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The scientific field of traffic engineering encompasses
a rich set of mathematical techniques, as well as re-
searchers with entirely different backgrounds. This paper
provides an overview of what is currently the state-of-
the-art with respect to traffic flow theory. Starting with
a brief history, we introduce the microscopic and macro-
scopic characteristics of vehicular traffic flows. Moving
on, we review some performance indicators that allow us
to assess the quality of traffic operations. A final part of
this paper discusses some of the relations between traffic
flow characteristics, i.e., the fundamental diagrams, and
sheds some light on the different points of view adopted
by the traffic engineering community.

Because of the large diversity of the scientific field (en-
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gineers, physicists, mathematicians, . . . all lack a unified
standard or convention), one of the principal aims of this
paper is to define both a logical and consistent terminolo-
gy and notation. It is our strong belief that such a consis-
tent notation is a necessity when it comes to creating or-
der in the ‘zoo of notations’ that in our opinion currently
exists. For a concise but complete overview of all abbre-
viations and notations proposed and adopted throughout
this paper, we refer the reader to appendix A.

I. A BRIEF HISTORY OF TRAFFIC FLOW THEORY

Historically, traffic engineering got its roots as a rather
practical discipline, entailing most of the time a com-
mon sense of its practitioners to solve particular traffic
problems. However, all this changed at the dawn of the
1950s, when the scientific field began to mature, attrac-
ting engineers from all sorts of trades. Most notably, Jo-
hn Glen Wardrop instigated the evolving discipline now
known as traffic flow theory, by describing traffic flows
using mathematical and statistical ideas [115].

During this highly active period, mathematics established
itself as a solid basis for theoretical analyses, a phenome-
non that was entirely new to the previous, more ‘rule-
of-thumb’ oriented, line of reasoning. Two examples
of the progress during this decade, include the fluid-
dynamic model of Michael James Lighthill, Gerald Be-
resford Whitham, and Paul Richards (or the LWR mo-
del for short) for describing traffic flows [72, 102], and
the car-following experiments and theories of the club of
people working at General Motors’ research laboratory
[17, 40, 41, 50]. Simultaneous progress was also made
on the front of economic theory applied to transportation,
most notably by the publication of the ‘BMW trio’, Mar-
tin J. Beckmann, Charles Bartlett McGuire, and Chris-
topher B. Winsten [6].

From the 1960s on, the field evolved even further with
the advent of the early personal computers (although at
that time, they could only be considered as mere com-
puting units). More control-oriented methods were pur-
sued by engineers, as a means for alleviating congestion
at tunnels and intersections, by e.g., adaptively steering
traffic signal timings. Nowadays, the field has been kind-
ly embraced by the industry, resulting in what is called
intelligent transportation systems (ITS), covering nearly
all aspects of the transportation community.

In spite of the intense booming during the 1950s and
1960s, all progress seemingly came to sudden stop, as
there were almost no significant results for the next two
decades (although there are some exceptions, such as the
significant work of Ilya Prigogine and Robert Herman’s,
who developed a traffic flow model based on a gas-kinetic
analogy [101]). One of the main reasons for this, stems
from the fact that many of the involved key players retur-
ned to their original scientific disciplines, after exhaus-
ting the application of their techniques to the transporta-
tion problem [99]. Note that despite this calm period, the
application of control theory to transportation started fin-
ding new ways to alleviate local congestion problems.

At the beginning of the 1990s, researchers found a re-
vived interest in the field of traffic flow modelling. On
the one hand, researchers’ interests got kindled again by
the appealing simplicity of the LWR model, whereas on
the other hand one of the main boosts came from the
world of statistical physics. In this latter framework, phy-
sicists tried to model many particle systems using sim-
ple and elegant behavioural rules. As an example, the
now famous particle hopping (cellular automata) model
of Kai Nagel and Michael Schreckenberg [92] still forms
a widely-cited basis for current research papers on the
subject.

In parallel with this kind of modelling approach, many
of the old ‘beliefs’ (e.g., the fluid-dynamic approach to
traffic flow modelling) started to get questioned. As a
consequence, a plethora of models quickly found its way
to the transportation community, whereby most of these
models didn’t give a thought as to whether or not their
associated phenomena corresponded to real-life traffic
observations.

We note here that, whatever the modelling approach
may be, researchers should always compare their re-
sults to the reality of the physical world. Ignoring
this basic step, reduces the research in our opinion to
nothing more than a mathematical exercise !

As the international research community began to spawn
its traffic flow theories, Robert Herman aspired to bring
them all together in december 1959. This led to the
tri-annual organisation of the International Symposium
on Transportation and Traffic Theory (ISTTT), by so-
me heralded as ‘the Olympics of traffic theory’ because
the symposium talks about the fundamentals underlying
transportation and traffic phenomena. Another example
of the evolution of recent developments with respect to
the parallels between traffic flows and granular media, is
the bi-annual organisation of the workshop on Traffic and
Granular Flow (TGF), a platform for exchanging ideas
by bringing together researchers from various scientific
fields.

