [139].
One of the main incentives, was the observation that
low-income residents were typically located in the vici-
nity of railroads. His model accommodates this kind of
observation, in that it assumes that a city expands around
major transportation lines, resulting in wedge-shaped
patterns (i.e., sectors), stretching outward from the CBD.
A typical example of this development, can be seen in
the right part of Fig. 1.
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Figure 1: Typical examples of two models relaying the
evolution of land use. Left: the concentric zone model of
Burgess. Right: the sector model of Hoyt. In both figures,
CBD corresponds to the central business district, I to the
industrial factories, L, M, and H to the low-, middle-, and
high-class residents respectively. In the Burgess model at
the left, C denotes the commuter zone.

Halfway the previous century, Chauncy D. Harris and Ed-
ward L. Ullman were convinced that the previous types
of models did not correspond to many of the encoun-
tered cities. The main reason for this discrepancy, was
to be found in the stringent condition of a central area
being surrounded by different zones. As a solution to this
shortcoming, Harris and Ullman presented their multiple
nuclei model [108]. Their theory assumed that in larger

cities, small suburban areas could develop into fully fled-
ged business districts. And although Harris and Ullman
did not dispose of the CBD as the most important city
centre, their smaller ‘nuclei’ would take on roles of being
areas for specialised socio-economical activities.

To end our discussion of classic land-use models, we
highlight the work of Peter Mann in 1965 [187], who con-
sidered a hybrid model for land-use representation. He
combined both Burgess’s and Hoyt’s models, when deri-
ving a model that described a typical British city. In his
model that studied the cities of Huddersfield , Notting-
ham, and Sheffield, the CBD still remained the central
location, surrounded by zones of pre- and post 1918 hou-
sing respectively. Dispersed around the outer concentric
zone, the low-, middle-, and high-class residents would
live. A most notable feature of Mann’s model, is the
fact that he considered the industrial factories to be on
one side of the city, with the high-class residents diame-
trically opposed (the rationale being that high-class resi-
dents would prefer to stay upwind of the factories’ smoke
plumes).

1.1.2 The modern approach to land-use models

In the current time of living, most modern citizens ha-
ve a different behaviour than their former counterparts at
the beginning of the 20th century. It seems there is an
increased trend towards expansion, as people are feeling
more comfortable about covering larger distances, e.g.,
working in a busy city centre or at a remote industrial
facility, coupled with living on the countryside). The ac-
tivities related to working, living, and recreation appear
to occur at substantially different spatial locations. Fur-
thermore, several urban regions are composed of unique
ethnic concentrations, among other things leading to the
conclusion that the emphasis on the geographical aspect
of a city gets less important during its evolution.

Recognising these radical changes in the development,
modern land-use models approach the integration of an
activity system from a completely different perspective.
The growth of a city is represented as the evolution of a
multi-agent system, in which a whole population of indi-
vidual households is simulated. Due to the tremendous
increase in computational power over the last two deca-
des, these large-scale simulations are now possible. As an
example, it is feasible to consider residential segregation
in urban environments: within these environments (e.g.,
the city and housing market), individual agents (i.e., hou-
seholds) interact locally in a well-defined manner, lea-
ding to emergent structures, i.e., the evolving city. Besi-
des data surveys that try to capture the households’ be-
haviour, the basic landscape and mapping data is fed in-
to geographical information systems (GIS) that is cou-
pled with a computer aided design (CAD) representa-
tional model of the real world (although the difference
between the traditional GIS and CAD concepts is slow-
ly fading away) [285]. A recent example of such an all-
encompassing approach, is the work related to the Urban-
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Sim project, where researchers try to interface existing
travel models with new land use forecasting and analysis
capabilities [284]. It is being developed and improved by
the Center for Urban Simulation and Policy Analysis at
the University of Washington.

To conclude this section, we refer to the work of Benen-
son and Torrens, who adopted the terminology of geo-
simulation [25]. Their methodology is based on what
they call the ‘collective dynamics of interacting objects’.
As such, geosimulation hinges on the representation of
what we would call a socio-economy that is simulated,
taking into account hitherto neglected dynamic effects
(e.g., demographic changes, shifts of the economic ac-
tivities, . . . ).

1.2 Trip-based transportation models

The relation between activity patterns and the transporta-
tion system has a long history, starting around 1954 with
the seminal work of Robert B. Mitchell and Chester
Rapkin [196]. They provided the first integrated study,
establishing a link that introduced a framework for trans-
portation analysis, primarily intended for studying large
scale infrastructure projects [192]. Their methodology
was based on four consecutive steps (i.e., submodels),
collectively called the four step model (4SM). In 1979,
Manheim casted the model’s structure into a larger
framework of transportation systems analysis, encap-
sulating both activity and transportation systems [186].
Central to this framework, was the notion of ‘demand
and performance procedures’, which we can validly call
demand and supply procedures. In a typical setup, they
respectively represent the traffic that wants to use this
infrastructure and the road infrastructure. For a more
historically tinted recollection of the trip-based approach,
we refer the reader to the outstanding overview of Boyce
[30].

With respect the 4SM’s history, a subtle — almost
forgotten — fact is that the classic four step mo-
del was actually conceived independently from the
integrated network equilibrium model proposed by
Beckmann, McGuire, and Winsten in the mid-fifties;
the 4SM can actually be perceived as a trimmed-
down version of this latter model [30]. Intriguingly,
over the years, the work of the ‘BMW trio’ has had
profound impacts on the mathematical aspects of de-
termining network equilibria, optimal toll policies,
algorithms for variational inequalities, stability ana-
lyses, supply chains, . . . [5, 207, 30, 31].

In the next four sections, we consider the basic entities
and assumptions of the four step model, followed by a
brief overview of the four individual submodels with so-
me more detail on the fourth step (traffic assignment),
concluding with some remarks on the criticisms often ex-
pressed against the four step model. For a more extensive
survey of the four step model, we refer the reader to the
books of Sheffi [255] and Ortuzar and Willumsen [226].

1.2.1 Basic entities and assumptions

The basic ingredients on which the four step model is
rooted, are the trips. These trips are typically conside-
red at the household level, and relate to aggregate in-
formation (individuals are no longer explicitly conside-
red). This level of detail, essentially collapses the whole
tempo-spatial structure of transportation planning based
on individual travellers into bundles of trips, going from
one point in the transportation network to another.

In the four step model, one of the most rigid assumpti-
ons is that all trips describe departure and arrival within
the planning period (e.g., the morning commute). Fur-
thermore, the usage of the model’s structure is intended
for large-scale planning purposes, excluding small infra-
structural studies at e.g., a single intersection of urban
roads. Another assumption is based on the fact that an
entity within the four step model has to make certain de-
cisions, e.g., what is the departure time, which destinati-
on is picked, what kind of transportation (private or pu-
blic) will be used, which route will be followed, . . . In
many cases, these decisions are considered concurrently,
but the four step model assumes they are made indepen-
dently of each other. And finally, as each submodel needs
input, most of the data is aggregated into spatial zones
(often presumed to be distinguished by socio-economic
characteristics) in order to make the model computatio-
nally feasible. These zones are typically represented by
their centrally located points, called centroids.

1.2.2 The four steps

Within the four step model, the first three steps (I)
– (III) can collectively be seen as a methodology for
setting up the travel demand, based e.g., on land use and
other socio-economical activities. This travel demand
is expressed as origin-destination (OD) pairs (by some
respectively called ‘sources’ and ‘sinks’), reflecting the
amount of traffic that wants to travel from a certain
origin to a certain destination (these are typically the
zones mentioned in the previous section). The last step
(IV) then consists of loading this travel demand onto the
network, thereby assigning the routes that correspond to
the trips.

(I) Trip generation
In an essential first step, transportation engineers look
at all the trips that on the one hand originate in certain
zones, and on the other hand arrive in these zones.
As such, the first step comprises what are called the
productions and attractions. Central to the notion of a
trip, is the motive that instigated the trip. An example
of such a motive is a home-based work trip, i.e., a trip
that originates in a household’s residential area, and
arrives in that household’s work area. Other examples
include recreational and social motives, shopping, . . . and
the chaining of activities. Based on these intentions,
productions and attractions consist of absolute counts,
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denoting the number of trips that depart from and
arrive in each zone. Because of this, productions and
attractions are in fact trip ends. Both of them are derived
using techniques based on regression analysis, category
analysis, or even logit models. As different models can
be used for the derivations of the number of productions
and attractions, an a posteriori balancing is performed
that equalises both results. In the end, step (I) gives the
magnitude of the total travel demand on the network.
Note that all activities (i.e., the original motives) are at
this point in effect transformed and aggregated into trips.
More importantly, these trips are only considered for a
specific time period (e.g., the morning rush hour).

(II) Trip distribution
Once the total number of productions and attractions for
all zones in the transportation network is known, the next
step then consists of deriving how many trips, origina-
ting in a certain zone, arrive at another zone. In other
words, step (II) connects trip origins to their destinations
by distributing the trips. The result of step (II) is then the
construction of a complete origin-destination table (OD
table). In such an OD table (or OD matrix as some pe-
ople say), an element at a row i and a column j denotes
the total number of trips departing from origin zone Oi

and arriving in destination zone Dj . Diagonal elements
denote intra-zonal trips. Note that step (II) does not sta-
te anything about the different routes that can be taken
between two such zones; this is something that is derived
in the final step (IV). Because of the implicit assumpti-
on in step (I), namely that all trips are considered for a
specific time period, the same premise holds for all the
derived OD tables. Consequently, the four step model is
applied for different time periods, e.g., during rush hours
or off-peak periods. In this context, we advise to use the
nomenclature of time-dependent or dynamic OD tables,
denoting OD tables that are specified for a certain peri-
od, e.g., from 07:00 until 08:00 (or even tables given for
consecutive quarter-hours).

Considering the fact that an OD table contains a large
amount of unknown variables (it is a considerably under
determined system of equations), several techniques have
been introduced to deal with this problem by introducing
additional constraints. If an OD table for a previous pe-
riod (called a base table) is known, then a new OD table
can be derived by using a so-called growth factor model.
Another method is by using gravity models (also known
as entropy models, see e.g., the discussion in by Helbing
and Nagel [122]), which are based on travel impedance
functions. These functions reflect the relative attractive-
ness of a certain trip e.g., based on information retrieved
from household travel surveys. In most cases, they are
calibrated as power or exponential functions. One of the
harder problems that still remains to be solved, is how to
deal with so-called through trips, i.e., trips that origina-
te or end outside of the study area. Horowitz and Patel
for example, directly incorporate rudimentary geograp-
hical information and measured link flows into a model

that allows to derive through-trip tables, using a notion
of external stations located in an external territory. Ap-
plication of his methodology to regions in Wisonsin and
Florida, result in reasonable estimates of link flows that
are comparable with empirically obtained data [137].

Besides using results from productions and attractions,
gathering the necessary information for construction of
OD tables can also be done using other techniques. An
equivalent methodology is based on the consideration
of turning fractions at intersections. The process can be
largely automated when using video cameras coupled
with image recognition software. Furthermore, there
literally exist thousands of papers devoted to the estima-
tion of origin-destination matrices, mostly applicable to
small-scale vehicular transportation networks and local
road intersections. Some past methodologies used are
the work of Nihan and Davis who developed a recursive
estimation scheme [223], the review Cascetta and
Nguyen who casted most earlier methods into a unified
framework [44], and Bell who estimated OD tables
based on constrained generalised least squares [21]. An
example of a more recent technique is the work of Li and
De Moor who deal with incomplete observations [167].

(III) Mode choice / modal split
Once the origin-destination table for the given network
and time period is available, the next step deals with the
different modes of transportation that people choose bet-
ween. Typical examples are the distinction between pri-
vate and public transportation (both vehicular and rail-
road traffic). The ‘split’ in this step, refers to the fact that
the OD table obtained from step (II), is now divided over
the supported transportation modes. To this end, discrete
choice theory is a popular tool that allows a disaggrega-
tion based on the choice of individual travellers, e.g., by
using utility theory based on a nested logit model [23]. A
modern trend in this context is to work with fully multi-
modal transportation networks; these multi-layered net-
works provide access points for changing from one layer
(i.e., mode of transportation) to another [273].

Historically, steps (I) — production and attraction — and
(III) were executed simultaneously, but nowadays they
are considered separate from step (I): the main reason
is the fact that the modal choice is not only dependent
on e.g., a household’s income, but also on the type of
trip to be undertaken, as well as the trip’s destination.
As a result, the modal split can be intertwined with step
(II), trip distribution, or it can be executed subsequently
after step (II). In the former case, the same kind of travel
impedance functions are used in combination with an
adjusted gravity model, whereas in the latter case, a
hierarchic logit model can be used.

(IV) Traffic assignment
At this point in the four step model, the total amount of
trips undertaken by the travellers is known. The fourth
and final step then consists of finding out which routes
these travellers follow when going from their origins to
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their destinations, i.e., which sequence of consecutive
links they will follow ? In a more general setting, this
process is known as traffic assignment, because now the
total travel demand (i.e., the trips) are assigned to routes
in the transportation network. Note that in some appro-
aches, an iteration is done between the four steps, e.g,
using the traffic assignment procedure to calculate link
travel times that are fed back as input to steps (II) and
(III).

It stands to reason that all travellers will endeavour to ta-
ke the shortest route between their respective origins and
destinations. To this end, a suitable measure of distance
should be defined, after which a shortest path algorithm,
e.g., Dijkstra’s algorithm [81], can calculate the possi-
ble routes. Such a notion of distance typically includes
both spatial and temporal components, e.g., the physical
length of an individual link and the travel time on this
link, respectively. The use of the travel time is one of the
most essential and tangible components in travellers’ rou-
te choice behaviour. Note that in a more general setting,
the distance can be considered as a cost, whereby tra-
vellers then choose the cheapest route (i.e., the quickest
route when time is interpreted as a cost). Daganzo calls
these formulations the forward shortest path problem, as
opposed to the backward shortest path problem that tries
to find the cheapest route for a given arrival time [73].

The basic principles that underlay route choice behaviour
of individual travellers, were developed by Wardrop in
1952, and are still used today. In his famous paper, rela-
ting space- to time-mean speed, Wardrop also stated two
possible criteria governing the distribution of traffic over
alternative routes [289]:

User equilibrium (W1): “The journey times
on all the routes actually used are equal, and
less than those which would be experienced by
a single vehicle on any unused route.”

System optimum (W2): “The average journey
time is a minimum.”

The above two criteria are based on what is called the
Nash equilibrium in game theory [209], albeit that now
a very large number of individuals are considered1. In
the first criterion (W1), it is assumed that all individuals’
decisions have a negligible effect on the performance of
others. Two, more important, fundamental principles he-
re are the fact that in the equilibrium situation, there is
no cooperation between individuals assumed, and that all

1The difference between a Wardrop and a Nash equilibrium is a subt-
le but important one. In the Wardrop case, an infinite number of indi-
viduals is considered, each seeking their own optimum. Note that the
concept ‘infinite number of individuals’ can practically be approxima-
ted by ’a large amount of individuals’. The Nash case also considers
an infinite number of individuals, but they are now grouped into a fi-
nite number of classes, with each class seeking its own optimum. If
in this latter case the number of classes goes to infinity, then the Nash
equilibrium converges to a Wardrop equilibrium [112].

individuals make their decisions in an egoistic and ratio-
nal way [107]. In real-life traffic, everybody is expected
to follow the first criterion (W1), such that the whole sys-
tem can settle in an equilibrium in which no one is better
off by choosing an alternative route. In this respect, the
work of Roughgarden is interesting because it provides
a mathematical basis for the quantification of the worst
loss of social welfare due to selfish routing, and the ma-
nagement of networks that limit these effects in order to
obtain a socially desirable outcome [254]. In contrast to
this user equilibrium situation, the second criterion (W2)
is unlikely to occur spontaneously. However, when the
perceived cost of a route by a traveller is changed to a ge-
neralised or marginal cost (i.e., including the costs of the
effects brought on by adding an extra vehicle to the travel
demand), then a system optimum is achieved with respect
to these latter costs. In any case, as some people will be
better off, others will be worse off, but the transportation
system as a whole will be best off.

The above two principles, are a bit idealistic, in the sen-
se that there are many exceptions to these behavioural
guidelines. For example, in urban city centres, a signi-
ficant part of the congestion can be brought on by vehi-
cles looking for parking space. Furthermore, many dri-
vers just follow their usual route, because this is the route
they know best, and they know what to expect with res-
pect to travel time. In a broader setting, this make the-
se ‘standard’ routes more appealing to road users than
other unfamiliar alternative routes. In some cases howe-
ver, travellers will opt for these less known routes, the-
reby possibly entering the risk of experiencing a higher
travel time as has been concluded in the work of Chen
and Recker [50]. Another fact that we expect to have a
non-negligible effect on the distribution of traffic flows,
is that nowadays more and more people use intelligent
route planners to reach their destinations. These plan-
ners take into account congestion effects, as the trip gets
planned both spatially and temporally. This will result
in a certain percentage of the population that is informed
either pre-route or en-route, and these people can conse-
quently change their departure time or actual route (e.g.,
through route guidance), respectively. Another interes-
ting research problem arises because transportation infra-
structure managers should then be able to adapt their po-
licies to the changing travel patterns. For example, how
should a policy maker optimally control the traffic when
only 20% of the population will follow the proposed rou-
te guidance ?

Due to the importance of the subject, we have devoted
two separate sections in this dissertation to the concept of
traffic assignment. In these sections, we discuss the traf-
fic assignment procedure in a bit more detail, considering
two prominent methodologies from a historic perspecti-
ve, namely static versus dynamic traffic assignment.
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1.2.3 Static traffic assignment

The classic approach for assigning traffic to a transporta-
tion network, assumes that all traffic flows on the net-
work are in equilibrium. In this context, the static traffic
assignment (STA) procedure can be more correctly con-
sidered as dealing with stationary of steady-state flows:
the travel demand and road infrastructure (i.e., the sup-
ply) are supposed to be time-independent, meaning that
the calculated link flows are the result of a constant de-
mand. In a typical setup, this entails the assignment of an
hourly (or even daily) OD table to the network (e.g., du-
ring on- and off-peak periods), resulting in average flows
for the specified observation period. Because the STA
methodology neglects time varying congestion effects (it
assumes constant link flows and travel times), various im-
portant phenomena such as queue spill back effects are
not taken into account.

In general, several possible techniques exist for achie-
ving an STA. The first one assumes (i) that all drivers
will choose the same cheapest route between a pair of
origins and destinations, (ii) that they all have the same
perfect information about the links’ impedances, and (iii)
that these impedances are considered to be constant, i.e.,
independent of a link’s traffic load (so no congestion buil-
dup is taken into account). As the methodology implies,
this is called an all-or-nothing assignment (AON). A se-
cond technique refines this notion, whereby differences
among drivers are introduced (i.e., giving rise to imper-
fect information), resulting in a stochastic assignment. In
this methodology, the link travel impedances are assumed
to be probabilistically distributed: for each link in the net-
work, an impedance is drawn from the distribution after
which an AON assignment is performed on the resulting
network. This Monte Carlo process is repeated until a
certain termination criterion is met.

Both previous methods carry a significant drawback with
respect to link capacities, that is to say, no effects are ta-
ken into account due to the fact that an increased flow
on a link will generally result in an increase of the travel
time (i.e., the link’s impedance). To this end, a third me-
thod introduces capacity restraints such that an increase
of the travel demand on a link, will result in a higher cost
(thereby possibly changing the route with the cheapest
cost). This method is called an equilibrium assignment,
and just like as in the second method, a stochastic equi-
librium assignment version can be derived, taking into
account travellers’ imperfect knowledge. The underlying
assumption is that all travellers behave according to War-
drop’s user equilibrium (W1). Furthermore, the capacity
restraints are included in the travel impedance functions,
as they are now synonymously called travel time (loss)
functions, congestion functions, volume delay functions,
link impedance functions, or even link performance func-
tions. A popular form of these functions that express the
travel time T in function of the flow q on a link, is the
Bureau of Public Roads (BPR) power function [38]:

T = Tff

(
1 + α

(
q

qpc

)β
)

. (1)

In this BPR relation, the coefficients α and β determine
the shape of the function. An example of such a functi-
on is depicted in Fig. 2. For low flows, the BPR func-
tion is rather flat and the travel time corresponds to the
travel time Tff under free-flow conditions. When higher
flows occur on the link, the coefficient β determines the
threshold at which the BPR function rises significantly (in
some formulations it asymptotically approaches the capa-
city flow). The travel time will increase with the ratio of
the flow q and the so-called practical capacity qpc. This
latter characteristic is derived from the value of the travel
time under congested conditions. As a result, the prac-
tical capacity is different from the maximum capacity of
a link as defined by a fundamental diagram. Finally, no-
te that a serious disadvantage associated with these BPR
functions in combination with static traffic assignment, is
the fact that the travel demand on the network at a certain
time does not always correspond to the actual physical
flows that can be sustained. Under congested conditions,
this implies that the flows in the STA approach can be
higher than the physically possible link capacities (which
are different from the previously mentioned practical ca-
pacities), leading to an incorrect assignment with faulty
oversaturated links.

PSfrag replacements

T

Tff

qqpc0

Figure 2: The Bureau of Public Roads (BPR) function,
relating the travel time to the flow. It is based on the tra-
vel time Tff under free-flow conditions and the practical
capacity qpc of the link under consideration.

Once the travel time of a link can be related to its cur-
rent flow using e.g., a BPR function, an iterative scheme
is adopted to calculate the equilibrium traffic assignment.
Popular implementations are the Frank-Wolfe algorithm
[91], and the method of successive averages (MSA). The
former method is based on principles of optimisation the-
ory, as demonstrated by Beckmann et al. [20, 31] who re-
formulated the Wardrop equilibrium as a convex optimi-
sation problem, consisting of a single objective function
with linear inequality constraints based on the Karush-
Kuhn-Tucker (KKT) conditions, thereby resulting in a
global minimum. Because travellers do not have perfect
information, Daganzo and Sheffi formulated a variation
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on Wardrop’s first criterion (W1), whereby all traffic dis-
tributes itself over the network with respect to a perceived
travel time of the individual drivers [77]. The resulting
state of flows on the network is called a stochastic user
equilibrium (SUE), as opposed to the deterministic user
equilibrium (DUE). Note that a further discrimination is
possible, as proposed by the work of Chen and Recker,
who also make a distinction between travellers’ percepti-
on errors on the one hand, and network uncertainty (i.e.,
stochasticity of the travel times) on the other hand [50].
For a thorough overview of the STA approach, we refer
the reader to the work of Patriksson [229].

Although, as mentioned earlier, time varying congestion
effects are not taken into account, the STA approach does
fit nicely into the concept of long-term transportation
planning. For short-term analyses however, these effects
can have a significant impact on the end results, thus
requiring a more detailed approach to traffic assignment.

1.2.4 Dynamic traffic assignment

As explained in the previous paragraphs, the static traffic
assignment heavily relies on simple travel time functions
(e.g., BPR). An associated problem with these is the
difficulty in capturing the concept of ‘capacity of a
road’. In reality, congestion is a dynamic phenomenon,
whereby its temporal character is not to be neglected.
To tackle theses problems inherent to the STA approach,
a more dynamic treatment of traffic assignment is ne-
cessary [180]. A fundamentally important aspect in this
dynamic traffic assignment (DTA) procedure, is the fact
that congestion has a temporal character, meaning that
its buildup and dissolution play an important role: the
history of the transportation system should be taken into
account (e.g., congestion that occurs due to queue spill
back) [66]. Neglecting this time dependency by assu-
ming that the entry of a vehicle to a link instantaneously
changes the flow on that link, results in what is called
Smeed’s paradox. This leads to incorrect behaviour as
a result of a violation of the so-called ‘first-in, first-out’
(FIFO) property, because now a vehicle can leave link
earlier then a vehicle that enters it later (i.e., arriving
earlier by departing later) [260]. The methodology of
dynamic traffic assignment was now designed to deal
with all these particular aspects. The DTA technique is
composed of two fundamental components:

Route choice
Just as in the STA approach, each traveller in the trans-
portation network follows a certain route based on an
instinctive criterion such as e.g., Wardrop’s (W1). The
associated component that takes care of travellers’ route
choices, can be complemented to allow for imperfect
information. Another, more important, aspect related to
the route choice, is a traveller’s choice of departure time.
An STA approach assumes that all traffic of a given OD
table is simultaneously assigned to the network, whereas

DTA coupled with departure time choice can spread the
departures in time (leading to e.g., realistically spreading
of the morning peak’s rush hour).

Dynamic network loading (DNL)
Instead of using simple travel time functions, a DTA ap-
proach typically has a component that loads the traffic
onto the network. In fact, this step resembles the physi-
cal propagation of all traffic in the network. In order to
achieve reliable and credible results, a good description
of the network’s links is necessary, as well as the behavi-
our of traffic at the nodes connecting the links within this
network (i.e., this is a mandatory requirement to achieve
correct modelling of queue spill back). The DNL compo-
nent in the DTA approach has been an active field of re-
search during the last decade, and it still continues to im-
prove the state-of-the-art. Testimonies include the use of
analytic models that give correct representations of queu-
eing behaviour, as well as detailed simulations that de-
scribe the propagation of individual vehicles in the trans-
portation network. Note that in the case of simulation-
based (also called heuristic) traffic assignment, the rou-
te choice and DNL components can be iteratively exe-
cuted, whereby the former establishes a set of routes to
follow, and the latter step feedbacks information to the
route choice model until a certain termination criterion
is met (e.g., a relaxation procedure). Furthermore, using
simulation-based traffic assignment with very large road
networks is not always computationally feasible to calcu-
late all shortest paths. As a result, it might be beneficial
to resort to simplifications of either the simulation mo-
del (e.g., using faster queueing models), or the number of
paths to consider (e.g., based on the hierarchy inherently
present in the road network) [253]. Finally, we mention
the work of Astarita who provides an interesting classi-
fication of DNL models, based on the discretisation with
respect to the spatial and temporal dimensions, as well as
with respect to the modelling of the traffic demand [10].

Despite the appealing nature of simulation-based DTA,
there is in contrast to the STA approach, no unified frame-
work that deals with the convergence and stability issues
[94, 93, 233].

Some examples of these DTA mechanisms are: Gawron
who uses a queueing model to develop a simulation-
based assignment technique that is able to deal with large-
scale networks and is proven to be empirically stable
[94, 93], Bliemer who developed an analytical DTA ap-
proach (with different user-classes) based on a variatio-
nal inequality approach [26], Bliemer’s work furthermore
culminated in the development of INteractive DYnamic
traffic assignment (INDY) [185] which — in combina-
tion with the OmniTRANS2 commercial transportation
planning software — can be used as a fully fledged DTA
analysis tool [280], Lo and Szeto who developed a DTA
formulation based on a variational inequality approach
leading to a dynamic user equilibrium [174], the group

2http://www.omnitrans-international.com
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of Mahmassani who is actively engaged in the DTA sce-
ne with the development of the DYNASMART (DYna-
mic Network Assignment-Simulation Model for Advan-
ced Roadway Telematics) simulation suite [189], . . . An
excellent comprehensive overview of several traditional
DTA techniques is given by Peeta and Ziliaskopoulos
[234].

Another important field of research, is how individual
road travellers react to the route guidance they are given.
In his research, Bottom considered this type of dynamic
traffic management (DTM), providing route guidance to
travellers whilst taking into account their anticipated be-
haviour during e.g., incidents [28]. Taking this idea one
step further, it is possible to study the interactions bet-
ween the behaviour of travellers in a road network, and
the management of all the traffic controls (e.g., traffic
signal lights) within this network. An example of such
a dynamic traffic control (DTC) and DTA framework, is
the work of Chen who considers the management from
a theoretic perspective based on a non-cooperative game
between road users and the traffic authority [51].

1.2.5 Critique on trip-based approaches

Considering its obvious track record of the past sever-
al decades, the conventional use of the trip-based appro-
ach is — to our feeling — running on its last legs. By
‘conventional’ we denote here the fact that the current
state-of-the-practice is still firmly based on the paradigm
of static traffic assignment, despite the recent (academic)
progress on the front of dynamic traffic assignment tech-
niques. The four step model still largely dominates the
commercial business of transportation planning, although
its structure remained largely unchanged since its original
inception. As mentioned earlier, in the case of STA, all
trips are assumed to depart and arrive within the specified
planning period. This leads to an unnatural discrepan-
cy between models and reality in congested areas during
e.g., a morning rush hour: some travellers want to ma-
ke a trip and, in the former case, are perfectly allowed
to achieve this trip, whereas in the latter case they are in
fact physically unable to make the trip due to dynamical
congestion effects.

In order to facilitate this disagreement between the balan-
cing of travel demand versus supply (i.e., the transporta-
tion infrastructure), the DTA approach is gaining impor-
tance as more features are provided. An example of such
a feature includes the framework of congestion pricing,
where we have an incorporation of departure time choi-
ce models coupled with the derivation of optimal road
tolls. Some noteworthy studies that have been carried out
in this respect, are the work of de Palma and Marchal
who present the METROPOLIS toolbox, allowing the si-
mulation of large-scale transportation networks [78], the
work of Lago and Daganzo who combined a departure ti-
me equilibrium theory with a fluid-dynamic model in or-
der to assess congestion policy measures [159], the work
of Szeto and Lo who coupled route choice and departure

time choice with the goal of numerically handling large-
scale transportation networks [261, 175]. Closely related
to Lago’s and Daganzo’s work is that of Yperman et al.,
who determined an optimal pricing policy, describing the
demand side with a bottleneck model and an analytical
fluid-dynamic model as the DNL component [298].

At this point, we should mention some of the compli-
cations associated with the traditional method of model-
ling traffic flow propagation using queue-based analo-
gies. Historically, there have been two different queueing
techniques with FIFO discipline that describe this aspect
in a trip-based assignment procedure:

• Point queues (also called vertical queues): this type
of queue has no spatial extent. Because vehicles can
always enter the queue, and leave it after a certain
delay time, congestion is incorrectly modelled. A
well-known example of a model based on this queu-
eing policy is Vickrey’s bottleneck model [281].

• Spatial/physical queues (also called horizontal
queues): a queue of this type has an associated fini-
te capacity, i.e., a buffer storage. Vehicles can only
enter the queue when there is enough space for them
available.

The correct modelling of congestion effects such as
queue spill back, is of fundamental importance when as-
sessing certain policy measures like e.g., road pricing
schemes. To this end, the use of vertical queues should
be abandoned, in favour of horizontal queues. However,
even horizontal queues have problems associated with
them: the buildup and dissolution of congestion in a
transportation network are flawed, e.g., vehicles that are
leaving the front of a queue instantly open up a space at
the back of this queue, thus allowing an upstream vehi-
cle to enter. This leads to shorter queue lengths, because
the physical queueing effect of individual vehicles (i.e.,
the upstream propagation of the empty spot) is absent
[93, 256, 47, 159]. In order to alleviate this latter issue,
a more realistic velocity should be adopted for the bac-
kward propagating kinematic wave, thus calling for mo-
re advanced modelling techniques that explicitly describe
the propagation of traffic (e.g., fluid-dynamic approaches,
models with dynamical vehicle interactions, . . . ).

As often is the case, a model’s criticisms can be found in
its underlying assumptions. In the case of the four step
approach, it is obvious that all information regarding in-
dividual households is lost because of its aggregation to
a trip level. As was already recognised from the start, the
individual itself loses value during this conversion pro-
cess. This opened the door towards another approach
to transportation planning, more precisely activity-based
modelling (ABM) which is discussed in the next section.

A final complaint that is more common around many of
these grotesque models, is their requirement of a vast
amount of specific data. In many cases, a diverse ran-
ge of national studies are carried out, having the goal of

9



gathering as much data as possible. Regardless of this
optimism, some of the key problems remain, e.g., it is
still not always straightforward to properly interpret and
adapt this data so it can be used as input to a transportati-
on planning tool.

1.3 Activity-based transportation models

As it was widely accepted that the rationale for travel de-
mand can be found in people’s motives for participating
in social, economical, and cultural activities, the classic
trip-based approach nevertheless kept a strong foothold
in the transportation planning community. Instead of fo-
cussing attention elsewhere, the typical institutional poli-
cy was to ameliorate the existing four step models [191].
However, some problems persistently evaded a solution
with the trip-based approach, e.g., shops that remain open
late, employers who introduce flexible working hours, the
consideration of joint activities by members of a house-
hold, . . .

In the next few sections, we illustrate how all this chan-
ged with the upcoming field of activity-based transporta-
tion planning. We first describe its historic origins, after
which we move on to several of the approaches taken in
activity-based modelling. The concluding section gives a
concise overview of some of the next-generation model-
ling techniques, i.e., large-scale agent-based simulations.

1.3.1 Historic origins

The historic roots of the activity-based approach can pro-
bably be traced back to 1970, with the querulous work of
Torsten Hägerstrand [106]. He asserted that researchers
in regional sciences should focus more on the intertwi-
ning of both disaggregate spatial and temporal aspects
of human activities, as opposed to the more aggregate
models in which the temporal dimension was neglected.
This scientific field got commonly termed as time geo-
graphy; it encompasses all time scales (i.e., from daily
operations to lifetime goals), and focusses on the con-
straints that individuals face rather than predicting their
choices [194].

Central to Hägerstrand’s work was the notion of so-called
space-time paths of individuals’ activity and travel be-
haviour. In a three-dimensional space-time volume, two
spatial dimensions make up the physical world plane,
with the temporal dimension as the vertical axis. The
journey of an individual is now the path traced out in this
space-time volume: consecutive visits to certain locations
are joined by a curve, with vertical segments denoting
places where the individual remained stationary during
a certain time period. The complete chain of activities
(called a tour) is thus joined by individual trip legs. In
this respect, the space-time path represents the revealed
outcome of an unrevealed behavioural process [191]. An
example of such a path can be seen in Fig. 3: we can

see a woman going from her home in Boulder (Colora-
do, USA), to the university’s campus, followed by a visit
to the post office and grocery store, and finally returning
home [80]. Note that Hägerstrand extended his notion in
the space-time volume to include space-time prisms that
encapsulate and effectively constrain all of a person’s re-
achable points (i.e., all his/her possible space-time paths),
given a certain maximum travel speed as well as both star-
ting and ending points within the volume [61]. This envi-
ronment is sometimes also referred to as a person’s action
space, enveloping that person’s time budget.

Figure 3: An example of a space-time path showing an in-
dividuals’ activity and travel behaviour in the space-time
volume: the two spatial dimensions make up the physical
world plane, with the vertical axis denoting the temporal
dimension. In this case, we can see a woman going from
her home in Boulder (Colorado, USA), to the university’s
campus, followed by a visit to the post office and grocery
store, and finally returning home (image reproduced after
[80]).

Contrary to the belief that the field of activity-based trans-
portation planning found its crux with the dissatisfacti-
on of trip-based modelling, it grew and emerged spon-
taneously as a separate research study into human beha-
viour [191]. The underlying idea however remained the
same as in the trip-based approach, namely that travel de-
cisions arise from a need to participate in social, econo-
mical, and cultural activities. But as opposed to the more
aggregated trip-based view, the basic units here are indi-
vidual activity patterns, commonly referred to as house-
hold activity patterns. In this context, the activity-based
approach then studies the interactions between members
of a household, and the relation to their induced travel
behaviour [12].

1.3.2 Approaches to activity-based modelling

Departing from Hägerstrand’s initial comments, activity-
based research progress has been slowly but steadily. In
contrast with the development of the trip-based approach
that culminated in the four step model, there is no explicit
general framework that encapsulates the activity-based
modelling scheme. There were however early compre-
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hensive studies into human activities and their related tra-
vel behaviour, e.g., the synopsis provided by Jones et al.
[145]. As the field began to mature, certain ingredients
could be recognised, e.g. [12]:

• the generation of activities, which can be regarded
as the equivalent of the production/attraction step in
trip-based modelling,

• the modelling of household choices, i.e., with res-
pect to their activity chains; this includes choosing
starting time and duration of the activity, its location
as well as a modal choice,

• the scheduling of activities, outlining how a house-
hold plans and executes the tasks of its members for
long-, middle-, and short-term activities, going from
year- and lifetime-long commitments, to daily ope-
rations.

During the last three decades, many research models that
encompass activity scheduling behaviour have been de-
veloped. An excellent overview is given by Timmer-
mans, who makes a distinction between simultaneous and
sequential models [265]. The former class is based on
full activity patterns (e.g., for one whole day), whereas
the latter is based on an explicit modelling of the acti-
vity scheduling process. Simultaneous models comprise
utility-maximisation models and mathematical program-
ming models (e.g., Recker’s household activity pattern
problem – HAPP, [247]). Sequential models are frequent-
ly implemented as so-called computational process mo-
dels (CPM), acknowledging the belief that individuals do
not arrive at optimal choices, but rather employ context-
dependent heuristics.

As an example, we illustrate the seminal STARCHILD
model, which was originally a simultaneous model ba-
sed on the maximisation of individuals’ utilities. Based
on Hägerstrand’s notion and derivatives thereof, i.e., the
central idea that an individual’s travel behaviour is con-
strained by its space-time prism, Recker et al developed
the STARCHILD research tool addressing activity-based
modelling [248, 249]. The model hinges on three inter-
dependent consecutive steps: (i) the generation of hou-
sehold activities, (ii) constructing choice sets for these
activities, as well as scheduling them, and (iii) constrai-
ning these choices within the boundaries of the space-
time prism [191]. Note that the principal critique to the
model’s operation, was — and today still is — its need for
an extensive amount of specifically tailored data that en-
compasses Hägerstrand’s concepts. Just as with the four
step model, these data are arduous to come by. In short,
most of the data are based on and transformed from e.g.,
conventional trip-based surveys, travel diaries (e.g., the
MOBEL (Belgium) and MOBIDRIVE (Germany) sur-
veys of Cirillo and Axhausen [59]) and the like, although
more recently passive GPS based information is collected
[12, 191, 194].

In the future, a complete integration of activity generati-
on, scheduling, and route choice (DTA) is expected to ta-
ke place, on the condition that suitable empirical data will
become available. We must however be careful not to be
too optimistic, as e.g., Axhausen states that depending on
the ‘research-political’ adoption of the activity-based ap-
proach, “both a virtuous circle of progress or a vicious
circle of stagnation are a possibility for the future” [12].
An even more harsh argumentation was voiced by Tim-
mermans, who looked back at the development of the
integration between land-use models and transportation
planning [266]. In his overview, he identified three wa-
ves, i.e., (i) aggregate spatial interaction-based models,
(ii) utility-maximising multinomial logit-based models,
and (iii) activity-based detailed microsimulation models.
His final conclusion states that, despite the advances in
finer levels of spatial detail, the scientific field has not
undergone any significant theoretical progress. And alt-
hough there exists a pronounced need for better behavi-
oural models, the critique remains that this implies a tre-
mendous complexity, hence the insinuation that many of
the approaches are in fact based on black-box models.

1.3.3 Towards elaborate agent-based simulations

One of the most notable critiques often expressed against
classic trip-based approaches such as the four step mo-
del, is the fact that all eye for detail at the level of the
individual traveller is lost in the trip aggregation process.
Activity-based modelling schemes try to circumvent this
disadvantage by starting from a fundamentally different
basis, namely individual household activity patterns. To
this end, it is necessary to retain all information regarding
these individual households during the planning process.

As hinted at earlier, an upcoming technique that fits nice-
ly in this concept, is the methodology of multi-agent si-
mulations. In such models, the individual households are
represented as agents; the models then allow these agents
to make independent decisions about their actions. The-
se actions span from long-term lifetime residential hou-
sing decisions, the mid-term planning of daily activities,
to even short-term decisions about an individual’s driving
behaviour in traffic. The following description of such a
simulation system is based on the work of the group of
Nagel et al. [199, 13, 14, 15, 202, 122]:

• As a first step, a synthetic population of agents is
generated. There is a close relation with the com-
mon land-use models, as these agents come from po-
pulations that should be correctly seeded, i.e., they
should entail a correct demographic representation
of the real world. Once the synthetic population is
available to the model, the next step is to generate
activity patterns (i.e., activity chains), generate the-
se activities’ locations, and finally the scheduling of
the activities, as described in the previous section.
Finally, mode and route choice form the bridge bet-
ween the activity-based model and the transportati-
on layer. As a consequence, it is beneficial to deal
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with agents’ plans directly, rather than to rely on the
information contained in OD tables [13].

• The component that represents the physical propa-
gation of agents throughout e.g., the road network,
sits at the lowest level of the model. In this case, the
necessary ingredients constitute the physical propa-
gation of individual vehicles in the traffic streams.
Popular models are traffic cellular automata and/or
queueing models, allowing a fast and efficient simu-
lation of individual agents in a network. Higher le-
vel models such as e.g., pure fluid-dynamic models
are inherently not suitable because they operate on a
more aggregated basis and consequently ignore the
individuality of each agent in the system. Note that
this latter type of model can be deemed appropri-
ate, on the condition that they can incorporate the
tracking of individual particles by e.g., a smoothed
particle hydrodynamics method [14].

• An important issue that revolves around the two pre-
vious aspects, is the clear absence of a rigidly defi-
ned direction of causality, i.e., when exactly do peo-
ple choose their travel mode, is it before the plan-
ning of activities, or is it rather a result from the
planning process ? This problem can be dealt with
in a broader context, wherein agents make certain
plans about their activities, and iteratively learn by
replanning and rescheduling (either on a day-to-day
or within-day basis). This process of systematic re-
laxation continues until e.g., a Wardrop equilibrium
(W1) is reached (see step (IV) in section 1.2.2 for
more details). However, note that the question of
whether or not people in reality strive to reach such
an equilibrium, and whether or not such an equilibri-
um is even reached, remains an open debate. At this
stage in the model, we are clearly dealing with as-
pects from evolutionary game theory, be it coopera-
tive or non-cooperative. In this context, the concept
of within-day replanning by agents is getting mo-
re attention, as it constitutes a necessary prerequisi-
te for intelligent transportation systems, i.e., when
and how do travellers react (e.g., en-route choice) to
changes (e.g., control signals, incidents, . . . ) in their
environment [14] ?