Nowadays, the research and application of traffic flow
theory and intelligent transportation systems continues.
The scientific field has been largely diversified, encom-
passing a broad range of aspects related to sociology, psy-
chology, the environment, the economy, . . . The global
avidity of the field can be witnessed by the exponentially
growing publication output. Keeping our previous com-
ment in mind, researchers from time to time just seem to
‘add to the noise’ (mainly due to the sheer diversity of
the literature body), although there occasionally exist ex-
ceptions such as the late Newell, as subtly pointed out by
Michael Cassidy in [100].

As a final word, we refer the reader to two personali-
sed views on the history of traffic flow theory, namely
the musings of the late Gordon Newell and Denos Ga-
zis [42, 99]. We furthermore invite the reader to cast a
glance at the ending pages of Wardrop’s paper [115], in
which a rather colourful discussion on the introduction of
mathematics to traffic flow theory has been written down.
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II. MICROSCOPIC TRAFFIC FLOW
CHARACTERISTICS

Road traffic flows are composed of drivers associated
with individual vehicles, each of them having their own
characteristics. These characteristics are called microsco-
pic when a traffic flow is considered as being composed
of such a stream of vehicles. The dynamical aspects of
these traffic flows are formed by the underlying interac-
tions between the drivers of the vehicles. This is largely
determined by the behaviour of each driver, as well as the
physical characteristics of the vehicles.

Because the process of participating in a traffic flow is
heavily based on the behavioural aspects associated with
human drivers [39], it would seem important to include
these human factors into the modelling equations.
However, this leads to a severe increase in complexity,
which is not always a desired artifact [76]. However,
in the remainder of this section, we always consider
a vehicle-driver combination as a single entity, taking
only into account some vehicle related traffic flow
characteristics.

Note that despite our previous remarks, we do not
debate the necessity of a psychological treatment of
traffic flow theory. As the research into driver beha-
viour is gaining momentum, a lot of attention is gai-
ned by promising studies aimed towards driver and
pedestrian safety, average reaction times, the influ-
ence of stress levels, aural and visual perceptions,
ageing, medical conditions, fatigue, . . .

A. Vehicle related variables

Considering individual vehicles, we can say that each ve-
hicle i in a lane of a traffic stream has the following in-
formational variables:

• a length, denoted by li,

• a longitudinal position, denoted by xi,

• a speed, denoted by vi =
dxi

dt
,

• and an acceleration, denoted by ai =
dvi

dt
=

d2xi

dt2
.

Note that the position xi of a vehicle is typically taken
to be the position of its rear bumper. In this first ap-
proach, a vehicle’s other spatial characteristics (i.e., its
width, height, and lane number) are neglected. And in
spite of our narrow focus on the vehicle itself, the abo-
ve list of variables is also complemented with a driver’s
reaction time, denoted by τi.

With respect to the acceleration characteristics, it should
be noted that these are in fact not only dependent on the
vehicle’s engine, but also on e.g., the road’s inclination,
being a non-negligible factor that plays an important role

in the forming of congestion at bridges and tunnels. We
do not use the derivative of the acceleration, called jerk,
jolt, or surge (jerk is also used to represent the smooth-
ness of the acceleration noise [82]).

Except in the acceleration capabilities of a vehicle, we
ignore the physical forces that act on a vehicle, e.g., the
earth’s gravitational pull, road and wind friction, centrifu-
gal forces, . . . A more elaborate explanation of these for-
ces can be found in [27].

B. Traffic flow characteristics

Referring to Fig. 1, we can consider two consecutive ve-
hicles in the same lane in a traffic stream: a follower i and
its leader i + 1. From the figure, it can be seen that vehi-
cle i has a certain space headway hsi

to its predecessor (it
is expressed in metres), composed of the distance (called
the space gap) gsi

to this leader and its own length li:

hsi
= gsi

+ li. (1)

By taking, as stated before, the rear bumper as a vehicle’s
position, the space headway hsi

= xi+1 − xi. The space
gap is thus measured from a vehicle’s front bumper to its
leader’s rear bumper.

PSfrag replacements

(i) (i + 1)

xi xi+1li gsi
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FIG. 1: Two consecutive vehicles (a follower i at position xi

and a leader i + 1 at position xi+1) in the same lane in a traffic
stream. The follower has a certain space headway hsi

to its
leader, equal to the sum of the vehicle’s space gap gsi

and its
length li.