The above description of a multi-agent activity-based si-
mulation system may seem straightforward, nevertheless,
no complete practical implementation exists today. The
model suite that comes the closest to reaching the pre-
viously stated goals, is the TRansportation ANalysis and
SIMulation System (TRANSIMS3) project. This project
is one part of the multi-track Travel Model Improvement
Program of the U.S. Department of Transportation, the
Environmental Protection Agency, and the Department of
Energy in the context of the Intermodal Surface Trans-
portation Efficiency Act and the Clean Air Act Amend-
ments of 1990. Its original development started at Los

3http://www.transims.net

Alamos National Laboratory, but a commercial imple-
mentation was provided by IBM Business Consulting.

Since its original inception, TRANSIMS has been ap-
plied to a various range of case studies. One of the most
notable examples, is the truly country-wide agent-based
detailed microsimulation of travel behaviour in Switzer-
land (see also Fig. 4) [282, 245]. A similar study encom-
passing the iteration and feedback between a simulation
model and a route planner, was carried out for the region
of Dallas [198, 204]. In the context of large-scale agent-
based simulations, queueing models were employed as a
TRANSIMS component by the work of Simon et al. for
the city of Portland [256], as well as the work of Gawron
[93, 94] and Cetin et al. [47]. Because of the computa-
tional complexity involved in dealing with the enormous
amount of agents in real-world scenarios, a popular ap-
proach is the use of parallel computations, as described
in the work of Nagel and Rickert [203]. Another example
of this last type of simulations, is the work of Chopard
and Dupuis who applied the methodology of large-scale
simulations to the city of Geneva [53, 52, 83].

Figure 4: An example of a multi-agent simulation of the
road network of Switzerland, around 08:00 in the mor-
ning: each vehicle is indicated by a single grey pixel, with
low-speed vehicles coloured black. The image clearly re-
veals more vehicular activity (and congestion) in the city
centres than elsewhere in the country (image reproduced
after [282]).

As a final remark, we would like to draw attention to so-
me more control-oriented aspects of multi-agent simula-
tions. In this respect, the transportation system is consi-
dered as a whole, whereby the agents are now the local
controllers within the system (e.g., traffic lights, varia-
ble message signs, . . . ), instead of individual households
as was previously assumed. Using a coordinated control
approach, is it then possible to achieve a system opti-
mum. An example of such a control system is the Advan-
ced Multi-agent Information and Control for Integrated
multi-class traffic networks (AMICI4) project from The
Netherlands. As one of its goals, it strives to provide
routing information to different classes of road users, as

4http://www.amici.tudelft.nl
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well as controlling them by means of computer simulated
agents who operate locally but can be steered hierarchi-
cally.

1.4 Transportation economics

Most of the work related to traffic flow theory has been
considered by researchers with roots in engineering, phy-
sics, mathematics et cetera. With respect to transportati-
on planning, the scene has shifted somewhat during the
last couple of decades towards policy makers who test
and implement certain strategies, based on e.g., the four
step modelling approach. Around 1960 however, ano-
ther branch of scientists entered the field of transportati-
on planning: economists developed standard models that
viewed transportation as a market exchange between de-
mand and supply.

Generally stated, the economics of transportation does
not exclusively focus on traffic as a purely physical phe-
nomenon, but also takes into account the fact that trans-
portation incurs certain costs, both to the individual as
well as to the society as a whole [172].

In the following sections, we describe the setting in which
economists view transportation, after which we discuss
the concept of road pricing.

1.4.1 The economical setting

In the context of economic theory, a transportation sys-
tem can be seen as an interaction between demand (pro-
fits) and supply (costs). In a static setting, both demand
and supply are frequently described by means of func-
tions: they are expressed as the price for a good asso-
ciated with the quantity of that good. In transportation
economics, quantity is frequently identified as the num-
ber of trips made (e.g., by the macroscopic characteris-
tic of traffic flow) [20]. In the remainder of this section,
we use the term travel demand to denote the demand si-
de, as opposed to the supply side which is composed of
the transportation infrastructure (including changes due
to incidents, . . . ). In a more broader context, travel de-
mand is typically described as the amount of traffic volu-
me that wants to use a certain infrastructure (i.e., the sup-
ply): when demand thus exceeds the infrastructure’s ca-
pacity under congested conditions (implying queueing),
this supply effectively acts as a constraint to the present
volume of traffic flow.

According to the aforementioned conventions, a demand
side function is expressed as a certain cost associated with
a level of flow (i.e., number of trips). We call such a
curve a travel demand function (TDF), and it is typically
decreasing with increasing flow; an example of such a
function can be seen as the dotted curve in Fig. 5. Note
that, to be correct, the depicted curve actually represents a
marginal travel demand: it gives the additional profit that
is received with the obtaining of one extra unit (the total
amount of profit is just the area under (i.e., the integral of)

the demand curve). Translated to a transportation system,
this means that the benefits of a traveller tend to decrease
with increasing travel demand (i.e., congestion).

In similar spirit, we can consider a supply side curve, i.e.,
price (costs) versus quantity (flow). One of the most used
approaches for describing traffic flow operations at the
supply side from an economical point of view, is the use
of an average cost function (ACF) [277] as proposed by
A.A. Walters in 1961 [288]. The theory was based on
the description of traffic flow by means of fundamental
diagrams. Consider for example Greenshields’ simple li-
near relation between density k and space-mean speed vs

[105, 182]. The corresponding vse
(q) fundamental dia-

gram, consists of a tilted parabola, lying on its side [182].
As the travel time T is inversely proportional to the space-
mean speed vs, Walters’ idea was to assume certain costs
related to the travel demand. Some examples of these
costs are those associated with [27, 110, 111]:

• (i) the construction of the transportation infrastruc-
ture,

• (ii) vehicle ownership and use,

• (iii) taxes,

• (iv) travel time, i.e., value of time (VOT),

• and (v) environmental and social costs.

Based on these costs, and using the relation between tra-
vel time and travel demand, Walters derived a functional
relationship for the economical cost C associated with
the travel demand q. This relationship (i.e., the ACF)
denotes the supply side of transportation economics; an
example is the thick solid curve in Fig. 5.

Once both travel demand and average cost functions
are known, they can be used to determine the equili-
brium points that occur at their intersection(s): given
both curves, the transportation system is assumed to
settle itself at these equilibria, with a certain travel
cost associated with the equilibrium traffic demand.
Note that because of the nature of the analysis proce-
dure, i.e., using static (stationary) curves, the resul-
ting travel costs are average costs, hence the name of
the average cost function.

There are some distinct features noticeable in the rela-
tion described by the average cost function. For starters,
the curve does not go through the origin, i.e., at low travel
demands there is already a fixed cost incurred. The depic-
ted cost then typically increases with increasing travel de-
mand, mainly due to the contribution of the value of time
associated with the travel time. The most striking feature
however, is the fact that the curve contains a backward-
bending upper branch [86]. This peculiar branch has an
asymptotic behaviour, i.e.,

lim
q→qcap→0

C(q) = +∞, (2)
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Figure 5: A graphical illustration of the economics of
transportation operations: the dotted curve represents the
demand side, i.e., the travel demand function (TDF),
whereas the thick solid curve represents the supply si-
de, i.e., the average cost function (ACF). Both curves ex-
press the cost C associated with the number of trips ma-
de (e.g., level of traffic flow q). The latter curve is said
to have two states, namely the congested and the hyper-
congested area (identified as the backward-bending part
of the curve). Points where both demand and supply cur-
ves intersect each other denote equilibrium points: given
both curves, the transportation system as assumed to sett-
le itself at their intersection(s), with a certain travel cost
associated with the equilibrium traffic demand.

where we have denoted the path taken by the limit, i.e.,
passing through the capacity flow qcap towards the upper
branch, which in fact corresponds to an increase towards
the jam density kjam. Also note the presence of an in-
flection point (for concave qe(k) fundamental diagrams),
which can be located analytically by differentiating the
functional relation twice, and solving it with a right hand
side equal to zero.

In contrast to the nomenclature adopted by the traffic
engineering community and in this dissertation, eco-
nomists typically refer to the lower branch of Fig. 5
as the congested state, and to the upper branch as the
hypercongested state. Their line of reasoning being
the conviction that in a certain sense, congestion al-
so occurs when the speed drops below the free-flow
speed on the free-flow branch [277, 172, 259].

With respect to the relevance of this hypercongested sta-
te, there has been some debate in literature. Among most
economists there seems to be a consensus, in the sense
that the hypercongested branch is actually a transient phe-
nomenon [296, 172]. Walters thought of the branch as
just a collection of inefficient equilibria, but it was shown
by Verhoef that all equilibria obtained on the hypercon-
gested branch are inherently unstable [277, 259]. Ano-
ther argument, that discards the use of the branch, goes
as explained by Yang and Huang [296]: many traditional
economical models of transportation assume a static (sta-
tionary) model of congestion, similarly as in classic static
traffic assignment described in section 1.2.3. Under this

premise, the relations as described by the fundamental
diagrams, should be considered for complete links, and
not only — as is usual in traffic flow theory — at local
points in space and time. Therefore, a link may contain
two different states: a free-flow state and a congested sta-
te. Hence, the average cost function should only describe
the properties that are satisfied on the whole link, and as
a result this excludes the global hypercongested regime.

Several ad hoc solutions exist for dealing with this pro-
blem, which is a consequence of using cost functions ba-
sed on stationary equilibria: some of these solutions typi-
cally entail the use of vertical segments near the capacity
flow in Fig. 5, resulting in finite queueing delays on hea-
vily congested links [277, 296, 259, 278]. Another much
used solution that ignores the backward-bending branch,
is to directly specify the average cost function based on a
link’s observed capacity, instead of deriving it through the
fundamental diagram of space-mean speed versus flow
[172]. Note that in most cases, the economic interpretati-
on of capacity is different from the one in traffic flow the-
ory: the capacity considered by economists has a lower
value as opposed to its engineering counterpart. A similar
example that specifies the relation between travel demand
and travel time (e.g., VOT), is the BPR travel impedance
function as described in section 1.2.3. Notwithstanding
these proposed specific solutions, the mainstream tend-
ency nowadays seems to imply the use of traffic flow mo-
dels that explicitly describe the dynamics of congestion,
either by using queueing models, or more elaborate mo-
dels based on fluid dynamics or detailed simulations of
individual vehicles [296].

1.4.2 Towards road pricing policies

In an economical treatment of transportation, road users
in general only take into account their own private costs,
such as (ii) vehicle ownership and use, (iii) taxes, and (iv)
costs related to the travel time. Note that because, as men-
tioned earlier, we are working with marginal cost functi-
ons, the cost (i) related to the transportation infrastructure
is not taken into account (as this is only a one-time initial
cost).

To this end, we consider the average cost function from
two different points of view: on the one hand, we have the
private costs borne by an individual traveller, and on the
other hand, we have the external costs that the traveller
bears to the rest of society. In accordance with economic
literature, we call the former associated cost function the
marginal private cost function (MPCF), and the latter the
marginal social cost function (MSCF). The extra costs
to society brought on by individual travellers, are called
negative externalities.

In Fig. 6, we have depicted the resulting equilibria that
arise from the intersections of the travel demand function
with both marginal private and social cost functions (no-
te that we disregard the upper backward-bending branch
of the average cost function as was shown in Fig. 5). In
an unmanaged society, i.e., where no measures are taken
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to change individual travellers’ behaviour, the resulting
equilibrium will be found at que, which is in fact a user
equilibrium corresponding to a cost as dictated by the
marginal private cost function (MPCF) [9]. As travel-
lers handle selfishly, not considering the costs inflicted
upon other travellers (e.g., more road users imply more
congestion for everybody), this pricing method is termed
average cost pricing. At this equilibrium, the unpaid ex-
ternal cost to society equals the difference between the
MSCF and MPCF curves at a demand level of que.PSfrag replacements

TDF

MPCF

MSCF
C

qqueqso

optimal
toll

welfare benefit

0

Figure 6: An economical equilibrium analysis based on
a travel demand function (TDF) represented by the dot-
ted curve, and marginal private and social cost functions
(MPCF and MSCF) represented by the thick solid curves.
The user equilibrium is located at a demand of que, whe-
reas the system optimum is located at a lower demand of
qso. The welfare benefit (indicated as the grey triangular
region) can be gained by levying a congestion toll equal
to the difference between the marginal social and priva-
te cost function defined at the system optimum demand
level qso.

As early as in 1920, Arthur Cecil Pigou noted that road
users do not take into account the costs they inflict upon
other travellers. In order to rectify this situation, he pro-
posed to levy governmental taxes on road use. Pigou ac-
tually discussed his idea in a broader economic setting,
by making a distinction between the private and the soci-
al costs. Charging of a suitable governmental tax could
change the balance so the negative externalities would be
included, resulting in a new equilibrium [237]. This pro-
cess is called internalising the external costs.

Some years later in 1924, Frank Hyneman Knight further
explored Pigou’s ideas5: Knight fully acknowledged the
fact that congestion justified the levying of taxes. In con-
trast to Pigou however, Knight raised some criticism in
the sense that not governmental taxes were necessary, but
instead private ownership of the roads would take care of
tax levying and consequently resulting in a reduction of
congestion [150].

In 1927, Frank Plumpton Ramsey cast this methodology
— called marginal cost pricing — in the light of social

5Note that Knight apparently was clued in his research by an error
made on Pigou’s behalf in his study of a two-route road network [30].
Even more intriguing, is the fact that this type of problem was already
considered as far back as 1841, with the work of the German economist
Johann Georg Kohl [151].

welfare economics. This latter type employs techniques
from a branch that is called micro-economics, which is an
economical treatment of society based on the behaviour
of individual producers and consumers. Welfare econo-
mics embraces two important concepts:

Efficiency: a measure for assessing how much benefit
society gains from a certain policy rule. It can be
considered with the (strict) Pareto criterion (inven-
ted by Vilfredo Pareto), which states that efficiency
improves if a policy rule implies an increase of wel-
fare for at least one individual, but no other indivi-
dual of society is worse off. Nicholas Kaldor and
John Hicks restated Pareto’s criterion, but this time
from the point of view of those who gain and those
who lose, respectively. Their Kaldor-Hicks criterion
states that society gains welfare, but not everybody
receives personal gain, i.e., there will be winners and
losers. The crucial assumption on the Kaldor-Hicks
criterion is that the winners could fully compensate
the losers, in theory; whether or not this happens at
all, is not the issue.

Equity: if society benefits from a certain policy rule,
then its efficiency can be measured using e.g., the
Pareto criterion as stated earlier. However, nothing
is said about the size of the benefit each individuals
of society receives. This is were the concept of equi-
ty enters the picture: it refers to a fair distribution of
the total benefits over all individuals in society (note
that in this case, there typically is a strong correlati-
on with the income distribution).

In this context, Ramsey thus stated a policy rule, imply-
ing a maximisation of the social welfare [244]. In the
field of transportation, this can be done by marginal cost
pricing, also called road pricing, congestion tolls, . . . The
nature of the measure is that it signifies a demand-side
strategy, with the goal of inducing a change in travellers’
behaviour. Road pricing typically entails a shift from on-
peak to off-peak periods, switching mode (e.g., from pri-
vate to public transportation), car pooling, route change,
. . . Considering again Fig. 6, we can see that if users we-
re to consider the marginal social cost function, instead
of only their marginal private cost function, this would
shift the resulting equilibrium from que to qso, which is a
social optimum. As said at the beginning of this section,
travellers do not take into account the negative externa-
lities they cause to the rest of society, and as such, they
can be charged with an optimal toll that is defined as the
difference between both marginal social and private cost
functions. Levying the correct congestion toll, would re-
move the original market failure, resulting in a net social
welfare benefit that is visualised as the grey triangular re-
gion in Fig. 6. Note that in an ideal world, congestion
tolls exactly match the caused negative externalities. In
practice however, this can not be accomplished, resulting
in so-called second-best pricing schemes. Practical real-
life examples of this are tolling the beltway around a city
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upon entering it (e.g., London’s recent congestion char-
ge), using step-tolls, tolling at fixed time periods instead
of based on traffic conditions, . . . [173]

Reconsidering the work of Wardrop with respect to the
criteria (W1) and (W2) highlighted in section 1.2.2,
Beckmann, McGuire, and Winsten found that the system
optimum qso can be reached if the standard cost (i.e., jour-
ney time) is replaced with a generalised cost, which is
just the marginal social cost function as described earlier
[20]. Consequently, the total travel time in the system
can be minimised (from an engineering perspective), by
levying a so-called efficiency toll, which corresponds to
Ramsey’s optimal toll.

One of the most notable extensions in the economic tre-
atment of transportation and congestion tolls, is the semi-
nal work of the late Nobel prize winner William Vickrey
[281]. As already stated in section 1.2.5, correct model-
ling of e.g., queue spill back, is of fundamental importan-
ce when assessing the effectiveness of road pricing sche-
mes for example. Vickrey’s bottleneck model is one step
in this direction: it is based on the behaviour of morning
commuters, whereby the model takes into account the de-
parture times of all travellers. As everybody’s desire is to
arrive at work at the same time, some will arrive earlier,
others later. Besides the traditional travel time costs, tra-
vellers therefore also experience so-called schedule delay
costs. Levying suitable tolls that depend on the travellers’
arrival times, allows to reach a system optimum [8, 172].
It is important to realise here that the levied toll should
vary over time and space, in order to correspond to the
governing traffic conditions.

To most people in society road pricing is a highly unpo-
pular measure, as well as a controversial political issue,
whereby public acceptance is everything [188, 109, 110,
111]. Alternatives to road pricing can include upgrading
existing roads and/or public transportation services, strict
control-oriented regulation by means of advanced traffic
management systems (ATMS), issuing elaborate parking
systems, fuel taxes, et cetera [7]. In spirit of second-best
pricing schemes, it was a wise thing in the UK to con-
nect London’s congestion charge to the simultaneous im-
provement of public transportation [258]. Similarly, the
cordon toll system in the city of Oslo, Norway, quickly
found acceptance among the population [109]. Neverthe-
less, road pricing is considered an unfair policy measure
to most people: households (and firms) with higher inco-
mes, can more easily afford to pay the charge, hence they
will keep the luxury of travelling at their own discretion,
whilst others might not be able to pay the required toll.
As a consequence, an inconsiderate internalisation of the
external costs, does not lead to an equitable Pareto opti-
mal scenario. Despite this resistance, there does seem to
be a general consensus among members of society that
congestion caused by traffic induced by recreational ac-
tivities, is not tolerated during peak periods; congestion
tolling for these travellers is deemed appropriate.

Despite the advances in the methodology underlying
road pricing, there is still one major gap that has yet to

be filled in, i.e., the equity of the principle, or otherwise
stated: where do the gained social welfare benefits
(i.e., tax revenues) go in the redistribution ? As Small
states, road pricing is more acceptable to the broad
public, if it is presented as a complete financial package
[257]. As welfare economists debate on whether or
not the revenues should go back to the transportation
sector or rather elsewhere, Small asserts that inclusion
of the former is mandatory for achieving substantial
support from both the political side and the investors.
Complementary, in order to satisfy the global population,
it is advisory to use the collected charges in order to
diminish e.g., labour taxes, as they are perceived as being
too high [103, 110, 111].

In the end, we should note that both economists
and traffic engineers are essentially talking about
the same subject, although by approaching it from
different angles. In the field of economics, road
pricing policies are introduced based on average
cost functions, allowing an optimisation of the
social welfare. This effectively corresponds to the
engineers’ idea of static traffic assignment, based on
a system optimum using travel impedance functions
(see e.g., section 1.2.3). The validity of using
these average cost functions (with or without their
backward-bending parts as explained in section
1.4.1), has instigated several debates in road pricing
literature, most notably between Else and Nash
[87, 208], Evans and Hills [88, 89, 130], and Ohta
and Verhoef [224, 225, 279].

In continuation, the approach followed by Vickrey’s
bottleneck model provides a nice, first alternative,
using schedule delay costs (see sections 1.2.5 and
1.4.2). Although Vickrey’s idea introduces a hitherto
absent time dependence, it has the disadvantage that
spatial extents are neglected through the assumpti-
on of point-queues (see section 1.2.5). Lo and Szeto
have rigourously shown that hypercongestion is es-
sentially a spatial phenomenon, and that by neglec-
ting this facet, a road pricing policy might actually
worsen traffic conditions [176]. The correct way out
of this problem, is by explicitly taking the tempo-
spatial characteristics of traffic flows into account.
As an engineering analogy, this can be accomplished
by introducing dynamic traffic assignment (see sec-
tion 1.2.4) which uses physical propagation models
to describe the buildup and dissolution of congesti-
on (see also some of the models presented in section
1.2.5, e.g., the work of Lago and Daganzo [159]).