Analogously to equation (1), each vehicle also has a time
headway hti

(expressed in seconds), consisting of a time
gap gti

and an occupancy time ρi:

hti
= gti

+ ρi. (2)

Both space and time headways can be visualised in a
time-space diagram, such as the one in Fig. 2. Here, we
have shown the two vehicles i and i + 1 as they are dri-
ving. Their positions xi and xi+1 can be plotted with
respect to time, tracing out two vehicle trajectories. As
the time direction is horizontal and the space direction is
vertical, the vehicles’ respective speeds can be derived by
taking the tangents of the trajectories (for simplicity, we
have assumed that both vehicles travel at the same con-
stant speed, resulting in parallel linear trajectories). Ac-
celerating vehicles have steep inclining trajectories, whe-
reas those of stopped vehicles are horizontal.
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FIG. 2: A time-space diagram showing two vehicle trajectories
i and i + 1, as well as the space and time headway hsi

and
hti

of vehicle i. Both headways are composed of the space
gap gsi

and the vehicle length li, and the time gap gti
and the

occupancy time ρi, respectively. The time headway can be seen
as the difference in time instants between the passing of both
vehicles, respectively at ti+1 and ti (diagram based on [74]).

When the vehicle’s speed is constant, the time gap is the
amount of time necessary to reach the current position of
the leader when travelling at the current speed (i.e., it is
the elapsed time an observer at a fixed location would me-
asure between the passing of two consecutive vehicles).
Similarly, the occupancy time can be interpreted as the
time needed to traverse a distance equal to the vehicle’s
own length at the current speed, i.e., ρi = li/vi; this cor-
responds to the time the vehicle needs to pass the obser-
ver’s location. Both equations (1) and (2) are furthermore
linked to the vehicle’s speed vi as follows [27]:

hsi

hti

=
gsi

gti

=
li
ρi

= vi. (3)

As the above definitions deal with what is called single-
lane traffic, we can easily extend them to multi-lane traf-
fic. In this case, four extra space gaps — related to the
vehicles in the neighbouring lanes — are introduced, na-
mely gl,f

si
at the left-front, gl,b

si
at the left-back, gr,f

si
at the

right-front, and gr,b
si

at the right-back. The four corres-
ponding space headways, hl,f

si
, hl,b

si
, hr,f

si
, and hr,b

si
, are

introduced in a similar fashion. The extra time gaps and
headways are derived in complete analogy, leading to the
four time gaps gl,f

ti
, gl,b

ti
, gr,f

ti
, and gr,b

ti
, and the four cor-

responding time headways hl,f
ti

, hl,b
ti

, hr,f
ti

, and hr,b
ti

.

In single-lane traffic, vehicles always keep their relative
order, a principle sometimes called first-in, first-out
(FIFO) [24]. For multi-lane traffic however, this princi-
ple is no longer obeyed due to overtaking manoeuvres,
resulting in vehicle trajectories that cross each other.
If the same time-space diagram were to be drawn for
only one lane (in multi-lane traffic), then some vehicles’
trajectories would suddenly appear or vanish at the point
where a lane change occurred.

In some traffic flow literature, other nomenclature is
used: space for the space headway, distance or clea-
rance for the space gap, and headway for the time
headway. Because this terminology is confusing, we
propose to use the unambiguously defined terms as
described in this section.

III. MACROSCOPIC TRAFFIC FLOW
CHARACTERISTICS

When considering many vehicles simultaneously, the
time-space diagram mentioned in section II B can be used
to faithfully represent all traffic. In Fig. 3 we show the
evolution of the system, as we have traced the trajecto-
ries of all the individual vehicles’ movements. This time-
space diagram therefore provides a complete picture of
all traffic operations that are taking place (accelerations,
decelerations, . . . ).

PSfrag replacements

t

x

dt

dx

Rt

Rs
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FIG. 3: A time-space diagram showing several vehicle trajec-
tories and three measurement regions Rt, Rs, and Rt,s. These
rectangular regions are bounded in time and space by a mea-
surement period Tmp and a road section of length K. The black
dots represent the individual measurements.

Instead of considering each vehicle in a traffic stream in-
dividually, we now ‘zoom out’ to a more aggregate ma-
croscopic level (traffic streams are regarded e.g., as a
fluid). In the remainder of this section, we will measu-
re some macroscopic traffic flow characteristics based on
the shown time-space diagram. To this end, we define
three measurement regions:

• Rt corresponding to measurements at a single fixed
location in space (dx), during a certain time period
Tmp. An example of this is a single inductive loop
detector (SLD) embedded in the road’s concrete.

• Rs corresponding to measurements at a single in-
stant in time (dt), over a certain road section of
length K. An example of this is an aerial photo-
graph.

• Rt,s corresponding to a general measurement regi-
on. Although it can have any shape, in this case
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we restrict ourselves to a rectangular region in ti-
me and space. An example of this is a sequence of
images made by a video camera detector.

With respect to the size of these measurement regions,
some caution is advised: a too large measurement region
can mask certain effects of traffic flows, possibly ignoring
some of the dynamic properties, whereas a too small me-
asurement region may obstruct a continuous treatment, as
the discrete, microscopic nature of traffic flows becomes
apparent.

Using these different methods of observation, we now
discuss the measurement of four important macroscopic
traffic flow characteristics: density, flow, occupancy, and
mean speed. We furthermore give a short discussion on
the moving observer method and the use of floating car
data.