2 Traffic flow propagation models

In contrast to the previous section, which dealt with high
level transportation planning models, the current section
considers traffic flow models that explicitly describe the
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physical propagation of traffic flows. In a sense, these
models can be seen as being directly applicable for the
physical description of traffic streams. There exist se-
veral methods for discriminating between the families of
models that describe traffic flow propagation, i.e., based
on whether they operate in continuous or discrete time (or
even event-based), whether they are purely deterministic
or stochastic, or depending on the level of detail (LOD)
that is assumed, . . . More detailed explanations can found
in the overview of Hoogendoorn and Bovy [134]. In this
dissertation, we present an overview that is based on the
latter method of discriminating between the level of de-
tail. We believe that this classification most satisfactorily
describes the discrepancies between the different traffic
flow models. Thus, depending on the level of aggregati-
on, we can classify the propagation models into the fol-
lowing four categories:

• macroscopic (highest level of aggregation, lowest
level of detail, based on continuum mechanics, typi-
cally entailing fluid-dynamic models),

• mesoscopic (high level of aggregation, low level of
detail, typically based on a gas-kinetic analogy in
which driver behaviour is explicitly considered),

• microscopic (low level of aggregation, high level
of detail, typically based on models that describe
the detailed interactions between vehicles in a traffic
stream),

• and submicroscopic (lowest level of aggregation,
highest level of detail, like microscopic models but
extended with detailed descriptions of a vehicles’ in-
ner workings).

Note that some people regard macroscopic models
more from the angle of network models. In this case,
the focus lies on performance characteristics such
as total travel times (a measure for the quality of ser-
vice), number of trips, . . . [92] To this end, several
quantitative models were introduced, such as Zaha-
vi’s so-called α relation between traffic flow, road
density, and space-mean speed [299], and Prigogine
and Herman’s two-fluid theory of town traffic [128].

2.1 Macroscopic traffic flow models

In this section, we take a look at the class of traffic flow
models that describe traffic streams at an aggregated le-
vel. We first introduce the concept behind the models
(i.e., the continuum approach), after which we discuss
the classic first-order LWR model. Because of its his-
torical importance, we devote several sections to the mo-
del’s analytical and numerical solutions, as well as to so-
me extensions that have been proposed by researchers.
We conclude our discussion of macroscopic models with
a description of several higher-order models, and shed so-
me light on the problems associated with both first-order
and higher-order models.

2.1.1 The continuum approach

Among the physics disciplines, exists the field of con-
tinuum mechanics that is concerned with the behaviour
of solids and fluids (both liquids and gasses). Conside-
ring the class of fluid dynamics, it has spawned a rich va-
riety of branches such as aerodynamics, hydrodynamics,
hydraulics, . . .

Underlying these scientific fields, is the continuity as-
sumption (also called the continuum hypothesis) that they
all have in common. In a nutshell, this assumption states
that fluids are to be treated as continuous media (in con-
trast to e.g., molecular gasses, which consist of distinct
particles). Stated more rigourously, the macroscopic spa-
tial (i.e., the length) and temporal scales are considera-
bly larger than the largest molecular corresponding sca-
les [62]. As a consequence, all quantities can be treated
as being continuous (in the infinitesimal limit). The de-
cision to use either a liquid-like or a gas-like treatment,
is based on the Knudsen number of the fluid: a low value
(i.e., smaller than unity) indicates a fluid-dynamic treat-
ment, whereas a high value is indicative of a more granu-
lar medium. In this section, we consider the former ap-
proach. In the latter case, we enter the realm of statistical
mechanics that deals with e.g., kinetic gasses, requiring
the use of the Boltzmann equation (as will be explained
in section 2.2 on mesoscopic traffic flow models).

Historically, the fluid-dynamic approach found its roots
in the seminal work of Claude Louis Navier (1822),
Adhémar de Saint-Venant (1843), and George Gabriel
Stokes (1845) [101]. This gave rise to what we know as
the Navier-Stokes equations (NSE), formulated as a set
of non-linear partial differential equations (PDEs). For
our overview, the most relevant equation is actually the
local conservation law, stating that the net flux is accom-
panied by an increase or decrease of material (i.e., fluid).
In general, we can discern two subtypes: compressible or
incompressible fluids, and viscous or inviscid fluids. In-
compressibility assumes a constant density (and a high
Mach number), whereas inviscid fluids have a zero vis-
cosity (with a corresponding high Reynolds number) and
are typically represented as the Euler equations.

Note that the NSE are still not fully understood. The fact
of the matter is that the Clay Mathematics Institute has
devised a list of Millennium Problems6, among which a
deeper fundamental understanding of the NSE holds a re-
ward of one million dollar. Because the original Navier-
Stokes equations are too complex to solve, scientists de-
veloped solutions to specific subproblems, e.g., Euler’s
version of inviscid fluids. As an example, we give the
Burgers equation, as derived by Johannes Martinus Bur-
gers [39], for a one-dimensional fluid in the form of a
hyperbolic conservation law:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3)

6http://www.claymath.org/millennium
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in which the u ∈ R typically represents the velocity, and
ν is the viscosity coefficient. For inviscid fluids, ν = 0,
such that equation (3) corresponds to a first-order parti-
al differential equation. This type of hyperbolic PDE is
very important, as its solution can develop discontinui-
ties, or more clearly stated, it can contain shock waves
which are of course directly relevant to the modelling of
traffic flows. The inviscid Burgers PDE can be solved
using the standard method of characteristics, as will be
explained in further detail in the next three sections.

2.1.2 The first-order LWR model

Continuing the previous train of thought, we can consider
traffic as an inviscid but compressible fluid. From this
assumption, it follows that densities, mean speeds, and
flows are defined as continuous variables, in each point in
time and space, hence leading to the names of continuum
models, fluid-dynamic models, or macroscopic models.

The first aspect of such a fluid-dynamic description of
traffic flow, consists of a scalar conservation law (‘sca-
lar’ because it is a first-order PDE). A typical derivation
can be found in [92] and [147]: the derivation is based on
considering a road segment with a finite length on which
no vehicles appear or disappear other than the ones that
enter and exit it. After taking the infinitesimal limit (i.e.,
the continuum hypothesis), this will result in an equati-
on that expresses the interplay between continuous den-
sities and flows on a local scale. Another way of deriving
the conservation law, is based on the use of a differen-
tiable cumulative count function Ñ(t, x) that represents
the number of vehicles that have passed a certain location
[215]:

k(t, x) = −∂Ñ(t, x)/∂x and q(t, x) = ∂Ñ(t, x)/∂t,

⇓

∂k(t, x)

∂t
= −

∂2Ñ(t, x)

∂t ∂x
and

∂q(t, x)

∂x
=

∂2Ñ(t, x)

∂t ∂x
,

⇓

∂k(t, x)

∂t
+

∂q(t, x)

∂x
= 0, (4)

with the density k and flow q dynamically (i.e., time va-
rying) defined over a single spatial dimension. Light-
hill and Whitham were among the first to develop such
a traffic flow model [169] (note that in the same year, Ne-
well had constructed a theory of traffic flow at low den-
sities [218]). Crucial to their approach, was the so-called
fundamental hypothesis, essentially stating that flow is a
function of density, i.e., there exists a qe(k(t, x)) equi-
librium relationship [182]. Essentially to their theory,
Lighthill and Whitham assumed that the fundamental hy-
pothesis holds at all traffic densities, not just for light-
density traffic but also for congested traffic conditions.
Using this trick with the fundamental diagram, relates
the two dependent variables in equation (4) to each other,

thereby making it possible to solve the partial differential
equation.

One year later, in 1956, Richards independently derived
the same fluid-dynamic model [251], albeit in a slightly
different form. The key difference, is that Richards
focusses on the derivation of shock waves with respect
to the density, whereas Lighthill and Whitham consider
this more from the perspective of disruptions of the flow
[239]. Another difference between both derivations, is
that Richards fixed the equilibrium relation, whereas
Lighthill and Whitham did not restrict themselves to an
a priori definition; in Richards’ paper, we can find the
equation V = a(b − D), with V the space-mean speed,
D the density, and a and b fitting parameters [251].
Note that all three authors share the following same
comment: because of the continuity assumption, the
theory only holds for a large number of vehicles, hence
the description of “long crowded roads” in Lighthill and
Whitham’s original article.

Because of the nearly simultaneous and indepen-
dent development of the theory, the model has be-
come known as the LWR model, after the initials of
its inventors who receive the credit. In some texts,
the model is also referred to as the hydrodynamic
model, or the kinematic wave model (KWM), attri-
buted to the fact that the model’s solution is based
on characteristics, which are called kinematic waves
(e.g., shock waves).

2.1.3 Analytical solutions of the LWR model

Reconsidering equation (4), taking into account the fun-
damental diagram, the conservation law is now expressed
as:

kt + qe(k)x = 0, (5)

in which we introduced the standard differential calculus
notation for PDEs. Recognising the fundamental relation
of traffic flow theory, i.e., q = k vs, equation (5) [182]
then becomes:

kt + (k vse
(k))x = kt +

(
vse

(k) + k
dvse

(k)

dk

)
kx = 0.

(6)

The above hyperbolic PDE, can be translated into the
Burgers equation (3), using a suitable transformation to
a dimensionless form as explained in the rigourous ma-
thematical treatment provided by Jüngel [147]. The con-
servation law (5) can also be cast in a non-linear wave
equation, using the chain rule for differentiation [92]:

kt +
dqe(k)

dk
kx = 0. (7)
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Analytically solving the previous equation using the me-
thod of characteristics, results in shock waves that travel
with speeds equal to:

w =
dqe(k)

dk
, (8)

i.e., the tangent to the qe(k) fundamental diagram. This
tangent corresponds to the speed w of the backward pro-
pagating kinematic wave [182]. As a consequence, solu-
tions, being the characteristics, of equation (7) have the
following form:

k(t, x) = k(x− wt), (9)

with the observation that the density is constant along
such a characteristic. Note that in order to obtain shock
waves that are only decelerating, the used qe(k) funda-
mental diagram should be concave (a property that is of-
ten neglected) [79]:

d2qe(k)

dk2
≤ 0. (10)

Starting from an initial condition, the problem of finding
the solution to the conservation PDE, is also called an
initial value problem (IVP), whereby the solution descri-
bes how the density evolves with increasing time. The
problem is called a generalised Riemann problem (GRP)
when we consider an infinitely long road with given con-
stant initial densities up- and downstream of a disconti-
nuity.

Because the method of characteristics can result in
non-unique solutions, a trick is used to select the correct,
i.e., physically relevant, one. Recall from equation (3)
that the right-hand side of the Burgers PDE contained a
viscosity term ν. The general principle that is adopted for
selection of the correct solution, is based on the Oleinik
entropy condition, which regards the conservation law as
a diffuse equation. In this context, the viscosity coeffi-
cient is multiplied with a small diffusion constant ε. In
the vanishing viscosity limit ε → 0, the method returns a
unique, smooth, and physically relevant solution instead
of infinitely many (weak) solutions [164, 201]. For more
details with respect to the application of traffic flows, we
refer to the excellent treatment given by Jüngel [147].

Ansorge, Bui et al., Velan and Florian later reinter-
preted this entropy condition, stating that it is equi-
valent to a driver’s ride impulse [6, 37, 276]. Drivers
going from free-flow to congested traffic encounter
a sharp shock wave, whereas drivers going in the re-
verse direction essentially pass through all interme-
diate points on the fundamental diagrams, i.e., the
solution generates a fan of waves. It is for this latter
case that the ‘ride impulse’ is relevant: it denotes the
fact that stopped drivers prefer to start riding again,
resulting in a fan of waves.

A more intuitive explanation can also be given based on
the anticipation that drivers adopt when they approach
a shock wave: their equilibrium speed vse

(k) is also a
function of the change in density, e.g.:

vse
(k)

.
= vse

(k)−
ν

k

∂k

∂x
. (11)

Substituting this new equilibrium relation in equation (6),
results in a right-hand side equal to ν ∂2k

∂x2 . Applying the
same methodology based on the vanishing viscosity limit
of the entropy solution, results in the same unique solu-
tion. Because the shock waves are in fact mathematical
discontinuities, and as such, infinitesimally small, they
are typically ‘smeared out’ by numerical schemes. In
fact, this is just the equivalent of introducing an artifici-
al viscosity (as explained earlier), which allows diffusion
(i.e., the combined effect of dissipation and dispersion)
of the shock waves. Note that this diffusion is a con-
sequence of the numerical solution, and not necessarily
corresponding to the real diffusion processes in a viscous
fluid. This numerical smoothing helps to retain numerical
stability of the final solution.

Whenever in the solution of the conservation equati-
on, two of its characteristics intersect, the density takes
on two different values (each one belonging to a single
characteristic). As this mathematical quirk is physically
impossible, the entropy solution states that both charac-
teristics terminate and breed a shock wave; as such, these
shock waves form boundaries that discontinuously sepa-
rate densities, flows, and space-mean speeds [92]. The
speed of such a shock wave is related to the following
ratio [239]:

wshock =
∆q

∆k
, (12)

with ∆q = qu − qd and ∆k = ku − kd the relative dif-
ference in flows, respectively densities, up- and down-
stream of the shock wave.

Note that going from a low to a high density regime typi-
cally results in a shock wave, whereas the reverse transi-
tion is accompanied by an emanation of a fan of charac-
teristics (also called expansion, acceleration, or rarefac-
tion waves). In shock wave theory, the densities on either
side of a shock are well defined (i.e., unique solutions
exist); along the shock wave however, the density jumps
discontinuously from one value to another. In this lat-
ter respect, equation (12) is said to satisfy the Rankine-
Hugoniot jump condition.

The previous remarks with respect to the entropy con-
dition, are closely related to the concavity of the qe(k)
fundamental diagram, as defined by equation (10): for
concave qe(k) fundamental diagrams, all shock waves
are compression waves going from lower to higher densi-
ties. However, for qe(k) fundamental diagrams that con-
tain convex regions, application of the entropy condition
can return the wrong solution [165]. Although the mathe-
matics of using these kinds of fundamental diagrams has
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been worked out, see for example the work of Li [168], a
unified physical interpretation is still lacking [181, 201]:
instead of only deceleration shock waves and accelerati-
on fans, we now also have acceleration shock waves and
deceleration fans. Finally, it is important to realise that
for non-smooth qe(k) fundamental diagrams, the entropy
condition is not applicable and no fans occur because the
correct unique solution is automatically obtained [276].

In Fig. 7, we have depicted a classic example that is of-
ten used when illustrating the tempo-spatial evolution of
a traffic flow at a traffic light (left part), based on the LWR
first-order macroscopic traffic flow model with a triangu-
lar qe(k) fundamental diagram (right part). The applica-
tion of the traffic flow model is visible in the time-space
diagram to the left. A traffic light is located at position
xlight; it is initially green, and at tred it turns red until tgreen

when it switches back to green. The initial conditions at
the road segment are located at point 1© on the fundamen-
tal diagram. Because all characteristics of the solution are
tangential to the fundamental diagram, the results can be
elegantly visualised when using a triangular diagram: ex-
cept for the fan of rarefaction waves (we approximate the
non-differentiable tip of the triangle with a smooth one,
such that we can show the fan 4© for all didactical intents
and purposes), only two kinematic wave speeds are pos-
sible. When the traffic light turns red, a queue of stopped
vehicles develops. Inside this queue, the jam density sta-
te kj holds, corresponding to point 2© on the fundamental
diagram. The upstream boundary of the queue is demar-
cated by the shock wave 3© that is formed by the intersec-
tions of the characteristics 1© and 2©. Downstream of the
jam, there are no vehicles: because we are working with
a triangular fundamental diagram, the characteristics are
parallel to the vehicle trajectories (their speeds are equal
to the slopes of points on the free-flow branch). The initi-
al regime at state 1© and the ‘empty’ regime downstream
of the queue are separated from each other by a contact
discontinuity or slip. When the traffic light turns green
again, the queue starts to dissipate, whereby the soluti-
on of characteristics becomes a fan of rarefaction waves
4©, taking on all speeds between states 2© and 1© on the

fundamental diagram. A final important aspect that can
be seen from Fig. 7, is the fact that in the LWR model the
outflow from a jam, i.e., going from a high to a low densi-
ty regime, always proceeds via the capacity-flow regime
at qcap: so there is no capacity drop in the LWR model
because the outflow is always optimal.

To conclude our summary of analytical derivations, we
point the reader to the significant work of Newell, who
in 1993 cast the LWR theory in an elegant form. The
key ideas he introduced were on the one hand the use
of cumulative curves for deriving the conservation law,
and on the other hand the use of a triangular qe(k) fun-
damental diagram [215]. Due to Newell’s work, traffic
flow analysis in this respect gets very simplified, as it is
now possible to give an exact graphical solution to the
LWR model for both free-flow and congested conditions
[216]. To complete his theory, Newell also provided us

with a means to include multi-destination flows, i.e., spe-
cifications of which off-ramp vehicles will use to exit the
motorway [217]. Note that for the LWR model with a
parabolic qe(k) fundamental diagram and piece-wise li-
near and piece-wise constant space and time boundaries,
respectively, Wong and Wong recently devised an exact
analytical solution scheme. Their method is based on the
efficient tracking and fitting of generated and dispersed
shock waves within a time-space diagram [295].

2.1.4 Numerical solutions of the LWR model

Besides the previous analytic derivation of a solution
to the conservation law expressed as a PDE, it is al-
so possible to treat the problem numerically. By trying
to find a numerical solution to the PDEs, we enter the
field of computational fluid dynamics (CFD). In a typi-
cal setup, the ‘fluid domain’ is first discretised into adja-
cent cells (called a one-dimensional mesh) of size ∆X
(note that all cells need not to be equal in size), after
which an iterative scheme is used to update the cells’ sta-
tes (e.g., the density k in each fluid cell) at discrete time
steps m ∆T with m ∈ N0. Typically, this entails fini-
te difference schemes (or in a broader context, finite ele-
ment methods or finite volume methods), which replace
the continuous partial derivative with a difference opera-
tor, thereby transforming the conservation equation in-
to a finite difference equation (FDE). Examples of these
difference operators are the forward difference operator
∆f(x) = f(x + 1) − f(x) and the backward differen-
ce operator ∇f(x) = f(x) − f(x − 1), which is not to
be confused with the gradient vector of f(x). Examples
of finite difference schemes are the central scheme, the
Lax-Friedrichs scheme, the downwind scheme, the up-
wind scheme, the MacCormack scheme, the Lax-Wendroff
scheme, the Steger-Warming Flux Splitter scheme, the
Rieman-based Harten-van Leer-Lax and Einfeldt sche-
me, . . . For a more complete overview of these schemes,
we refer the reader to the work of Helbing and Treiber
[124], Jüngel [147], and Ngoduy et al. [222]. A prac-
tical software implementation of a moving-mesh finite-
volume solver for the previously mentioned hyperbolic
PDEs, can be found in van Dam’s TraFlowPACK soft-
ware [272]. LeVeque also developed a numerical solver,
called CLAWPACK, that is designed to compute nume-
rical solutions to hyperbolic partial differential equations
using a wave propagation approach [166]. A central pre-
caution for all these schemes, is the so-called Courant-
Friedrichs-Lewy (CFL) condition which guarantees nu-
merical stability of the algorithms; for traffic flows, it has
the physical interpretation that no vehicles are allowed to
‘skip’ cells between consecutive time steps (i.e., all phy-
sical information that has an influence on the system’s
behaviour should be included):

∆T ≤
∆X

vff
. (13)

Just over a decade ago, Daganzo constructed a numerical
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Figure 7: Example of an analytical solution based on the LWR first-order macroscopic traffic flow model with a triangular
qe(k) fundamental diagram. Left: a time-space diagram with a traffic light located at position xlight. It is green, except
during the period from tred until tgreen. The solution is visually sketched by means of the characteristics that evolve during
the tempo-spatial evolution of the traffic flow. Right: a triangular fundamental diagram, with the initial conditions at state
1©. When the traffic light is red, a queue develops in which the jam density state at point 2© holds. Its upstream boundary

is demarcated by the shock wave 3©. When the queue starts to dissipate, the solution of characteristics generally becomes
a fan of rarefaction waves 4©.

scheme based on finite difference equations. It is known
as the cell transmission model (CTM), which solves the
LWR model using a trapezoidal qe(k) fundamental dia-
gram [63]. At the heart of his model lies a discretisation
of the road into finite cells of width ∆X , each contai-
ning a certain number of vehicles (i.e., an average cell
density). When time advances, these vehicles are trans-
mitted from upstream to downstream cells, taking into
account the capacity constraints imposed by the down-
stream cells. The CTM converges to the LWR model in
the limit when ∆X → 0. In 1995, Daganzo extended the
model to include network traffic, i.e., two-way merges
and diverges, thereby allowing for the correct modelling
of dynamic queue spill backs [64]. He also cast the mo-
del in the context of Godunov FDE methods7, allowing
for arbitrary qe(k) fundamental diagrams. The exchange
of vehicles between neighbouring cells is then governed
by so-called sending and receiving functions [65]. Leb-
acque derived a similar numerical scheme that performed
the same functions as Daganzo’s CTM, at approximate-
ly the same time (the debate on whomever was first is
still not resolved) [161, 162]. In his derivation, he em-
ployed the terms demand and supply functions to denote
the exchange of vehicles between cells. He also provided
the means to handle general (i.e., multi-way) merges and
diverges. Both the original cell transmission model and
an implementation of the Godunov scheme for the LWR
model with an arbitrary qe(k) fundamental diagram, we-
re provided by Daganzo et al. in the form of a software
package called NETCELL [46]. Note that, as mentioned
earlier, numerical methods tend to smear out the shock

7Sergei K. Godunov’s numerical solution of PDEs is considered as
a breakthrough in computational fluid dynamics: it provides a unique
solution based on a stable Riemann problem [102, 162, 70].

waves; this diffusion is therefore a consequence of the
solution methodology and not of the LWR model itself
[177].

Daganzo also developed another methodology for nume-
rically solving the LWR equations, based on a variational
formulation. Rather than extending the existing concept
of a conservation equation coupled with a vanishing vis-
cosity limit, he derived a solution based on the principles
behind cumulative curves. The initial value problem be-
comes well-posed, and the methodology is able to handle
complex boundary conditions. In short, the problem is
transformed into finding shortest paths in a network of
arcs that comprise the kinematic waves; as a surplus, the
method is computationally more efficient than traditional
solutions based on conservation laws [74, 75].

Traditional cell-based numerical methods are fairly com-
putationally intensive, because they have to discretise the
road entirely (even in regions where there is no variati-
on in density), resulting in a solution that is composed
of linear shock waves and continuous fans (i.e., the rare-
faction waves). In order to derive a solution that is com-
putationally more efficient, Henn proposed to replace the
continuous fans of rarefaction waves with a discrete set
of angular sectors (i.e., the density now varies with dis-
crete steps). The efficiency now stems from the fact that,
instead of a whole array of cells, only list structures need
to be maintained [126].

Only recently, a combination of Daganzo’s CTM with a
triangular qe(k) fundamental diagram and Newell’s cu-
mulative curves was constructed by Yperman et al, resul-
ting in the link transmission model (LTM). Because who-
le links can be treated at once, the LTM’s computational
efficiency is much higher than that of classic numerical
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solution schemes for the LWR model, whilst retaining the
same accuracy [?].

With respect to the applicability of the LWR model to
real-life traffic flows, we refer the reader to two studies:
the first was done by Lin and Ahanotu in the course of the
California Partners for Advanced Transit and Highways
(PATH) programme (formerly known as the Program on
Advanced Technology for the Highway). In their work,
they performed a validation for the CTM with respect
to the formation and dissipation of queues, concluding
that the most important first-order characteristics (corre-
lations in measurements of free-flow traffic at successive
detector stations, and the speed of the backward propaga-
ting wave under congested conditions) perform reasona-
ble well when comparing them to field data [171].

A second, more thorough and critical study was done by
Nagel and Nelson. In it, they scrutinise the LWR mo-
del, both with concave qe(k) fundamental diagrams and
those with convex regions. Their main conclusion states
that it remains difficult to judge the model’s capabilities
on a fair basis, largely due to the fact that there do not
exist many real-world data sets which also contain a geo-
metrical description of the local infrastructural road lay-
out. This latter ingredient is a requirement for assessing
whether or not an observed traffic breakdown is either
spontaneously induced or due to the presence of an active
bottleneck (because the LWR model constitutes a strictly
deterministic model) [201].

2.1.5 Flavours of the LWR model

Considering this elegant first-order traffic flow model, its
main advantages are that it is simple, and in a sense re-
produces the most important features of traffic flows (i.e.,
shock waves and rarefaction waves). However, because
of its restriction to a first-order partial differential equati-
on, certain other effects, such as stop-and-go traffic wa-
ves, capacity drop and hysteresis, traffic flow instabilities,
finite acceleration capabilities, . . . can not be represented
[169]. In many cases, these ‘deficiencies’ can be tackled
by switching to higher-order models, as will be elabora-
ted upon in section 2.1.6. Interestingly, in their original
paper, Lighthill and Whitham recognised the fact that dri-
vers tend to anticipate on downstream conditions, chan-
ging their speed gradually when crossing shock waves.
This in fact necessitates a diffusion term in the conserva-
tion equation that captures a density gradient.

Instead of using a higher-order model, traffic flow engi-
neers can also resort to more sophisticated approaches,
such as extensions of the first-order model. To conclu-
de this section, let us give a concise overview of some of
the model flavours that have been proposed as straightfor-
ward extensions to the seminal LWR model.

An interesting set of extensions launched, was created by
Daganzo, dealing with two classes of vehicles, of which
one class can use all lanes of a motorway, whereas the

other class is restricted to a right-hand subset of these la-
nes. When the capacity of the latter vehicles in regular
lanes is exceeded, a queue will develop in those lanes,
but the former vehicles will still be able to use the other
lanes; this is called a 2-pipe regime. Similarly, if the ca-
pacity of the yet freely flowing vehicles is exceeded, all
lanes enter a queued state, which is called a 1-pipe re-
gime. In short, interactions between vehicles in this and
the following models are nearly always considered from
a user equilibrium perspective [68]. Daganzo et al. ap-
plied the theory to a case where there is a set of special
lanes on which only priority vehicles can drive. The the-
ory was also suited to describe congestion on a motorway
diverge, such that the motorway itself can still be in the
free-flow regime [69]. For the special case of queue spill
back at a motorway’s off-ramp, Newell also provided a
graphical solution that is based on the use of cumulative
curves [220].

Continuing the previous train of thought, Daganzo pro-
vided a logical extension: he again considered different
lanes, but now introduced two different types of drivers:
aggressive ones (called rabbits) and timid ones (called
slugs). Daganzo himself states that a correct traffic flow
theory should involve both human psychology and lane-
changing aspects, leading him to such a behavioural de-
scription [71]. The theory was also used to explain the
phenomenon of a capacity funnel [182]: according to the
theory, once a capacity drop occurs, the recovery to the
capacity-flow regime can not occur spontaneously, there-
by requiring an exogeneous mechanism. Daganzo pro-
vides an explanation, called the pumping phenomenon:
drivers temporarily accept shorter time headways down-
stream of an on-ramp, leading to a ‘pumped state’ of
high-density and high-speed traffic, or in other words, a
capacity-flow regime [72]. Chung and Cassidy later pro-
vided a validation of the theory, by applying it to descri-
be merge bottlenecks on multi-lane motorways in Tor-
onto (Canada) and Berkeley (California). In their study,
they introduced the concept of semi-congestion, denoting
a regime in which on vehicle class enters a state with a
reduced mean speed, whereas the other vehicle class can
still travel unimpeded. Their findings indicated an agree-
ment between both shock wave speeds empirically obser-
ved and predicted by the model [58].

An interesting case to which the LWR theory can be ap-
plied, is the problem of moving bottlenecks as stated by
Gazis and Herman [96]. Examples of such bottlenecks
are slower trucks on the right shoulder lanes, which can
impede upstream traffic. Newell was among the first to
try to give a satisfactory consistent treatment of this type
of bottlenecks. The trick he used was to translate the pro-
blem into a moving coordinate system that is travelling at
the bottleneck’s velocity. This resulted in a description of
a stationary bottleneck, after which the classic LWR the-
ory can be applied [219]. Although the theory is sound,
there exist some serious drawbacks, mainly due to its un-
derlying assumptions. For example, the moving bottle-
necks are assumed to be long convoys, and other drivers’
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behaviours are not affected by the bottlenecks’ speeds;
even more serious is the fact that the theory is not valid
for very light traffic conditions, and that several strange
effects are predicted by the theory (e.g., a bottleneck with
increasing speed can result in a lower upstream capacity).
To this end, Muñoz and Daganzo applied the previously
mentioned behavioural model with rabbits and slugs to
the problem of a moving bottleneck. Their theory per-
forms satisfactorily and agrees well with empirically ob-
served motorway features. However, because of the fact
that it relies on the LWR model, it is not entirely valid
for bottlenecks that travel at high speeds under light traf-
fic conditions. In this latter case, they state that driver
differences are much more important than the dynamics
dictated by the kinematic model [197].

Another theory that deals with the problem of moving
bottlenecks, is the one proposed by Daganzo and Laval:
they treat moving bottlenecks as a sequence of consecuti-
ve fixed obstructions that have the same capacity restrai-
ning effects. Despite the fact that the previous theory of
Muñoz and Daganzo has a good performance, it does not
easily lend itself to discretisation schemes that allow nu-
merical solutions. In contrast to this, the hybrid theory
(fixed obstructions coupled with the LWR model dyna-
mics) of Daganzo and Laval holds high promise as they
have shown that it can be discretised in a numerically sta-
ble fashion [76]. As a continuation of this work, Lavel
furthermore investigated the power of these fixed obstruc-
tions, allowing him to capture lane-changes as random
events modelled by moving bottlenecks in a LWR 1-pipe
regime. It is suggested that (disruptive) lane changes
form the main cause for instabilities in a traffic stream.
This leads the ‘Berkeley school’ to the statement that in-
corporating lane-change capabilities into multi-lane ma-
croscopic models seems a prerequisite for observing ef-
fects such as capacity drops, kinematic waves of fast ve-
hicles, . . . [160] In this respect, Jin provides a theory that
explicitly takes into account to effects of lane changes
[144]. The starting point in this model, is the presence of
certain road areas in which traffic streams mix. The un-
derlying assumption here is that all lane changes lead to
the same traffic conditions in each lane: the crucial ele-
ment in the model is that vehicles performing lane chan-
ges are temporarily counted twice in the density total.
This new ‘effective density’, is then used to transform the
qe(k) fundamental diagram, leading to a reversed lamb-
da shape. However, because the current version of the
theory employs a small artificial constant to introduce the
lane changes, we question its practical applicability when
it comes to calibration and validation.

To conclude this overview of the first-order models, we
highlight two other successful attempts at increasing the
capabilities of the classic LWR model. A first important
extension was made by Logghe, who derived a multi-
class formulation8 that allows for the correct modelling

8At approximately the same time, Chanut and Buisson constructed
a first-order model that incorporates vehicles with different lengths and
free-flow speeds [49]. Their model can be considered as a trimmed-

of heterogeneous traffic streams (e.g., preserving the
FIFO property for interacting classes). Classes are
distinguished by their maximum speed, vehicle length,
and capacity (all intended for a triangular qe(k) funda-
mental diagram). A central ingredient to his theory, is
the interactions between different user classes that reside
on a road: in this respect, each class acts selfishly, with
slower vehicles taking on the role of moving bottlenecks.
Besides being able to construct analytical and graphical
solutions, Logghe also provided a stable numerical
scheme, as well as a complete network version with
road inhomogeneities, and two-way merges and diverges
[177]. A second extension was made by Jin; it actually
deals with a whole plethora of extensions, in particular
for inhomogeneous links (e.g., lane drops), merge and
diverge zones, and mixed-type vehicles (i.e., having
different qe(k) fundamental diagram characteristics).
All these models are then combined in a description for
a multi-commodity kinematic wave model for network
traffic, whereby the commodities signify vehicles taking
different paths [143].

A finally important aspect that is mainly related to
lane changes, is the anisotropy property of a traffic
stream. This property basically states that drivers are
not influenced by the presence upstream vehicles. In
a sense, most models describing the acceleration be-
haviour of a vehicle, only take into account the state
of the vehicle directly in front. For most macrosco-
pic traffic flow models, this anisotropy constitutes a
necessary ingredient. However, in his original pa-
per, Richards very subtly points out that the fact of
whether or not drivers only react to the conditions
ahead, remains an open question [251]. In contrast
to this, Newell states that a driver is only influen-
ced by downstream conditions, leading to a natural
cause-and-effect relation, making the problem ma-
thematically well-posed [216]. Recently, Zhang sta-
ted that the anisotropy property is likely to be vi-
olated in multi-lane traffic flows. His explanation
is closely tied to the concavity character of a qe(k)
fundamental diagram (non-concave regions can lead
to characteristics that travel faster than the space-
mean speed of the traffic stream). He also provides
an intuitive reasoning based on Daganzo’s rabbits
and slugs, whereby tailgating vehicles induce slo-
wer downstream vehicles to ‘make way’. Note that
for single-lane traffic flows, the anisotropy proper-
ty is expected to hold because of the FIFO property
(vehicles can not pass each other), although there are
exceptions in the case of some higher-order macro-
scopic traffic flow models [305].

2.1.6 Higher-order models

The development of higher-order macroscopic models
came as a response to the apparent shortcomings of the

down version of Logghe’s multi-class formulation.
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first-order LWR model. Harold Payne was among the
first in 1971 to develop such a higher-order model [231].
In those days, ramp metering9 control strategies were ba-
sically an all-empirical occasion. Payne recognised the
necessity to include dynamic models in the control of on-
ramps; the celebrated LWR model however, was found to
perform unsatisfactorily with respect to the modelling of
real-life traffic flows. One of these shortcomings, was the
model’s inability to generate stop-and-go waves. Zhang
later traced this to be a consequence of the model’s persis-
tent reliance on a single equilibrium curve (i.e., the fun-
damental diagrams) [306]. In the LWR model, drivers
are assumed to adapt their vehicle speed instantaneous-
ly according to the fundamental diagram when crossing
a shock wave, a phenomenon termed the no-memory ef-
fect (i.e., they encounter infinite accelerations and dece-
lerations [300]). One option that leads to a solution of
the previously mentioned problems, is to introduce dif-
ferent fundamental diagrams for vehicles driving under
different traffic conditions; this avenue was explored by
Newell [213] and Zhang [301]. Another, more popular
type of solution was proposed by Payne (as well as by
Whitham some years later [291]): they suggested to add
an equation to the LWR conservation law (6) and its fun-
damental diagram10. This new dynamic speed equation
was derived from the classical car-following theories of
Gazis et al. [97] (see also section 2.3.1 for more details).
An important aspect is this derivation, is the fact that the
car-following model includes a reaction time, resulting in
a momentum equation that relates the space-mean speed
of a vehicle stream to its density. As a result, vehicles no
longer instantaneously change their speed when crossing
a shock wave. Payne’s second-order macroscopic traf-
fic flow model is now described by the following pair of
PDEs, i.e., a conservation law and a momentum equation:

kt + (k vs)x = 0, (14)

dvs = vst
+ vsvsx︸ ︷︷ ︸

convection

=
vse

(k)− vs

τ︸ ︷︷ ︸
relaxation

−
c2(k)

k
kx

︸ ︷︷ ︸
anticipation

, (15)

with vst
and vsx

denoting the partial derivatives of the
space-mean speed with respect to time and space, res-
pectively, vse

the traditional fundamental diagram, and τ
the reaction time. The function c(k) corresponds to the
model-dependent sound speed of traffic (i.e., the typical
speed of a backward propagating kinematic shock wave);
examples of c(k) are [307]:

9Ramp metering is an ATMS whereby a traffic light is placed at
an on-ramp, such that traffic enters the highway from the on-ramp by
drops. We refer the reader to the work of Bellemans [22] and Hegyi
[114] for an overview and some recent advancements.

10Note that Lighthill and Whitham originally proposed to extend the
conservation law in their model with relaxation and diffusion terms, but
the idea did not receive much thought at the time [169].

−

√
−

1
2τ

dvse
(k)

dk
(Payne) (16)

−

√
v

τ
(Whitham) (17)

k
dvse

(k)

dk
(Zhang) (18)

with v being a parameter in equation (17).

In equation (15), the left hand side corresponds to the de-
rivative of the speed, i.e., the acceleration of vehicles. As
can be seen from the formulation, Payne identified three
different aspects for the momentum equation: a convec-
tion term describing how the space-mean speed changes
due to the arrival and departure of vehicles at the time-
space location (t, x), a relaxation term describing how
vehicles adapt their speed to the conditions dictated by
the fundamental diagram, but with respect to a certain re-
action time (as opposed to the instantaneous adaption in
the LWR model), and finally an anticipation term descri-
bing how vehicles react to downstream traffic conditions.

In continuation of the above derivation, many other
higher-order models have been based on the Payne-
Whitham (PW) second-order traffic flow model. An
example is the work of Phillips, who changed the reaction
time τ in the relaxation term of equation (15) from a con-
stant to a value that is dependent on the current density
[236]. Another example is due to Kühne, who artificially
introduced a viscosity term into equation (15), in order
to smooth the shock waves [157]. The physical role that
viscosity plays in a vehicular traffic stream is however
not entirely understood: according to Zhang, the viscosi-
ty reflects the resistance of drivers against sharp changes
in speeds [306]. For a rather complete overview of exten-
sions to the PW model, we refer the reader to the work of
Helbing [121].

2.1.7 Critiques on higher-order models

Higher-order models have been successfully applied in
various computer simulations of traffic flows, e.g., the
original FREFLO implementation by Payne [232], the
work of Kwon and Machalopoulos who developed KRO-
NOS which is an FDE solver for a motorway corridor
[158], the METANET model of Messmer and Papageor-
giou [193], . . . Despite their success, it was Daganzo who
in 1995 published their final requiem, which stood out
as an obituary for all higher-order models [67]. From a
theoretical perspective, there were some serious physical
flaws that littered these second-order models. Most no-
tably was the fact that there exist two families of charac-
teristics (called Mach lines) in the Payne-Whitham type
models. On the one hand, there are characteristics that
imply a diffusion-like behaviour, which under certain cir-
cumstances can lead to negative speeds at the end of a
queue, i.e., vehicles travelling backwards. On the other
hand, there are characteristics that have the property of
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travelling faster than the propagation of traffic flow. This
latter gas-like behaviour means that vehicles can get in-
fluenced by upstream conditions (because information is
sent along the characteristics), which is a clear violation
of the anisotropy property for single-lane traffic as ex-
plained in the previous section. From a physical point of
view, the relaxation term in equation (15) may even intro-
duce a ‘suction process’ because slower vehicles can get
sucked along by leading faster ones [113].

Several years after these critiques, Papageorgiou res-
ponded directly to the comments stated in Daganzo’s
article [227]. In his response, Papageorgiou put a lot
of emphasis at the incapabilities of first-order traffic
flow models for use in a traffic control strategy (e.g.,
ramp metering). He very briefly reacts to the anisotropy
violation, by mentioning that in multi-lane traffic flows,
the space-mean speeds of the different lanes are not
all the same, leading to characteristics that are allowed
to travel faster than the space-mean speed of all lanes
combined. With respect to negative speeds (and hence,
negative flows), he proposes to simply include an a
posteriori check that allows to set the negative flows
equal to zero. One year later, in 1999, Heidemann
reconsidered these higher-order models, but this time
from the perspective of mathematical flaws. His main
argument was the fact that the models led to an internal
inconsistency, because they ignored some aspects related
to the conservation law [115]. However, after careful
scrutiny, Zhang later refuted Heidemann’s claims: the
inconsistencies that plague the models are a result of the
insistence on the universality of a conservation law and
the imposing of arbitrary solutions. As a consequence,
the Payne-Whitham type of models are mathematically
consistent theories, although they may suffer from the
aforementioned physical quirks [307].

Note that the dynamic speed equation (15), can also
be cast in another form that is more closely related
to a gas-kinetic analogy. With this in mind, we can
rewrite the momentum equation as follows [134]:

dvs = vst
+ vsvsx︸ ︷︷ ︸

transport

=
vse

(k)− vs

τ︸ ︷︷ ︸
relaxation

−
Px

k︸︷︷︸
pressure

+
ν

k
vsxx

︸ ︷︷ ︸
viscosity

, (19)

with now P denoting the traffic pressure and ν the
kinematic traffic viscosity (as introduced by Kühne
[157]). The convection term has been relabel-
led a transport term, describing the propagation
of the speed profile with the speed of the vehi-
cles. The pressure term reflects the change in space-
mean speed due to arriving vehicles having different
speeds, and the viscosity term reflects changes due
to the ‘friction’ between different successive vehi-
cles. The classic Payne model is obtained if we set
P = kc2(k) and ν = 0.

In contrast to Papageorgiou’s response which did not pro-
vide a definite answer, Aw and Rascle carefully examined
the reason why the PW model exhibited the strange phe-
nomena indicated in Daganzo’s requiem [11]. The root
cause of this behaviour can be traced back to the spatial
derivative Px of the pressure term in equation (19). Their
solution suggests to abandon the transport and relaxation
terms, and replace the spatial derivative of the pressure P
(which is a function of the density k) with a convective
(Lagrangian) derivative, i.e., D/Dt = ∂t + (vs · ∇) =
∂t + vs∂x, with (vs · ∇) called the advective derivative
term [240]:

(vs + P (k))t + vs (vs + P (k))x = 0. (20)

This new formulation allows to remedy all Daganzo’s
stated problems [11]. Because of the somewhat limited
character of their derivation of equation (20), Rascle add
a relaxation term to the equation’s right-hand side, and
developed a numerically stable discretisation scheme, as
well as showing convergence to the classic LWR model
when the relaxation tends towards zero [246].