With respect to some naming conventions on road-
ways, two different ‘standards’ exist for some of the
encountered terminology, namely the American and
the British standard. Examples are: the classic multi-
lane high-speed road with on- and off-ramps, which
is called a freeway or a super highway (American), or
an arterial or motorway (British). A main road with
intersections is called an urban highway (American)
or a carriageway (British). In this dissertation, we
have chosen to adopt the British standard. Finally, in
contrast to Great Britain and Australia, we assume
that for low-density traffic, everybody drives on the
right instead of the left lane.

A. Density

The macroscopic characteristic called density allows us
to get an idea of how crowded a certain section of a road
is. It is typically expressed in number of vehicles per
kilometre (or mile). Note that the concept of density to-
tally ignores the effects of traffic composition and vehicle
lengths, as it only considers the abstract quantity ‘number
of vehicles’.

Because density can only be measured in a certain spati-
al region (e.g., Rs in Fig. 3), it is computed for temporal
regions such as region Rt in Fig. 3. When density can
not be exactly measured or computed, or when density
measurements are faulty, it has to be estimated. To this
end, several available techniques exist e.g., based on ex-
plicit simulation using a traffic flow propagation model
[90], based on a vehicle reidentification system [21], ba-
sed on a complete traffic state estimator using an exten-
ded Kalman filter [114], or based on a non-linear adaptive
observer [3], . . .

1. Mathematical formulation

Using the spatial region Rs, the density k for single-lane
traffic is defined as:

k =
N

K
, (4)

with N the number of vehicles present on the road seg-
ment. If we consider multi-lane traffic, we have to sum
the partial densities kl of each of the L lanes as follows:

k =

L∑

l=1

kl =
1
K

L∑

l=1

Nl, (5)

in which Nl now denotes the number of vehicles present
in lane l (equation (5) is not the same as averaging over
the partial densities of each lane)[122].

In general, density can be defined as the total time spent
by all the vehicles in the measurement region, divided by
the area of this region [27, 36]. This generalisation al-
lows us to compute the density at a point using the mea-
surement region Rt:

k =

N∑

i=1

Ti

Tmp dx
=

1

Tmp ��dx

N∑

i=1

��dx

vi

=
1

Tmp

N∑

i=1

1
vi

, (6)

with Ti the travel time and vi the speed of the ith vehicle.
Extending the previous derivation to multi-lane traffic is
done straightforward using equation (5):

k =
1

Tmp

L∑

l=1

Nl∑

i=1

1
vi,l

, (7)

with now vi,l denoting the speed of the ith vehicle in lane
l.

As we now can obtain the density in both spatial and tem-
poral regions, Rs and Rt respectively, it would seem a
logical extension to find the density in the region Rt,s.
In order to do this, however, we need to know the tra-
vel times Ti of the individual vehicles, as can be seen
in equation (6). Because this information is not always
available, and in most cases rather difficult to measure,
we use a different approach, corresponding to the tem-
poral average of the density. Assuming that at each time
step t, during a certain time period Tmp, the density k(t)
is known in consecutive regions Rs, the generalised defi-
nition leads to the following formulation:

k =





1
Tmp

∫ Tmp

t=0
k(t) dt (continuous),

1
Tmp

Tmp∑

t=1

k(t) (discrete).

(8)
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For multi-lane traffic, combining equations (5) and (8)
results in the following formula for computing the density
in region Rt,s using measurements in discrete time:

k =
1

Tmp K

Tmp∑

t=1

L∑

l=1

Nl(t), (9)

where Nl(t) denotes the number of vehicles present in
lane l at time t.

There exists a relation between the macroscopic traffic
flow characteristics and those microscopic characteristics
defined in section II B. For the density k, this relation is
based on the average space headway hs [27, 115]:

k =
N

K
=

N
N∑

i=1

hsi

=
1

1
N

N∑

i=1

hsi

=
1

hs

, (10)

with hs

−1
the reciprocal of the average space headway.

2. Passenger car units

When considering heterogeneous traffic flows (i.e.,
traffic streams composed of different types of vehicles),
operating agencies usually don’t express the macroscopic
traffic flow characteristics using the raw number of vehi-
cles, but rather employ the notion of passenger car units
(PCU). These PCUs, sometimes also called passenger
car equivalents (PCE), try to take into account the spatial
differences between vehicle types. For example, by
denoting one average passenger car as 1 PCU, a truck in
the same traffic stream can be considered as 2 PCUs (or
even higher and fractional values for trailer trucks).

Let us finally note that, because density is essential-
ly defined as a spatial measurement, it is one of the
most difficult quantities to obtain. It is interesting to
notice that at this moment, it is theoretically possible
for video cameras to measure density over a short
spatial region. However, to our knowledge there cur-
rently exists no commercial implementation.

B. Flow

Whereas density typically is a spatial measurement, flow
can be considered as a temporal measurement (i.e., re-
gion Rt). Flow, which we use as a shorthand for rate
of flow, is typically expressed as an hourly rate, i.e., in
number of vehicles per hour. Note that sometimes other
synonyms such as intensity, flux, throughput, current, or
volume[123] are used, typically depending on a person’s
scientific background (e.g., engineering, physics, . . . ).