To end our overview of higher-order models, we illustrate
two other types. The first model is actually a third-order
model created by Helbing. It is based on the two PDEs
of the Payne-Whitham type models, but is extended with
a third equation that describes the change in the varian-
ce of the speed, denoted by Θ [118]. Helbing derived
his equations using a gas-kinetic analogy, resulting in the
following Navier-Stokes-like equation (it is typically en-
countered in the pressure term for P ):

Θt + vsΘx =
2(Θe(k)−Θ)

τ︸ ︷︷ ︸
relaxation

+

2
k

vsx
(ν vsx

− P )
︸ ︷︷ ︸

pressure

+

ν

k
vsxx

+
κ

k
Θxx

︸ ︷︷ ︸
viscosity

, (21)

with now the equilibrium relation vse
(k,Θ) of equation

(19) also depending on the speed variance Θ. In addition
to the viscosity ν, the dynamic speed variance equation
(21) also contains an equilibrium relation Θe(k, vs) for
the variance of the speed, and κ which is a kinetic coef-
ficient that is related to the reaction time τ , the density
k, and the speed variance Θ. For ν = κ = 0, Helbing’s
model reduces to an inviscid Euler type model as explai-
ned in section 2.1.1 [149]. Whereas in the LWR model
there is only one family of characteristics, and in the PW
model there are two families, the Helbing model gene-
rates three different families of characteristics; this imp-
lies that small perturbations in the traffic flow propagate
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both with the traffic flow itself, as well as in upstream and
downstream direction relative to this flow [134].

The second model we illustrate, is the non-equilibrium
model of Zhang. Because of the relaxation terms in
the Payne-Whitham equations, drivers initially tend to
‘overshoot’ the equilibrium speed as dictated by the
vse

(k) fundamental diagram. It takes a certain amount
of time for them to adapt to their speed to the new
traffic conditions (i.e., a change in density is accom-
panied by a smooth change in space-mean speed), af-
ter which they converge on the diagram. This latter
aspect gives rise to the empirically observed scatter in
the (k,q) phase space, leading Zhang to the terminolo-
gy of ‘non-equilibrium models’ because of the deviation
from the one-dimensional equilibrium fundamental dia-
gram [300].

In his model, Zhang considers equilibrium traffic to be
a state in which dvs/dt = ∂k/∂x = 0. In similar spi-
rit of Payne’s theory, Zhang constructs his model using
an equilibrium relation between density and space-mean
speed (i.e., the fundamental diagram), a reaction time that
allows relaxation, and an anticipation term that adjusts
the space-mean speed to downstream traffic conditions.
This results in a macroscopic model that contains equati-
on (14) as the conservation law, as well as the following
momentum equation:

dvs = vst
+ vsvsx

=
vse

(k)− vs

τ
− k

(
dvse

(k)

dk

)2

kx, (22)

with the last anticipation term showing the dependence
on the spatial change of the density. Zhang also com-
plements the theory with a finite difference scheme that
allows to solve the equations in a numerically stable fas-
hion, based on an extension of the Godunov scheme that
satisfies the entropy condition referred to in section 2.1.3
[303].

Just as with the improved PW model of Aw and Ras-
cle, this model alleviates Daganzo’s stated problem
of wrong-way travel, even though there are also two
families of characteristics, travelling slower, respectively
faster, than the space-mean speed of traffic. An impor-
tant fact here is that for the slower characteristics, the
associated shock waves and fans correspond perfectly
to those of the first-order LWR model. However, the
shock waves and fans associated with the faster family
of characteristics can still violate the anisotropy property
of traffic (although they decay exponentially), but in the
end, Zhang questions its universal validity, stating that
traffic might occasionally violate this principle due to the
heterogeneity of a traffic stream [302, 305]. The violati-
on of anisotropy, i.e., drivers get influenced by upstream
traffic, is sometimes referred to as gas-like behaviour,
because in contrast to fluid-dynamics, gas particles are
not anisotropic. In an attempt to remove this faulty
behaviour, Zhang developed yet another non-equilibrium

model that removed the gas-like behaviour, thereby res-
pecting the anisotropy property. Moreover, both families
of characteristics in his model satisfy the condition of
travelling at a lower speed than the space-mean speed of
the traffic stream, but still keeping the one-to-one corres-
pondence between the slower characteristics and those
of the first-order LWR model. At present, it is however
unclear if this new model can generate stop-and-go
waves, although there are indications that it can becau-
se of the non-equilibrium transitions that can occur [304].

Despite the significant progress that has been made
on the front of higher-order macroscopic traffic flow
models, the Berkeley school firmly holds its faith
in first-order models and their extensions. Its main
reason is because of the numerical solution schemes
that are well developed and understood. This is not
the case for higher-order models, as these contain
other characteristics that complicate the finite
difference schemes (because information is now
carried both up- and downstream, and because their
numerical schemes initially were flawed [303, 160]).
Related to this critique, is the fact that in contrast to
the first-order model, no analytical solutions exist
for the higher-order models.

Another reason for sticking with first-order models,
is because the school believes that first-order charac-
teristics are sufficient for the description of traffic
flows [45]. Using a triangular qe(k) fundamental
diagram that captures the most important traffic flow
characteristics (i.e., the free-flow speed vff, the capa-
city qcap, the jam density kj , and the backward kine-
matic wave speed w), results in a further elegance of
the models.

2.2 Mesoscopic traffic flow models

The previous section dealt with macroscopic models that
described traffic streams at an aggregated level, derived
from a fluid-dynamic analogy. This section describes
how traffic can be modelled at this aggregate level, but
with special consideration for microscopic characteristics
(e.g., driver behaviour). Because of the ambiguity that
surrounds mesoscopic models, we first elucidate what is
meant by the term mesoscopic (i.e., it is something bet-
ween a macroscopic and a microscopic approach). In the
sections thereafter, we zoom in on a derivation of me-
soscopic models based on a gas-kinetic analogy. For an
outstanding overview of gas-kinetic models, we refer the
reader to the work of Tampère [262].

2.2.1 The different meanings of ‘mesoscopic’

Considering the amount of literature that has been gene-
rated during the last few decades, it seems to us that there
exists no unanimous consensus as to what exactly con-
stitutes mesoscopic traffic flow models. In general, there
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are three popular approaches when it comes to mesosco-
pic models [134]:

• Cluster models

When considering vehicles driving on a road, a po-
pular method is to group nearby vehicles together
with respect to one of their traffic flow characteris-
tics, e.g., their space-mean speed. Instead of having
to perform detailed updates of all vehicles’ speeds
and positions, the cluster approach allows to treat
these vehicles as a set of groups (called clusters,
cells, packets, or macroparticles); these groups are
then propagated downstream without the need for
explicit lane-changing manoeuvres (leading to the
coalescing and splitting of colliding and separating
groups).

Examples of this kind of models, are the CONti-
nuous TRaffic Assignment Model (CONTRAM) of
Leonard et al. [163], the work of Ben-Akiva et
al, called Dynamic network assignment for the Ma-
nagement of Information to Travellers (DynaMIT),
which is based on a cell transmission model with a
cell of a link containing a set of vehicles with iden-
tical speeds [24], the Mesoscopic Traffic Simulator
(MesoTS) of Yang, which allows fast predictions of
future traffic states [297], . . .

• Headway distribution models

This rather unknown and somewhat outdated class
of models, places the emphasis on the probabili-
ty distributions of time headways of successive ve-
hicles (this aggregation makes them mesoscopic).
Two popular examples are Buckley’s semi-Poisson
model [36], and Branston’s generalised queueing
model [34]. As clarified in the summary of Hoogen-
doorn and Bovy, the original versions of these head-
way distribution models assume homogeneous traf-
fic flows and they are inadequate at describing the
proper dynamics of traffic flows [134].

• Gas-kinetic models

The third and most important characterisation of
mesoscopic models comes from a gas-kinetic ana-
logy. Because macroscopic models aim towards
obeying the fundamental diagram (either instanta-
neously as in the first-order LWR model or through
a relaxation process as in higher-order models), the
focus there lies on the generation and dissipation of
shock and rarefaction waves. As a consequence,
more complex and non-linear dynamics can not be
reproduced. To remedy this, gas-kinetic models im-
plicitly bridge the gap between microscopic driver
behaviour and the aggregated macroscopic model-
ling approach.

In the next sections, we will first give an overview of the
original gas-kinetic model as derived by Prigogine and
Herman, after which we discuss some of the recent suc-
cessful modifications that allow for heterogeneity in the

traffic stream (i.e., multi-class modelling), as well as the
inclusion of more specific driver behavioural characteris-
tics.

2.2.2 Mesoscopic models considered from a gas-
kinetic perspective

As opposed to the macroscopic traffic flows models that
are derived from a conservation equation based on the
Navier-Stokes equations, mesoscopic models can be de-
rived from a gas-kinetic analogy. From individual driving
behaviour (termed a microscopic approach), a macrosco-
pic model is derived. The earliest model can be traced
back to the work of the late Nobel laureate Ilya Prigogine,
in cooperation with Frank Andrews and Robert Herman
[241, 242]. A central component in their theory, is the
concept of a phase-space density (PSD):

k̃(t, x, vs) = k(t, x) P (t, x, vs), (23)

in which P (t, x, vs) denotes the distribution of the vehi-
cles with space-mean speed vs at location x and time t;
the concept of this distribution originated in Boltzmann’s
theory of gas dynamics. For the above density function, a
kinetic conservation equation can be derived, looking as
follows [121]:

dk̃

dt
= k̃t + vs k̃x =

(
k̃t

)

acc
+
(
k̃t

)

int
, (24)

with now the two terms on the right hand side denoting
the accelerations of and interactions between the vehi-
cles; they are also called gains and losses, relaxation and
slowing down, or continuous and discrete terms, respec-
tively [149, 262]. Equation (24) is called the Prigogine-
Herman kinetic model and it actually describes three pro-
cesses:

1. Similar to the macroscopic conservation equation,
the term vs k̃x describes a convective behaviour: ar-
riving and departing vehicles cause a change in the
distribution k̃ of vehicle speeds.

2. The first term on the equation’s right hand side,(
k̃t

)

acc
, describes the acceleration behaviour of ve-

hicles, which is assumed to be a density-dependent
relaxation process of the speed distribution P of
equation (23) towards some pre-specified target
speed distribution P0 (typically based on an equi-
librium speed).

3. The second term on the equation’s right hand side,(
k̃t

)

int
, describes the interactions between vehicles,

as fast vehicles either must slow down or overtake
slower ones (hence implying inherently multi-lane
traffic). The decision on when to either slow down
or to overtake (which is assumed to be a discrete
event), is governed by the probabilities (1 − π) and
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π, respectively. The interaction term is called a col-
lision equation, in analogy with the physics of the
Boltzmann equation (where the collision term de-
scribes the scattering of the gas molecules). Becau-
se there occur joint distributions in this latter equa-
tion (i.e., the probability of a faster vehicle encoun-
tering a slower one), a common assumption called
vehicular chaos is used, which states that vehicles’
speeds are uncorrelated, hence allowing to split the
joint distribution.

More than a decade later, Paveri-Fontana criticised
the assumption of vehicular chaos in the interaction
term [230]. He subsequently proposed an improved
gas-kinetic model, in which he extended the phase-space
density of equation (23) with a dependence on the
desired speed vdes, i.e., k̃(t, x, vs, vdes); in Prigogine’s
original derivation, this desired speed was incorrectly
considered to be a property of the road, instead of being
a driver-related property [121].

An interesting property of the gas-kinetic modelling
approach instigated by the seminal work of Prigogi-
ne, is that for densities beyond a certain critical den-
sity, Nelson and Sopasakis found that the model so-
lutions split into two distinct families. The current
hypothesis surrounding this phenomenon states that
this corresponds to the widely observed data scatter
in the empirically obtained (k,q) fundamental dia-
grams [211].

2.2.3 Improvements to the mesoscopic modelling ap-
proach

Significant contributions to the gas-kinetic mesosco-
pic model have been sporadic; after the work of
Paveri-Fontana, Nelson was among the first to tackle
the computational complexity associated with the four-
dimensional phase-space density k̃(t, x, vs, vdes) [210].
In his derivation, he reformulated the relaxation and inter-
action terms both as discrete events, based on a bimodal
distribution of the vehicles’ speeds (i.e., corresponding to
stopped and moving vehicles). In contrast to the classic
model which uses a relaxation process in the accelera-
tion term, Nelson furthermore based his derivation on a
microscopic behavioural model [121, 134, 262].

Building on the work of Nelson (which is, as he descri-
bes, just a first initial step towards constructing a suitable
kinetic model), Wegener and Klar derived a kinetic mo-
del in similar spirit, based on a microscopic description of
individual driver behaviour with respect to accelerations
and lane changes. Attractive to their work, is the fact that
they also pay attention to the numerical solutions of their
model, with respect to the description of homogeneous
traffic flows [290].

Noting that the correct reproducing of traffic flow
behaviour at moderate to higher densities still troubled

the existing mesoscopic models, Helbing et al. explored
an interesting avenue. Not only did they capture the
effect that vehicles require a certain finite space (leading
to an Enskog- instead of a Boltzmann-equation), they
also generalised the interaction term of equation (24).
This last method allowed them to dismiss the traditional
assumption of vehicular chaos, i.e., they were now able
to treat correlations between vehicles’ speeds (which
have a substantial influence at higher densities). The
trick to obtain this behaviour, was to assume that drivers
react to the downstream traffic conditions. This leads
to the inclusion of non-local interaction (braking) term,
and hence their model is referred to as the non-local
gas-kinetic traffic flow model [119, 117]. Interestingly,
this non-locality can generate effects that are similar to
the ones induced by viscosity/diffusion terms in macro-
scopic traffic flows models, causing smooth behaviour at
density jumps [121]. The power of their model is also
demonstrated as it is able to reproduce all traffic regimes
encountered in Kerner’s three-phase traffic theory [148].

Central to some of the recently proposed models, is
the step process that transforms one model class in-
to another. Starting from microscopic driver beha-
vioural principles (e.g., accelerating, braking, . . . ),
a mesoscopic model is deduced. This mesoscopic
model can then be translated into an equivalent ma-
croscopic one by applying the method of moments.
This allows to obtain PDEs that describe the dyna-
mic evolution of the density k, space-mean speed vs,
and its variance Θ (an exception to this methodology
is the previously mentioned model of Wegener and
Klar that obtains dynamic solutions directly [290]).
As an example, Helbing et al. also devised a nume-
rical scheme for their previously discussed model.
It was implemented in a simulation package called
MASTER [120].

Important progress was made by the work of Hoogen-
doorn et al., who extended the gas-kinetic traffic flow mo-
dels with multiple user classes, in the sense that different
classes of drivers have different desired speeds. In order
to achieve this, they replaced the traditional phase-space
density with a multi-class phase-space density (MUC-
PSD). The kinetic conservation equation thus describes
the tempo-spatial evolution of this MUC-PSD (i.e., the
interactions between different user classes), after which
an equivalent system of macroscopic model equations
is derived. The generalisation power of their model is
exemplified as the previously mentioned model of Hel-
bing et al., which is just a special case, having only one
class [132, 133]. The developed multiclass gas-kinetic
model is currently being integrated in a macroscopic si-
mulation model for complete road networks, called HE-
LENA, which allows prediction of future traffic states,
and hence to assess the effectiveness of policy measures
[135].

Recently, Waldeer derived a kinetic model that is based
on the description of a driver’s acceleration behaviour
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(as opposed to his observed speed behaviour). This no-
vel approach attempts to alleviate the unrealistic jumps
in speeds that are typically encountered in kinetic mo-
dels. To this end, Waldeer extends the phase-space den-
sity even further, including a vehicle’s acceleration in ad-
dition to its position, speed, and desired speed (leading to
an even more complex system). Because now the accele-
ration is updated discretely, the speed will change conti-
nuously as a result [287]. Furthermore, Waldeer provided
a numerical scheme for solving his model, by employing
a Monte Carlo technique that is frequently used in non-
equilibrium gas-kinetic theory [286].

To end this overview of gas-kinetic models, we mention
the important work of Tampère, who significantly exten-
ded the previous modelling approaches [262, 264]. In
his work, he used the generalised phase-space density
(as derived by Hoogendoorn [132]), which incorporates
a dependency on the traffic state S (e.g., encompassing
vehicles’ speeds and their desired speeds). As it is an
increasingly recognised fact that a complete traffic flow
model should contain elements which describe the hu-
man behaviour (see for example the comments made by
Daganzo [71, 72]), Tampère proposes to include a dri-
ver’s activation level. His human-kinetic model (HKM)
is, just like that of Helbing et al. and Hoogendoorn, able
to reproduce all known traffic regimes. Because of the
dependency of the PSD on a behavioural parameter (i.e.,
the activation level that describes a driver’s awareness of
the governing traffic conditions), the model is well-suited
to evaluate the applicability of advanced driver assistan-
ce systems (ADAS). As another illustrating example, the
phenomenon of a capacity funnel can be realistically ex-
plained and reproduced [263]. However, despite the pro-
gress related to incorporating human behaviour into ma-
thematical models for traffic flows, Tampère argues that
most of the work can currently not be validated because
there is no appropriate data yet available.

2.3 Microscopic traffic flow models

Having discussed both mesoscopic and macroscopic traf-
fic flows models, we now arrive at the other end of the
spectrum where the microscopic models reside. Where-
as the former describe traffic operations on an aggregate
scale, the latter kind is based on the explicit considerati-
on of the interactions between individual vehicles within
a traffic stream. The models typically employ characte-
ristics such as vehicle lengths, speeds, accelerations, and
time and space headways, vehicle and engine capabili-
ties, as well as some rudimentary human characteristics
that describe the driving behaviour.

The material in this section is organised as follows:
we first introduce the classic car-following (and lane-
changing) models as well as some of their modern succes-
sors, after which we discuss the optimal velocity model,
then introduce the more human behaviourally psycho-
physiological spacing models, which are subsequently
followed by a brief description of traffic cellular automata

models. After some words on models based on queueing
theory, the section concludes with a concise overview of
some of the (commercially) available microscopic traf-
fic flow simulators, as well as some of the issues that are
related to the calibration and validation of microscopic
traffic flow models.

More detailed information with respect to microscopic
models (more specifically, car-following models), can be
found in the book of May [190], the overview of Rothery
[92], the work of Ahmed [2], and the overview of Brack-
stone and McDonald [32].

2.3.1 Classic car-following and lane-changing mo-
dels

Probably the most widely known class of microsco-
pic traffic flow models is the so-called family of car-
following or follow-the-leader models. One of the oldest
‘models’ in this case, is the one due to Reuschel [250],
Pipes [238], and Forbes et al. [90]. It is probably best
known as the “two-second rule” taught in driving schools
everywhere11 . An earlier example of this line of reaso-
ning is the work of Herrey and Herrey, who specified a
safe driving distance that also included the distance nee-
ded to come to a full stop [129].

It still remains astonishing that the seemingly daunting
and complex task that encompasses driving a vehicle, can
be executed with such relative ease and little exercise, as
is testified by the many millions of kilometres that are
driven each year. In spite of this remark, the first mathe-
matical car-following models that have been developed,
were based on a description of the interaction between
two neighbouring vehicles in a traffic stream, i.e., a follo-
wer and its leader. In this section, we historically sketch
the development of car-following theories, as they evol-
ved from conclusions about early experiments into more
sophisticated models.

The above mentioned model was originally formulated
as the following ordinary differential equation (ODE) for
single-lane traffic:

dvi(t)

dt
=

vi+1(t)− vi(t)

T
, (25)

with vi(t) and vi+1(t) the speeds of the following, res-
pectively leading, vehicle at time t, and T a relaxation
parameter. For the above case, the underlying assump-
tion/justification is that vehicle i (the follower) tries to
achieve the speed vi+1(t) of vehicle i + 1 (its leader),
whilst taking a certain relaxation time T into account.

As equation (25) describes a stable system, Chandler et
al. were among the first to include an explicit reaction
time τ into the model (e.g., τ =1.5 s), leading to destabi-
lisation of vehicle platoons [48]. This reaction encompas-
ses both a perception-reaction time (PRT), i.e., the driver

11Note that, in his article, Pipes actually stated his safe-distance rule
as keeping at least a space gap equal to a vehicle length for every 15
km/h of speed you are travelling at [238, 134].
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sees an event occurring (for example the brake lights of
the leading vehicle), as well as a movement time (MT),
i.e., the driver needs to take action by applying pressure
to the vehicle’s brake pedal [92]. Introducing this beha-
viour, resulted in what is called a stimulus-response mo-
del, whereby the right-hand side of equation (25) descri-
bes the stimulus and the left-hand side the response (the
response is frequently identified as the acceleration, i.e.,
the actions a driver takes by pushing the acceleration or
brake pedal). The relaxation parameter is then recipro-
cally reformulated as the sensitivity to the stimulus, i.e.,
λ = T−1, resulting in the following expression:

response = sensitivity× stimulus

dvi(t + τ)

dt
= λ (vi+1(t)− vi(t)). (26)

Additional to this theoretical work, there were also so-
me early controlled car-following experiments, e.g., the
ones done by Kometani and Sasaki, who add a non-zero
acceleration term to the right-hand side of the stimulus-
response relation, in order to describe collision-free dri-
ving based on a safety distance [152, 153].

Equation (26) is called a delayed differential equation
(DDE), which, in this case, is known to behave in an un-
stable manner, even resulting in collisions under certain
initial conditions. Gazis et al. remedied this situation by
making the stimulus λ dependent on the distance, i.e., the
space gap gsi

between both vehicles [97]:

dvi(t + τ)

dt
= λ

vi+1(t)− vi(t)

xi+1(t)− xi(t)
. (27)

Further advancements to this car-following model were
made by Edie, who introduced the current speed of the
following vehicle [84]. Gazis et al, forming the club of
people working at General Motors’ research laboratories,
generalised the above set of models into what is called the
General Motors non-linear model or the Gazis-Herman-
Rothery (GHR) model [95]:

dvi(t + τ)

dt
= λ vm

i (t)
vi+1(t)− vi(t)

(xi+1(t)− xi(t))l
, (28)

with now λ, l, and m model parameters (in the early days,
the model was also called the L&M model [98]). For a
good overview of the different combinations of parame-
ters attributed to the resulting models, we refer the reader
to the book of May [190], and the work of Ahmed [2].

A recent extension to the classic car-following theory, is
the work of Treiber and Helbing, who developed the in-
telligent driver model (IDM). Its governing equation is
the following [268, 267, 269]:

dvi

dt
= amax


1−

(
vi

vdes

)δ

︸ ︷︷ ︸
acceleration

−

(
g∗s (vi,∆vi)

gsi

)2

︸ ︷︷ ︸
deceleration


 , (29)

with amax the maximum acceleration, vdes the vehicles’
desired speed, and ∆vi the speed difference with the lea-
ding vehicle (we have dropped the dependencies on time
t for the sake of visual clarity). The first terms within the
brackets denote the tendency of a vehicle to accelerate on
a free road, whereas the last term is used to allow bra-
king in order to avoid a collision (the effective desired
space gap g∗s (vi,∆vi) is based on the vehicle’s speed,
its relative speed with respect to its leader, a comforta-
ble maximum deceleration, a desired time headway, and
a jam space gap). The finer qualities of the IDM are that
it elegantly generalises most existing car-following mo-
dels, and that it has an explicit link with the non-local
gas-kinetic mesoscopic model discussed in section 2.2.3
[267]. It is furthermore quite capable of generating all
known traffic regimes. Based on the IDM, Treiber et al.
also constructed the human driver model (HDM), which
includes a finite reaction time, estimation errors, tempo-
ral and spatial anticipation, and adaptation to the global
traffic situation [270].

Similar to the work of Kometani and Sasaki, Gipps pro-
posed a car-following model based on a safe braking dis-
tance, leading to collision-free dynamics [100]. The mo-
del is interesting because no differential equations are in-
volved (i.e., the speeds are computed directly from one
discrete time step to another), and because it can capture
underestimation and overreactions of drivers, which can
lead to traffic flow instabilities. In similar spirit of Gipps’
work, Krauß developed a model that is based on assump-
tions about general properties of traffic flows, as well as
typical acceleration and deceleration capabilities of ve-
hicles. Fundamental to his approach, is that all vehicles
strive for collision-free driving, resulting in a model that
has the ability to generalise most known car-following
models [155, 156].

Another example of a recently proposed car-following
model, is the ‘simple’ model of Newell, who formula-
tes his theory in terms of vehicle trajectories whereby the
trajectory of a following vehicle is essentially the same
as that of its leader12. Remarkable properties are that the
model has no driver reaction time, and that it corresponds
to the first-order macroscopic LWR traffic flow model
with a triangular qe(k) fundamental diagram (see secti-
on 2.1.3) [221]. The model furthermore also agrees qui-
te well with empirical observations made at a signallised
intersection, which support the model and consequently
also the first-order macroscopic LWR model [3].

As a final example, we briefly illustrate Zhang’s car-
following theory which is based on a multi-phase vehicu-

12A similar model was proposed earlier by Helly [125, 99, 221].
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lar traffic flow. This means that the model is able to repro-
duce both the capacity drop and hysteresis phenomena,
because his theory is based on the asymmetry between
acceleration and deceleration characteristics of vehicles
[182]. The model also holds a generalisation strength,
as it is possible to derive all other classic car-following
models [308].

With respect to the stability of the car-following models,
there exist two criteria, i.e., local and asymptotic stability
(also called string stability). The former describes how
initial disturbances in the behaviour of a leading vehicle
affect a following vehicle, whereas the latter is used to
denote the stability of a platoon of following vehicles. By
such a stable platoon it is then meant that initial finite dis-
turbances exponentially die out along the platoon. Early
experiments by Herman et al. already considered these
criteria for both real-life as for the developed mathemati-
cal car-following models [127].

As an example, we graphically illustrate in Fig. 8 the
asymptotic stability of a platoon of some 10 identical ve-
hicles. We have used the simple car-following model of
Gazis et al. of equation (27) to describe how a following
vehicle changes his acceleration, based on the speed dif-
ference and space gap with its direct leader in the platoon
(the sensitivity λ was set to 5000 m/s2 with a reaction
time τ = 1 s). The left part of the figure shows all the ve-
hicles’ positions, whereas the middle and right parts show
the speeds and accelerations of the 2nd , the 5th , and the
10th vehicle respectively. We can see that all vehicles are
initially at rest (homogeneously spaced), after which the
leading vehicle applies an acceleration of 1 m/s2, dece-
lerates with -1 m/s2, and then comes to a full stop. As
can be seen, the first 4 following vehicles mimic the lea-
der’s behaviour rather well, but from the 5th following
vehicle on, an instability starts to form (note that all fol-
lowing vehicles suffer from oscillations in their accelera-
tion behaviour). This instability grows and leads to very
large accelerations for the last vehicle, which even mo-
mentarily reaches a negative speed of some -150 km/h;
this is clearly unrealistic (the vehicles shouldn’t be dri-
ving backwards on the road), indicating that the specified
car-following model is unsuitable to capture the realistic
behaviour of drivers under these circumstances.

In continuation of this small excerpt on stability, we refer
the reader to the work of Zhang and Jarrett who analyti-
cally and numerically derive the general stability condi-
tions (in function of the reaction time and the sensitivity
to the stimulus) for the previously mentioned classic car-
following models [309], the work of Holland who derives
general stability conditions and validates them with empi-
rical data containing non-identical drivers (i.e., aggressi-
ve and timid ones); central to Holland’s work is the sour-
ce for instability with respect to a breakdown of a traffic
flow. He relates this event to a so-called anticipation time
that describes the duration for a wave containing an in-
stability to travel to the current driver [131]. Finally, we
mention that stability analysis is of paramount importan-
ce for e.g., automated vehicle technologies (‘smart cars’)

such as intelligent or adaptive cruise control (ICC/ACC),
as in for example the platooning experiments in the PATH
project where a platoon of vehicles autonomously drives
close to each other at high speeds.

To conclude this section, we shed some light on the typi-
cal mechanisms behind lane-changing models. With res-
pect to microscopic models for multi-lane traffic, it is a
frequent approximation to only take lateral movements
between neighbouring lanes into account (as opposed to
the within-lane lateral dynamics of a vehicle). In such ca-
ses, a vehicle changes a lane based on an incentive: these
lane changes can then be classified as being discretionary
(e.g., to overtake a slower vehicle), or mandatory (e.g., to
take an off-ramp). When a vehicle (i.e., driver) has deci-
ded to perform a lane change, a check is made on whether
or not it is physically possible to merge in to the adja-
cent lane (note this lane changing process also describes
vehicles turning at street intersections). This latter pro-
cess is called the gap acceptance behaviour: if there is
no such possibility (as it is frequently the case in dense
traffic), a driver may initiate at forced merging, in which
case the following vehicle in the target lane might have to
yield. This interaction between forced merging and yiel-
ding can be frequently observed at on-ramps where heavy
duty vehicles enter the motorway. Although it seems int-
uitive that there is an asymmetry between the frontal and
backward space gaps in the target lane (i.e., the former is
usually smaller than the latter due to the human behavi-
our associated with forced merging and yielding), there
is in our opinion nevertheless not enough empirical data
available to calibrate the microscopic models that descri-
be lane-changing (see for example the work of Ahmed
[2]). One way to obtain a correct behaviour is to use a
kind of a black box approach, in which for example the
downstream capacity of a motorway section is used as a
measure for calibrating the interactions (i.e., lane chan-
ges) between vehicles in a traffic stream. Note that as
technology advances, new detailed data sets are construc-
ted. An example is the work of Hoogendoorn et al. who
use a remote sensing technique to capture vehicle trajec-
tories based on aerial filming of driving behaviour under
congested conditions [136].

2.3.2 Optimal velocity models

Closely related to the previously discussed classic car-
following models, are the so-called optimal velocity mo-
dels (OVM) of Newell and Bando et al. Whereas the
previous car-following models mostly describe the beha-
viour of a vehicle that is following a leader, the OVMs
modify the acceleration mechanism, such that a vehicle’s
desired speed is selected on the basis of its space head-
way, instead of only considering the speed of the leading
vehicle [121]. Newell was the first to suggest such an
approach, using an equilibrium relation for the desired
speed as a function of its space headway (e.g., the vs(hs)
fundamental diagram [212].

Bando et al. later improved this model, resulting in the
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Figure 8: An example based on Gazis et al.’s car-following model of equation (27), indicating an asymptotically unstable
platoon of 10 vehicles. Left: the time-space trajectories of all ten vehicles (the leading vehicle is shown with a thick solid
line). We can see an instability occurring at the 6th (?) vehicle, growing severely such that the last vehicle even has to drive
backwards at a high speed of -150 km/h. Middle: the speeds of the first, the 2nd (◦), the 6th (?), and the last vehicle (×).
Note the oscillations and negative values for the speeds of the vehicles at the end of the platoon. Right: the accelerations
of the first, the 2nd (◦), and the 6th (?) vehicle (example based on [141]).

following equation that describes a vehicle’s acceleration
behaviour [16]:

dvi(t)

dt
= α (V (hsi

(t))− vi(t)) , (30)

in which V () is called the optimal velocity function
(OVF). The difference between this desired speed, asso-
ciated with the driver’s current space headway, and the
vehicle’s current speed, is corrected with an acceleration
αV (), with now α a coefficient expressing the sensitivity
of a driver. Specification of the optimal velocity functi-
on (typically a sigmoid function such as tanh) is done
such that it is zero for hsi

→ 0, and bounded to vmax for
hsi

→ +∞; this latter condition means that the model is
able to describe the acceleration of vehicles without the
explicit need for a leader as in the previous car-following
models.

Interestingly, the OVM requires, in contrast to the clas-
sic car-following models, no need for a reaction time in
order to obtain spontaneous clustering of vehicles [156].
Unfortunately, the model is not always free of collisions,
and can result in unrealistically large accelerations [206].

2.3.3 Psycho-physiological spacing models

Instead of using continuous changes in space gaps and
relative speeds, it was already recognised in the early six-
ties that drivers respond to certain perception thresholds
[32]. For example, a leading vehicle that is looming in
front of a follower, will be perceived as having approxi-
mately the same small size for a large duration, but once
the space gap has shrunk to a certain size, the size of the
looming vehicle will suddenly seem a lot bigger (i.e., li-
ke crossing a threshold), inducing the following vehicle
to either slow down or overtake.

The underlying thresholds with respect to speeds, speed
differences, and space gaps, were cast into a model by
the work of Wiedemann et al. [292]. In this respect, the

models are called psycho-physiological spacing models,
and although they seem quite successful in explaining the
traffic dynamics from a behavioural point of view (even
lane-change dynamics can be included based on suitable
perception thresholds), calibration of the models has ne-
vertheless been a difficult issue [32].

2.3.4 Traffic cellular automata models

In the field of traffic flow modelling, microscopic traf-
fic simulation has always been regarded as a time consu-
ming, complex process involving detailed models that de-
scribe the behaviour of individual vehicles. Approxima-
tely a decade ago, however, new microscopic models we-
re being developed, based on the cellular automata pro-
gramming paradigm from statistical physics. The main
advantage was an efficient and fast performance when
used in computer simulations, due to their rather low ac-
curacy on a microscopic scale. These so-called traffic
cellular automata (TCA) are dynamical systems that are
discrete in nature, in the sense that time advances with
discrete steps and space is coarse-grained (e.g., the road
is discretised into cells of 7.5 metres wide, each cell being
empty or containing a vehicle). This coarse-graininess is
fundamentally different from the usual microscopic mo-
dels, which adopt a semi-continuous space, formed by the
usage of IEEE floating-point numbers. TCA models are
very flexible and powerful, in that they are also able to
capture all previously mentioned basic phenomena that
occur in traffic flows [18, 56]. In a larger setting, these
models describe self-driven, many-particle systems, ope-
rating far from equilibrium. And in contrast to strictly
gaseous analogies, the particles in these systems are in-
telligent and able to learn from past experience, thereby
opening the door to the incorporation of behavioural and
psychological aspects [55, 294, 121].

Not only in the field of vehicular traffic flow model-
ling, but also in other fields such as pedestrian beha-
viour, escape and panic dynamics, . . . the cellular au-

32



tomata approach proved to be quite useful. It is now
feasible to simulate large systems containing many ‘in-
telligent particles’, such that is it possible to observe
their interactions, collective behaviour, self-organisation,
. . . [140, 274, 123, 121, 199, 200, 54]

2.3.5 Models based on queueing theory

In this final section dealing with types of microscopic
traffic flow models, we briefly summarise some of the
models that are based on the paradigm of queueing the-
ory. Early applications of queueing theory to the field
of transportation engineering are mostly related to de-
scriptions of the behaviour signallised and unsignallised
intersections, overtaking on two-lane roads with oppo-
sing traffic, . . . [60]. Another more theoretically orien-
ted application can be traced back to the work of Newell,
who gives a nice summary of the mathematical details
related to the practical application of the methodology.
Newell was one of the few people who directly questio-
ned the usefulness of cleverly devising a lot of methods
and solutions, whereby corresponding problems remai-
ned absent [214]. In his later work, Newell reintroduced
the concept of arrival and departure functions (i.e., the
cumulative curves as briefly described in section 2.1.2),
giving an analytical but still highly intuitive method for
solving traffic flow problems, and drawing parallels with
the well-known and studied first-order macroscopic LWR
model [215, 216, 217].

During the mid-nineties, Heidemann developed several
queueing-based traffic flow models, of which the most
powerful version deals with non-stationary conditions
and is able to model the capacity drop and hysteresis phe-
nomena, as well as providing an explanation for the wi-
de scatter observed in empirical fundamental diagrams
[116, 182].

Central to the approach in this field, is the partitioning of
a road into equal pieces of width 1/kjam. Each of the-
se pieces is then considered as a service station opera-
ting with a service rate µ = kjam · vff. Equivalently, ve-
hicles arrive at each service station with an arrival rate
λ = k · vff, with the assumption that k is the prevailing
density and that traffic can flow unimpeded in the free-
flow traffic regime. When vehicles enter the motorway,
they can get stuck inside the queues, thereby reducing
the space-mean speed in the system. Different queueing
policies can be specified in the form of service and arrival
distributions. In queueing theory, the Kendall notation is
adopted, whereby a system is described as A/S/m with
A the arrival distribution, S the service distribution, and
m the number of servers (i.e., service stations). Typical
forms are the M/M/1 queues that have an exponentially
distributed arrival time, exponentially distributed service
time, and one server (with an infinite buffer).

Recently, Van Woensel extended the existing queueing
models for traffic flows, leading to e.g., analytical deriva-
tions of fundamental diagrams based on G/G/m queues
that have general distributions for the arrival and service

rates with multiple servers [293]. The methodology also
includes queues with finite buffers, and has been applied
to the estimation of emissions, although we question the
validity of this latter approach (which is essentially based
on a one-dimensional fundamental diagram) as we belie-
ve dynamic models are necessary, e.g., to capture tran-
sients in traffic flows [275].

Queue-based models were also used to describe large-
scale traffic systems, e.g., complete countries, as was
mentioned in section 1.2.5 [47]. In that section, we al-
ready mentioned that queues with finite buffer capacities
are to be preferred in order to correctly model queue spill
back. However, with respect to a proper description of
traffic flow phenomena, some of the problems can not
be so easily solved, e.g., the speed of a backward pro-
pagating kinematic shock wave. Take for example vehi-
cles queued behind each other at a traffic light: once the
light turns green, the first-order macroscopic LWR model
correctly shows the dispersal of this queue. In a queue-
based model however, once a vehicle exits the front of the
queue, all vehicles simultaneously and instantly move up
one place, thus the kinematic wave propagates backwards
at an infinite speed !

To conclude this short summary on queueing models, we
mention the work of Júlvez and Boel, who present a simi-
lar approach, based on the use of Petri nets13. Their work
allows them to construct complete urban networks, based
on the joining together of short sections, with continuous
Petri nets for the propagation of traffic flows, and discrete
Petri nets for the description of the traffic lights [19, 146].

2.3.6 Microscopic traffic flow simulators

In continuation of the previous sections that gave an over-
view of the different types of existing microscopic traffic
flow models, this section introduces some of the com-
puter implementations that have been built around these
models. In most cases, the computer simulators incor-
porate the car-following and lane-changing processes as
submodels, as opposed to strategic and operational mo-
dules that work at a higher-level layer (i.e., route choice,
. . . ).

Whereas most microscopic traffic simulators allow to
build a road network, specify travel demands (e.g., by
means of OD tables), there was quite some effort spent
over the last decade, in order to achieve a qualitative visu-
alisation (e.g., complete virtual environments with trees,
buildings, pedestrians, bicycles, . . . An example of such
a virtual environment is shown in Fig. 9, which is ba-
sed on VISSIM’s visualisation module. Note that in our
opinion, the usefulness of these virtual scenes should not
be underestimated, as in some cases a project’s approval

13Petri nets (invented in the sixties by Carl Adam Petri) are a for-
malism for describing discrete systems [235]; they consist of directed
graphs of ‘transitions’ and ‘places’, with arcs forming the connections
between them. Places can contain ‘tokens’, which can be ‘consumed’
when a transition ‘fires’.
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might hinge on a good visual representation of the re-
sults. It is one thing for policy makers to judge the effects
of replacing a signallised intersection with a roundabout,
based on a report of the observed downstream flows of
each intersection arm, but it gives a whole other feeling
when they are able to see how the traffic streams will in-
teract ! Even in the early sixties, it was recognised that
a visual representation of the underlying traffic flow pro-
cess, was an undeniable fact for promoting its acceptance
among traffic engineers [99]. With respect to this latest
comment, Lieberman even states that “There is a need
to view vehicle animation displays, to gain an understan-
ding of how the system is behaving, in order to explain
why the resulting statistics were produced” [92].

Figure 9: A screenshot of the VISSIM microscopic traf-
fic flow simulator, showing a detailed virtual environment
containing trees, buildings, pedestrians, . . . (image repro-
duced after [243]).

Quite a large amount of microscopic traffic flow mo-
dels have been developed, in most cases starting from a
research tool, and — by the law of profit — naturally
evolving into full-blown commercial packages, including
e.g., dynamic traffic assignment and other transportation
planning features. Note the sad observation that this com-
mercialisation inherently tends to obscure the underlying
models. In such cases, privacy concerns, company poli-
cies, and project contracts and agreements prohibit a total
disclosure of the mathematical details involved. Some of
these computer models are listed here. For starters, the
Generic Environment for TRaffic Analysis and Modeling
(GETRAM) couples the multi-modal traffic assignment
model EMME/2 to the Advanced Interactive Microscopic
Simulator for Urban and Non-Urban Networks (AIMS-
UN2) model [17]. Next, the Parallel microscopic traf-
fic simulator (Paramics), initially developed at the Edin-
burgh Parallel Computing Centre, but afterwards bought
by Quadstone [43, 170]. Subsequently, Yang developed a
MIcroscopic Traffic flow SIMulator (MITSIM) [297], and
Maerivoet constructed a MIcroscopic TRAffic flow SIMu-
lator (Mitrasim 2000) which was mostly based on and
influenced by MITSIM’s and Paramics’ dynamic beha-
viour [179]. Two further examples are the Open Source

Software (OSS) package called Simulation of Urban MO-
bility (SUMO), developed at the Deutsches Zentrum für
Luft- und Raumfahrt [154], and the VISSIM programme
developed by the German PTV group [243]. In additi-
on, there is the INteractive DYnamic traffic assignment
(INDY) model [185], and the INTEGRATION software
package developed by Van Aerde et al. This latter si-
mulator deserves a special mention: it is microscopic in
nature, but the speeds of the vehicles that are propagated
through the network, are based on a macroscopic vse

(hs)
fundamental diagram for each link [1]. Finally, we men-
tion the TRansportation ANalysis and SIMulation System
(TRANSIMS) project [205], . . .

An extensive overview of all existing microscopic traffic
flow simulators until 1998 is provided by the Simulation
Modelling Applied to Road Transport European Scheme
Tests, or better known as the SMARTEST report [4].

When using one of these microscopic simulators, it
is important to understand the assumptions and li-
mitations inherent to the implemented models, in or-
der to judge the results objectively. Indeed, as with
any model, the question on whether some observed
behaviour arises due to the implemented model, or as
a result of the imposed boundary conditions, should
always be asked, understood, and answered.