1. Mathematical formulation

Measuring the flow q in region Rt for single-lane traffic,
is done using the following equation, which is based on
raw vehicle counts:

q =
N

Tmp
, (11)

with N the number of vehicles that has passed the detec-
tor’s site. For multi-lane traffic, we sum the partial flows
of each of the L lanes:

q =
L∑

l=1

ql =
1

Tmp

L∑

l=1

Nl, (12)

with now Nl denoting the number of vehicles that passed
the detector’s site in lane l. Note that we assume that each
lane has its own detector, otherwise we would be dealing
with an average flow across all the lanes.

Generally speaking, flow can defined as the total distance
travelled by all the vehicles in the measurement region,
divided by the area of this region [27, 36]. In analogy
with equation (6), this generalisation allows us to com-
pute the flow using the spatial measurement region Rs:

q =

N∑

i=1

Xi

K dt
=

1
K ��dt

N∑

i=1

vi ��dt =
1
K

N∑

i=1

vi, (13)

with now Xi the distance travelled by the ith vehicle du-
ring the infinitesimal time interval dt. The extension to
multi-lane traffic is straightforward:

q =
1
K

L∑

l=1

Nl∑

i=1

vi,l. (14)

Considering consecutive flow measurements in region
Rt,s, we can derive a formulation corresponding to the
temporal average of the flow, similar to that of equation
(8). Assuming that at each time step t, during a certain
time period Tmp, the flow q(t) is known in consecutive re-
gions Rs, the generalised definition leads to the following
equations:

q =





1
Tmp

∫ Tmp

t=0
q(t) dt (continuous),

1
Tmp

Tmp∑

t=1

q(t) (discrete),

(15)
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For multi-lane traffic, combining equations (14) and (15)
results in the following formula for computing the flow
in region Rt,s using measurements in discrete time:

q =
1

Tmp K

Tmp∑

t=1

L∑

l=1

Nl(t)∑

i=1

vi,l(t), (16)

where vi,l(t) denotes the speed of the ith vehicle in lane l
at time t.

In analogy with equation (10), there exists a relation
between the flow q, and the average time headway ht

[27, 115]:

q =
N

Tmp
=

N
N∑

i=1

hti

=
1

1
N

N∑

i=1

hti

=
1

ht

, (17)

with ht

−1
the reciprocal of the average time headway.

2. Oblique cumulative plots

As stated before, flows are always expressed as a rate.
In contrast to this, we can also consider the raw vehi-
cle counts at a certain location (i.e., measurement region
Rt). If we plot the cumulative number of passing ve-
hicles (denoted by N ) with respect to time for different
regions (e.g., inductive loop detectors), we get a set of
curves such as the one in the left part of Fig. 4. These
curves are called cumulative plots (or (t,N) diagrams),
and although their origins date back as far as 1954 with
the work of Karl Moskowitz [83], it was Gordon Newell
who applied them later on to their full potential (initially
in the context of queueing theory) [95–98] (a similar me-
thod was applied by John Luke, in the field of continuum
mechanics [25, 75]).

The key benefit of these cumulative plots, comes when
comparing observations stemming from multiple detector
stations at a closed section of the road that conserves the
number of vehicles (i.e., no on- or off-ramps), in which
case we also speak of input-output diagrams. If there are
two detector stations, then the upstream and downstream
stations measure the input, respectively output, of the sec-
tion. Similarly like in queueing theory, the upstream cur-
ve is sometimes called the arrival function, whereas the
downstream one is called the departure function [95]. As
the method is based on counting the number of indivi-
dual vehicles at each observation location (whereby each
vehicle is numbered with respect to a single reference ve-
hicle), this results in a monotonically increasing function
N(t) (sometimes called the Moskowitz function, after its
‘inventor’), which increases each time a vehicles passes
by. At each time instant t, the cumulative count is defined
as:
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FIG. 4: Left: a standard cumulative plot showing the number
of passing vehicles at two detector locations; due to the graph’s
scale, both curves appear to lie on top of each other. Right:
the same data but displayed using an oblique coordinate sys-
tem, thereby enhancing the visibility (the dashed slanted lines
have a slope corresponding to the subtracted background flow
qb ≈ 4100 vehicles per hour). We can see a queue (probably
caused due to an incident) growing at approximately 11:00, dis-
sipating some time later at approximately 12:30. The shown
detector data was taken from single inductive loop detectors
[113], covering all three lanes of the E40 motorway between
Erpe-Mere and Wetteren, Belgium. The shown data was recor-
ded at Monday April 4th, 2003 (the detectors’ sampling interval
was one minute, the distance between the upstream and down-
stream detector stations was 8.1 kilometres).