2.3.7 Calibration and validation issues

Due to the sometimes large amount of parameters typi-
cally involved in microscopic traffic flow models, their
computational complexity is often a significant disadvan-
tage when compared to meso- or macroscopic models
(although there are some exceptions, e.g., the traffic cel-
lular automata models of section 2.3.4). From the point of
view of model calibration and validation, this poses an in-
teresting conundrum, as in many cases not all parameters
are equally influential on the results (thus requiring some
sensitivity analyses). In this sense, microscopic models
contain a real danger of purporting to convey a sort of fa-
ke accuracy. Different parameter combinations can lead
to the same phenomenological effects, leaving us ponde-
ring as to what exactly is causing the observed behaviour
[262]. As there is no clear road map on how to calibra-
te microscopic traffic flow models, we here give a small
sample of some of the numerous attempts that have been
made.

There is the work of Jayakrishan and Sahraoui who dis-
tinguish between calibration in the conceptual (i.e., at the
level of the underlying mathematical model) and opera-
tional (i.e., within the global context of the study) pha-
ses; they apply their operational methodology to both
PARAMICS (micro) and DYNASMART (macro), using
the California Freeway Performance Measurement Sys-
tem (PeMS) database from the PATH project to feed and
couple both models [142].

Based on a publicly available data set of a one-lay road
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corridor of six kilometres long (the data contained de-
tailed cumulative curves), Brockfeld et al. systemati-
cally tested the predicted travel times of some ten well-
known microscopic traffic flow models. As a result of a
non-linear optimisation process to calibrate the models,
they found that the intelligent driver model and the cell-
transmission model perform the best (i.e., below an error
rate of 17%), due to the fact that these models require the
least amount of parameters (there were even some models
such as the Gipps-based ones that had hidden parame-
ters). Their final conclusion is noteworthy, as they state
that “creating a new model is often done, however cali-
brating this model to reality is a formidable task, which
explains why there currently are more models than results
about them” [35].

Related to the previous study, Hourdakis et al. present an
automated systematic calibration methodology based on
an optimisation process, applied to the AIMSUN2 simu-
lator. The data used for the calibration procedure stem
from a twenty kilometres long motorway in Minneapo-
lis, Minnesota. The process first involves a calibration of
the global model parameters (i.e., to get the macroscopic
flows and speeds correct), after which the local parame-
ters are dealt with (i.e., ramp metering setups, et cetera).
In their results, Hourdakis et al. state an obtained aver-
age correlation coefficient of 0.961 for manual calibrati-
on (the results for the automated calibration are similar),
which is quite high (they mostly explain this due to the
data’s high level of detail, as well as the quality of the
simulator software) [138].

Recently, Chu et al. extended the systematic, multi-stage
calibration approach for the PARAMICS simulator.
Based on data of a highly congested six kilometres long
corridor network in the city of Irvine, Orange County,
California, they first calibrate the driving behaviour
models, then the route choice model, after which estima-
tion and fine-tuning of the OD tables is done. Despite
the good reproduction of travel times, their calibration
methodology was done manually, and an automated
optimisation procedure remains future work [57].

Other examples of calibration of microscopic traffic flow
models, include the work of Dowling et al., who give
an extensive account on the application of commercially
available simulation tools to typically encountered traffic
engineering problems [82], and the work of Mahanti
which is primarily based on the correct representation of
OD tables [184].

To end this section, we state some important princi-
ples that are — in our opinion — related to a correct
calibration methodology. First and foremost, we be-
lieve that all traffic flow models (whether they are
macro-, meso- or microscopic in nature), should be
able to accurately reproduce and predict the encoun-
tered delays, queue lengths, and other macroscopic
first-order characteristics (i.e., the kinematic wave
speed, a correct and realistic road capacity, . . . ). One
way to test this is the use of cumulative curves, as
they provide an elegant way to automatically per-
form a good calibration. It is for example possible to
consider the difference between observed and simu-
lated curves, and then use a Kolmogorov-Smirnov
goodness-of-fit statistical test to decide on whether
the difference is statistically significant, or if it is just
a Brownian motion with a zero mean. Only when
these first-order effects can be correctly reproduced,
the next step can be to consider second-order effects
such as waves of stop-and-go traffic, oscillations, . . .

Furthermore, it is important to take into account the spa-
tial nature of the study area, i.e., a detailed description of
the road infrastructure, with bottleneck locations as well
as up- and downstream boundary conditions. With res-
pect to the model that is created within the computer, it is
paramount to know how the model behaves on both the
link as well as the node level. Because the models are
most of the time working with fairly homogeneous road
links (e.g., constant elevations, no road curvature, . . . ), it
might be necessary to allow for small deviations from (or
fixes to) reality (e.g. inserting extra intermediate nodes in
the network in order to artificially obtain bottlenecks).

2.4 Submicroscopic traffic flow models

As the level of modelling detail is increased, we enter
the realm of submicroscopic models. Traditional micro-
scopic models describe vehicles as single operating units,
putting emphasis on the interactions between different
(successive) vehicles. In addition to this, submicrosco-
pic models push the boundaries even further, giving de-
tailed descriptions of a vehicle’s inner workings. This
typically entails modelling of the physical characteris-
tics such as engine performance, detailed gearbox ope-
rations, acceleration, braking, and steering manoeuvres,
. . . Complementary to the functioning of a vehicle’s phy-
sical components, submicroscopic models can also de-
scribe a human driver’s decision taking process in much
more detail than is usually done. Some examples of sub-
microscopic models are:

• van Arem’s Microscopic model for Simulation of In-
telligent Cruise Control MIXIC: it contains a driver
model (for deciding on and executing of lane chan-
ges, car-following behaviour, and the application of
intelligent (or adaptive) cruise control – ICC/ACC)
and a vehicle model (dealing with the engine, the
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transmission, road friction, aerodynamic, rolling,
and slope resistance) [271].

• In similar spirit, Minderhoud has developed the Si-
mulation model of Motorways with Next generation
vehicles (Simone); this model focusses on intelli-
gent driver support systems, such as ICC/ACC, pla-
toon driving, centralised control of vehicles, et cete-
ra. In contrast to most other (sub)microscopic mo-
dels, Simone explicitly allows for rear-end collisions
to occur under certain parameter combinations. As
there is a close coupling between driver behaviour
related parameters and those of the simulation, these
collision dynamics enable the modeller to find rea-
listic values (or ranges) for these parameters [195].

• Ludmann’s Program for the dEvelopment of Longi-
tudinal micrOscopic traffic Processes in a System-
relevant environment (PELOPS), is akin to the pre-
vious two models. It is however more technologi-
cally oriented with respect to the car-following be-
haviour of vehicles, aiming at merging both a dri-
ver’s perceptions and decisions, the car’s handling,
and the surrounding traffic conditions. At the core
of the model, there are four modules that respec-
tively describe vehicle routing in a road network,
human decision taking (i.e., car-following, tactical
decisions with respect to lane-changing, . . . ), vehi-
cle handling (i.e., a driver’s physical acts of steering,
accelerating and braking, . . . ), and finally a module
that describes physical vehicle characteristics (trac-
tion on elevations, engine capabilities, exhaust gas
modelling, . . . ) [178, 85].

To conclude this section, we like to mention an often sci-
entifically neglected area of research, namely the popu-
lar field of simulation in the computer gaming industry.
Over the last couple of decades, numerous arcade-style
racing simulations have been developed, allowing a play-
er to be completely immersed in a three-dimensional vir-
tual world in which racing at high speeds is paramount.
Examples of these kinds of programmes are the high-
ly addictive world of Formula 1 racing, street racing in
city environments, off-road rally races, . . . The underly-
ing submicroscopic models in these games, have over the
course of several years been evolved to incorporate all
sorts of physical effects. Friction characteristics (e.g., pa-
vement versus asphalt), road elevation, wet conditions,
air drag and wind resistance (including effects such as
slip streaming and downforce), car weight depending on
fuel consumption, tyre wear, . . . have had influences on
what we commonly refer to as car handling, i.e., realis-
tic behaviour with respect to car acceleration, braking,
and steering. Thanks to the increasing computational po-
wer of desktop computers, graphics cards, as well as de-
dicated gaming consoles (e.g., Microsoft’s Xbox, Sony’s
PlayStation, Nintendo’s GameCube, . . . ), the path to a
whole plethora of extra realistic effects has been paved:
skidding, under- and oversteering, sun glare, overly rea-
listic collision dynamics (in our opinion, this is where the

arcade sensation plays a major role), . . .

2.5 The debate between microscopic and
macroscopic models

Deciding which class of models, i.e., microscopic, or ma-
croscopic (and we also include the mesoscopic models),
is the correct one to formulate traffic flow problems, has
been a debate among traffic engineers ever since the late
fifties. Although the debate was not as intense as say, the
one between first- and higher-order macroscopic traffic
flow models (see section 2.1.7 for more details), it ne-
vertheless sparkled some interesting issues. As is nearly
always the case, the true answer to the above question de-
pends on the kind of problem one is interested in solving
[98].

In the beginning years of traffic flow engineering, a brid-
ge was formed between the microscopic General Motors
car-following model of equation (28), and the Greenberg
macroscopic model [104, 95]. This proved to be qui-
te a significant breakthrough, as it was now possible to
obtain all known steady-state macroscopic fundamental
diagrams, by integrating the car-following equation with
suitably chosen parameter values [98]. A recent example
of this kind of linking, was done by Treiber and Helbing,
who provided a micro-macro link between their non-local
gas-kinetic mesoscopic model (see section 2.2.3) and the
intelligent driver model (see section 2.3.1) [119, 117].

Besides this explicit translating of microscopic into ma-
croscopic (mesoscopic) models and vice versa, it is also
possible to develop hybrid models that couple macrosco-
pically modelled road links to microscopically modelled
ones. Examples include the work of Magne et al., who
develop a hybrid simulator that couples a METANET-
like second-order macroscopic traffic flow model with
the SImulation TRAfic (SITRA-B+) microscopic traffic
flow model. Special attention is given to the interfaces
between macroscopically and microscopically modelled
road segments; each macroscopic time iteration in the si-
mulator, is accompanied by a number of microscopic ite-
rations [183]. In similar spirit, the work of Bourrel and
Henn links macroscopic representations of traffic flows
to microscopic ones, using interfaces that describe the
transitions between them. As an application of their me-
thodology, they describe the translation between the first-
order macroscopic LWR model and a vehicle represen-
tation of this model (based on trajectories) [29]. Ano-
ther avenue was pursued by the Wilco [41] and Wilco et
al. [42], who developed an integration framework bet-
ween the MITSIMLab microscopic model and the Mez-
zo mesoscopic model. By building upon a mesoscopic
approach, the strength of their work lies in the fact that
no aggregation and disaggregation of flows needs to be
performed.
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3 Conclusions

The material elaborated upon in this paper, spanned a
broad range going from transportation planning models
that operate on a high level, to traffic flow models that ex-
plicitly describe the physical propagation of traffic flows.

As explained in the introduction, we feel there is a fre-
quent confusion among traffic engineers and policy ma-
kers when it comes to transportation planning models and
the role that traffic flow models play therein. To this day,
many transportation planning bureaus continue to use sta-
tic tools for evaluating policy decisions, whereas the need
for dynamic models is getting more and more pronoun-
ced [180].

Even after more than sixty years of traffic flow model-
ling, the debate on what is the correct modelling appro-
ach remains highly active. On the transportation planning
side, many agencies still primarily focus on the traditio-
nal four-step model (4SM), because it is the best intui-
tively understood approach. In contrast to this, activity-
based modelling (ABM) is gaining momentum, although
it remains a rather obscure discipline to many people. At
the basis of this scrutiny towards the ABM, lies the ab-
sence of a generally accepted framework such as the one
of the 4SM. It is tempting to translate the ABM approach
to the 4SM, by which e.g., the ABM’s synthetic popula-
tion generation (including activity generation, household
choices and scheduling) corresponds to the 4SM’s pro-
duction and attraction, distribution, and modal split (or to
discrete choice theory in a broader setting), thereby gene-
rating (time dependent) OD tables. Similarly, the ABM’s
agent simulation can be seen as an implementation of the
4SM’s traffic assignment. However, it remains difficult
to gain insight into this kind of direct translation and the
resulting travel behaviour, although the ABM’s scientific
field is continuously in a state of flux thanks to the incre-
asing computational power.

On the traffic flow modelling side, the debate on whether
or not to use macro-/meso- or microscopic models still
continues to spawn many intriguing discussions. Des-
pite the respective criticisms, it is widely agreed upon
that modelling driver behaviour entails complex human-
human, human-vehicle, and vehicle-vehicle interactions.
These call for interdisciplinary research, drawing from
fields such as mathematics, physics, and engineering, as
well as sociology and psychology (see e.g., the overview
of Helbing and Nagel [122]).

A Glossary of terms

A.1 Acronyms and abbreviations

4SM four step model
AADT annual average daily traffic
ABM activity-based modelling
ACC adaptive cruise control
ACF average cost function

ADAS advanced driver assistance systems
AIMSUN2 Advanced Interactive Microscopic

Simulator for Urban and Non-Urban
Networks

AMICI Advanced Multi-agent Information and
Control for Integrated multi-class traffic
networks

AON all-or-nothing
ASDA Automatische StauDynamikAnalyse
ASEP asymmetric simple exclusion process
ATIS advanced traveller information systems
ATMS advanced traffic management systems
BCA Burgers cellular automaton
BJH Benjamin, Johnso, and Hui
BJH-TCA Benjamin-Johnson-Hui traffic cellular

automaton
BL-TCA brake-light traffic cellular automaton
BML Biham, Middleton, and Levine
BML-TCA Biham-Middleton-Levine traffic cellular

automaton
BMW Beckmann, McGuire, and Winsten
BPR Bureau of Public Roads
CA cellular automaton
CA-184 Wolfram’s cellular automaton rule 184
CAD computer aided design
CBD central business district
CFD computational fluid dynamics
CFL Courant-Friedrichs-Lewy
ChSch-TCA Chowdhury-Schadschneider traffic

cellular automaton
CLO camera Linkeroever
CML coupled map lattice
CONTRAM CONtinuous TRaffic Assignment

Model
COMF car-oriented mean-field theory
CPM computational process models
CTM cell transmission model
DDE delayed differential equation
DFI-TCA deterministic Fukui-Ishibashi traffic

cellular automaton
DGP dissolving general pattern
DLC discretionary lane change
DLD double inductive loop detector
DNL dynamic network loading
DRIP dynamic route information panel
DTA dynamic traffic assignment
DTC dynamic traffic control
DTM dynamic traffic management
DUE deterministic user equilibrium
DynaMIT Dynamic network assignment for the

Management of Information to
Travellers

DYNASMART DYnamic Network Assignment-
Simulation Model for Advanced
Roadway Telematics

ECA elementary cellular automaton
EP expanded congested pattern
ER-TCA Emmerich-Rank traffic cellular

automaton
FCD floating car data
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FDE finite difference equation
FIFO first-in, first-out
FOTO Forecasting of Traffic Objects
GETRAM Generic Environment for TRaffic

Analysis and Modeling
GHR Gazis-Herman-Rothery
GIS geographical information systems
GNSS Global Navigation Satellite System

(e.g., Europe’s Galileo)
GoE Garden of Eden state
GP general pattern
GPRS General Packet Radio Service
GPS Global Positioning System

(e.g., USA’s NAVSTAR)
GRP generalised Riemann problem
GSM Groupe Spéciale Mobile
GSMC Global System for Mobile

Communications
HAPP household activity pattern problem
HCM Highway Capacity Manual
HCT homogeneously congested traffic
HDM human driver model
HKM human-kinetic model
HRB Highway Research Board
HS-TCA Helbing-Schreckenberg traffic cellular

automaton
ICC intelligent cruise control
IDM intelligent driver model
INDY INteractive DYnamic traffic assignment
ITS intelligent transportation systems
IVP initial value problem
JDK JavaTM Development Kit
KKT Karush-Kuhn-Tucker
KKW-TCA Kerner-Klenov-Wolf traffic cellular

automaton
KWM kinematic wave model
LGA lattice gas automaton
LOD level of detail
LOS level of service
LSP localised synchronised-flow pattern
LTM link transmission model
LWR Lighthill, Whitham, and Richards
MADT monthly average daily traffic
MC-STCA multi-cell stochastic traffic cellular

automaton
MesoTS Mesoscopic Traffic Simulator
MFT mean-field theory
MITRASIM MIcroscopic TRAffic flow SIMulator
MITSIM MIcroscopic Traffic flow SIMulator
MIXIC Microscopic model for Simulation of

Intelligent Cruise Control
MLC mandatory lane change

moving localised cluster
MOE measure of effectiveness
MPA matrix-product ansatz
MPCF marginal private cost function
MSA method of successive averages
MSCF marginal social cost function
MSP moving synchronised-flow pattern

MT movement time
MUC-PSD multi-class phase-space density
NaSch Nagel and Schreckenberg
NAVSTAR Navigation Satellite Timing and Ranging
NCCA number conserving cellular automaton
NSE Navier-Stokes equations
OCT oscillatory congested traffic
OD origin-destination
ODE ordinary differential equation
OSS Open Source Software
OVF optimal velocity function
OVM optimal velocity model
Paramics Parallel microscopic traffic simulator
PATH California Partners for Advanced Transit

and Highways
Program on Advanced Technology for
the Highway

PCE passenger car equivalent
PCU passenger car unit
PDE partial differential equation
PELOPS Program for the dEvelopment of

Longitudinal micrOscopic traffic
Processes in a Systemrelevant
environment

PeMS California Freeway Performance
Measurement System

PHF peak hour factor
PLC pinned localised cluster
pMFT paradisiacal mean-field theory
PRT perception-reaction time
PSD phase-space density
PW Payne-Whitham
QoS quality of service
SFI-TCA stochastic Fukui-Ishibashi traffic

cellular automaton
Simone Simulation model of Motorways with

Next generation vehicles
SLD single inductive loop detector
SMARTEST Simulation Modelling Applied to Road

Transport European Scheme Tests
SMS space-mean speed
SOC self-organised criticality
SOMF site-oriented mean-field theory
SP synchronised-flow pattern
SSEP symmetric simple exclusion process
STA static traffic assignment
STCA stochastic traffic cellular automaton
STCA-CC stochastic traffic cellular automaton

with cruise control
SUE stochastic user equilibrium
SUMO Simulation of Urban MObility
T2-TCA Takayasu-Takayasu traffic cellular

automaton
TASEP totally asymmetric simple exclusion

process
TCA traffic cellular automaton
TDF travel demand function
TMC Traffic Message Channel
TMS time-mean speed
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TOCA time-oriented traffic cellular
automaton

TRANSIMS TRansportation ANalysis and SIMulation
System

TRB Transportation Research Board
TSG triggered stop-and-go traffic
UDM ultra-discretisation method
UMTS Universal Mobile Telecommunications

System
VDR-TCA velocity-dependent randomisation traffic

cellular automaton
VDT total vehicle distance travelled
VHT total vehicle hours travelled
VMS variable message sign
VMT total vehicle miles travelled
VOT value of time
WSP widening synchronised-flow pattern
WYA whole year analysis

A.2 List of symbols

amax the maximum acceleration in the IDM

c(k) the sound speed of traffic

C(q) the economical cost associated with the

travel demand q

∆f(x) the forward difference operator applied

to f(x)

∆k the difference in density up- and

downstream of a shock wave

∆q the difference in flow up- and

downstream of a shock wave

∆X the width of a cell in a numerical

discretisation scheme

∆T the size of a time step in a numerical

discretisation scheme

Dj a destination zone j

ε a small diffusion constant for the

viscosity ν

g∗s (vi,∆vi) the effective desired space gap in

the IDM

κ a kinetic coefficient related to τ , k,

and Θ

kt the partial derivative of k(t, x) with

respect to time

kx the partial derivative of k(t, x) with

respect to space

k̃(t, x, vs) the phase-space density at (t, x)

associated with SMS vs

k̃t the partial derivative of k̃(t, x) with

respect to time

k̃x the partial derivative of k̃(t, x) with

respect to space

λ the sensitivity to the stimulus in a

car-following model

the arrival rate at a server in queueing

theory

µ the service rate of a server in queueing

theory

∇f(x) the backward difference operator applied

to f(x)

the gradient vector of f(x)

ν the kinematic traffic viscosity coefficient

Oi an origin zone i

π the probability of overtaking (as opposed

to slowing down)

P the traffic pressure

Px the partial derivative of the traffic pressure

with respect to space

P (t, x, vs) the distribution of the vehicles with SMS

vs at (t, x)

qpc the practical capacity

qso travel demand associated with a system

optimum

que travel demand associated with a user

equilibrium

S a traffic state in the human-kinetic model

τ a driver’s reaction time

Θ the variance of the speed

Θe(k, vs) an equilibrium relation between the speed

variance, the density, and the SMS

T a travel time

a relaxation parameter (in Pipes’ car-

following model)

Tff a travel time under free-flow conditions

u the velocity (in the context of a Navier-

Stokes fluid)

vdes the desired speed of drivers

vst
the partial derivative of the space-mean

speed with respect to time

vsx
the partial derivative of the space-mean

speed with respect to space

vse
(k,Θ) an equilibrium relation between the SMS,

the density, and the speed variance

V () the optimal velocity function

wshock the speed of a shock wave
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