N(t) =

t∑

t′=t0

q(t′) = N(t− 1) + q(t). (18)

The time needed to travel from one location to another
can easily be measured as the horizontal distance between
the respective cumulative curves. Similarly, the vertical
distance between these curves allows us to derive the ac-
cumulation of vehicles on the road section, which gives
an excellent indication of growing and dissipating queu-
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es (i.e., congestion). Furthermore, if we compute the slo-
pe of this function at each time instant t, we obtain the
flow q(t) = [N(t + ∆t) − N(t)]/∆t. Finally, becau-
se N(t) essentially is a step function, we can define a
smooth approximation Ñ(t). This results in an every-
where differentiable function, allowing us to compute in-
stantaneous flows and local densities as q = ∂Ñ(t, x)/∂t

and k = −∂Ñ(t, x)/∂x, respectively [27].

The main disadvantage of the method is the fact that
these cumulative functions increase very rapidly, thereby
masking the subtle differences between different curves.
Cassidy and Windover therefore proposed to subtract
a background flow qb from these curves, resulting in
functions N(t) − t qb [13]. Based on this; Muñoz and
Daganzo furthermore introduced enhanced clarity by
overlaying this cumulative plot with a set of oblique
lines with slope −qb [88]. Choosing an appropriate value
for qb, allows us to nicely enhance the characteristic
undulations that are expressed by the different oblique
curves.

Note that before using these oblique plots, the cumu-
lative plots from different detectors stations need to
be synchronised. To understand this, suppose a refe-
rence vehicle passes an upstream detector station at
a certain time instant tup; after a certain time period,
the vehicle reaches the downstream detector station
at a later time instant tdown. The amount tdown − tup

is the time it takes to cross the distance between
both detector stations, allowing the synchronisation
mechanism to shift the respective cumulative curves
over this time period (i.e., initialising them with the
passing of the reference vehicle).

One way to achieve this, is by looking at the respecti-
ve shapes of both cumulative curves during light traf-
fic conditions (e.g., the early morning period when
free-flow conditions are prevailing). The idea now is
to shift one curve such that the difference between
the two curves’ shapes is minimal [86, 89, 118]. No-
te that other corrections may be necessary, as both
detector stations can count a different number of ve-
hicles (i.e., a systematic bias).

An example of an oblique plot can be seen in the right
part of Fig. 4: the cumulative count at each time instant
can be read from an axis that is perpendicular to the obli-
que (slanted) overlayed dashed lines (e.g., we can see a
count of some 30000 vehicles at 14:00). Note that the ac-
cumulation can still be measured by the vertical distance
between two curves (i.e., at a specific time instant), but
the travel time should now be measured along one of the
overlayed oblique lines. Such a pair of cumulative cur-
ves can be thought of as a flexible plastic garden hose:
whenever there is an obstruction on the road, the outflow
of the section will be blocked, resulting in a local thicke-
ning of this ‘hose’ (i.e., the accumulation of vehicles on
the section).

Using these oblique cumulative plots, we can now in-
spect the traffic dynamics in much more detail than was
previously possible. For example, looking again at the

right part of Fig. 4, we can see how the specific traffic
stream characteristics propagate from one detector stati-
on to another. Even more visible, is a queue that starts to
grow at approximately 11:00 (i.e., the time of the appea-
rance of a ‘bulge’), dissipating at approximately 12:30.
As data curves from upstream detectors lie above da-
ta curves from downstream detectors, we see a decrea-
se in the road section’s output. Careful investigation of
the traffic data revealed that the detector stations recor-
ded a rather low flow (approximately 2500 vehicles per
hour as opposed to a nominal flow of 4500 vehicles per
hour), whereby all vehicles drove at a low speed (between
20 and 60 km/h as opposed to 110 km/h). This gives
sufficient evidence to conclude that an incident probably
occurred shortly after 11:00, consequently obstructing a
part of the road and leading to a build up of vehicles in
the section.

Let us finally note that although oblique cumulative plots
currently are not a mainstream technique used by the traf-
fic community, we predict their rising popularity: they
are one of the most simple, yet powerful, techniques for
studying local traffic phenomena, giving traffic engineers
practical insight into the formation of bottlenecks. Some
recent examples include the work of Muñoz and Dagan-
zo [85–87, 89], Cassidy and Bertini [7, 15], Cassidy and
Mauch [16], and Bertini et al. [8].

C. Occupancy

Notwithstanding the importance of measuring traffic den-
sity, most of the existing detector stations on the road are
only capable of temporal measurements (i.e., region Rt).
If individual vehicle speeds can be measured, by double
inductive loop detectors (DLD) for example, then density
should be computed using equation (6).

However, in many cases these vehicle speeds are not rea-
dily available, e.g., when using single inductive loop de-
tectors. The detector’s logic therefore resorts to a tempo-
ral measurement called the occupancy ρ, which corres-
ponds to the fraction of time the measurement location
was occupied by a vehicle:

ρ =
1

Tmp

N∑

i=1

oti
. (19)

In the previous equation, oti
denotes the ith vehicle’s on-

time, i.e., the time period during which it is present above
the detector (it corresponds to the shaded area swept by
a vehicle at a certain location xi in Fig. 2). Note that
this on-time actually corresponds to the effective vehicle
length as seen by the detector, divided by the vehicle’s
speed [20]:

oti
=

li + Kld

vi

, (20)
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with li the vehicle’s true length and Kld > dx the finite,
non-infinitesimal length of the detection zone. If we de-
fine ot as the average on-time (based on the vehicles that
have passed the detector during the observation period),
then we can establish a relation between the occupancy
and the flow [27] using equations (11) and (19):

ρ =

(
N

Tmp

) (
1
N

N∑

i=1

oti

)
= q ot. (21)

Furthermore, it is as before possible to define the occu-
pancy for generalised measurement regions, using the to-
tal space consumed by the shaded areas of vehicles in
a time-space diagram (e.g., Fig. 2), divided by the area
of the measurement region [14, 27, 36]. Continuing
our discussion, assume that individual vehicle lengths
and speeds are uncorrelated; it can then be shown that
[20, 27]:

ρ = l k =⇒ k =
ρ

l
, (22)

with l the average vehicle length (note that this can cor-
respond to the concept of passenger car units defined in
section III A). Multiplying equation (22) by 100, allows
us to express the occupancy as a percentage. For multi-
lane traffic, the occupancy is derived in analogy to equa-
tion (7):

ρ =
L∑

i=1

ρl =
1

Tmp

L∑

l=1

Nl∑

i=1

oti,l
, (23)

with now oti,l
the on-time of the ith vehicle in lane l. Note

that the total occupancy derived in this way, can exceed
1 (but is bounded by L); if desired, it can be normalised
through a division by L to obtain the average occupancy.

Note that if we apply equation (22) to measurement re-
gion Rs based on the density in equation (4), then the
occupancy ρ can be written as:

ρ =

(
1

��N

N∑

i=1

li

)
��N

K
=

1
K

N∑

i=1

li. (24)

So the occupancy now represents the ‘real density’ of the
road, i.e., the physical space that all vehicles occupy.

In the past, density was sometimes referred to as
concentration. Nowadays however, concentration is
used in a more broad context, encompassing both
density and occupancy whereby the former is meant
to be a spatial measurement, as opposed to the latter
which is considered to be a temporal measurement
[39].

D. Mean speed

The final macroscopic characteristic to be considered, is
the mean speed of a traffic stream; it is expressed in ki-
lometres (or miles) per hour (the inverse of a vehicle’s
speed is called its pace). Note that speed is not to be
confused with velocity; the latter is actually a vector, im-
plying a direction, whereas the former could be regarded
as the norm of this vector.

1. Mathematical formulation

If we base our approach on direct measurements of the
individual vehicles’ speeds, we can generally obtain the
mean speed as the total distance travelled by all the vehi-
cles in the measurement region, divided by the total time
spent in this region [27, 36]. This gives the following de-
rivations for the spatial and temporal regions, Rs and Rt

respectively:

vs =

N∑

i=1

Xi

N∑

i=1

Ti

=





N∑

i=1

vi ��dt

N ��dt
=

1
N

N∑

i=1

vi (region Rs),

N ��dx
N∑

i=1

��dx

vi

=
1

1
N

N∑

i=1

1
vi

(region Rt),

(25)

with now Xi and Ti the distance, respectively time, tra-
velled by the ith vehicle and N the number of vehicles
present during the measurement. The mean speed com-
puted by the previous equations, is called the average
travel speed (the computation also includes stopped vehi-
cles), which is more commonly known as the space-mean
speed (SMS); we denote it with vs (note that in some en-
gineering disciplines, the sole letter u is used to denote a
mean speed, however, this is ambiguous in our opinion).

It is interesting to see that the spatial measurement is ba-
sed on an arithmetic average of the vehicles’ instanta-
neous speeds, whereas the temporal measurement is ba-
sed on the harmonic average of the vehicles’ spot speeds.
If we instead were to take the arithmetic average of the
vehicles’ spot speeds in the temporal measurement regi-
on Rt, this would lead to what is called the time-mean
speed (TMS); we denote it by vt:

vt =
1
N

N∑

i=1

vi (region Rt). (26)

Similarly, we can compute the time-mean speed for me-
asurement region Rs, by taking the harmonic average of
the vehicles’ instantaneous speeds. With respect to both
space- and time-mean speeds, Wardrop has shown that
the following relation holds [115]:
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vt = vs +
σ2

s

vs

, (27)

with σ2
s the statistical sample variance defined as follows:

σ2
s =

1
N − 1

N∑

i=1

(vi − vs)
2, (28)

in which vi denotes the ith vehicle’s instantaneous speed.
One of the main consequences of equation (27), is that the
time-mean speed always exceeds the space-mean speed
(except when all the vehicles’ speeds are the same, in
which case the sample variance is zero and, as a conse-
quence, the time- and space-mean speeds are equal). So a
stationary observer will most likely see more faster than
slower vehicles passing by, as opposed to e.g., an aerial
photograph in which more slower than faster vehicles will
be seen [27]. Despite this mathematical quirk, the practi-
cal difference between SMS and TMS is often negligible
for free-flow traffic (i.e., light traffic conditions); howe-
ver, under congested traffic conditions both mean speeds
will behave substantially differently (i.e., around 10%).

Using equation (27), we can also estimate the space-mean
speed, based on the time-mean speed and approximating
the variance of the SMS with that of the TMS [9]:

vs = vt −
σ2

s

vs

,

≈ vt −
σ2

t

vs

,

⇓

vs − vt ≈ −
σ2

t

vs

,

v2
s − vsvt ≈ −σ2

t ,

v2
s − 2 vs

vt

2
+

v2
t

4
≈

v2
t

4
− σ2

t ,

(
vs −

vt

2

)2

≈
v2

t

4
− σ2

t ,

⇓

vs ≈
vt

2
+

√
v2

t

4
− σ2

t ∀ vt ≥ 2 σt.(29)

In general, using the space-mean speed is preferred to the
time-mean speed. However, in most cases only this latter
traffic flow characteristic is available, so care should be
taken when interpreting the results of a study (unless of
course when SMS and TMS are negligibly different).

The extension of equation (25) to multi-lane is
straightforward; for example, the space-mean speed is
computed as follows:

vs =





L∑

l=1

Nl∑

i=1

vi,l

/
L∑

l=1

Nl (region Rs),

1

1
L∑

l=1

Nl

L∑

l=1

Nl∑

i=1

1
vi,l

(region Rt), (30)

with now vi,l the instantaneous (or spot) speed of the
ith vehicle in lane l.

2. Fundamental relation of traffic flow theory

There exists a unique relation between three of the pre-
viously discussed macroscopic traffic flow characteristics
density k, flow q, and space-mean speed vs [115]:

q = k vs. (31)

This relation is also called the fundamental relation of
traffic flow theory, as it provides a close bond between
the three quantities: knowing two of them allows us to
calculate the third one (note that the time-mean speed
in equation (26) does not obey this relation). In gene-
ral however, there are two restrictions, i.e., the relation is
only valid for (1) continuous variables[124], or smooth
approximations of them, and (2) traffic composed of sub-
streams (e.g., slow and fast vehicles) which comply to the
following two assumptions:

Homogeneous traffic
There is a homogeneous composition of the
traffic substream (i.e., the same type of vehi-
cles).

Stationary traffic
When observing the traffic substream at dif-
ferent times and locations, it ‘looks the sa-
me’. Putting it a bit more quantitatively, all
the vehicles’ trajectories should be parallel
and equidistant [27]. A stationary time period
can be seen in a cumulative plot (e.g., Fig. 4)
where the curve corresponds to a linear func-
tion.

The latter of the above two conditions, is also referred
to as traffic operating in a steady state or at equilibrium.
Based on equations (5) and (12) using partial densities
and flows for different substreams (e.g., vehicle classes
with distinct travel speeds, macroscopic characteristics
of different lanes, . . . ), we can now calculate the space-
mean speed, using relation (31), in the following equiva-
lent ways:
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vs = q / k,

=

C∑

c=1

qc

/
C∑

c=1

kc, (32)

=

C∑

c=1

qc

/
C∑

c=1

qc

vsc

, (33)

=
C∑

c=1

kc vsc

/
C∑

c=1

kc, (34)

in which C denotes the number of substreams, qc, kc, vsc
,

and vtc
the flow, density, space, and time-mean speed res-

pectively of the c-th substream. In the above derivations,
equation (32) should be used when both the flows and
densities are known, equation (33) should be used when
both the flows and space-mean speeds are known, and
equation (34) should be used when both the densities and
space-mean speeds are known.

As can be seen in equation (34), the space-mean speed
is calculated by averaging the substreams’ space-mean
speeds using their densities as weighting factors. Simi-
larly, the time-mean speed can be derived by using the
flows as weighting factors for the substreams’ time-mean
speeds:

vt =
C∑

c=1

qc vtc

/
C∑

c=1

qc, (35)

Because density can not always be easily measured, we
can compute it using the fundamental relation (31). Den-
sity can then be directly derived from flow and space-
mean speed measurements, or if the latter are not avai-
lable, they can be estimated from occupancy measure-
ments; in [20–22], Coifman provides a nice set of techni-
ques for dealing with these difficulties.

E. Moving observer method and floating car data

When measuring and/or computing the macroscopic traf-
fic flow characteristics in the previous sections, we al-
ways assumed a fixed measurement region. There exists
however yet another method, based on what is called a
moving observer [116]. The idea behind the technique
is to have a vehicle drive in both directions of a traffic
flow, each time recording the number of oncoming vehi-
cles and the net number of vehicles it gets overtaken by,
as well as the times necessary to complete the two trips.
Note that the assumption of stationary traffic still has to
hold, i.e., the round trip should be completed before traf-
fic conditions change significantly.

Using this method, it is then possible to derive the flow
and density of the traffic stream in the direction of interest
[27, 39]. However, the main disadvantage of this method
is that, in order to obtain an acceptable level of accuracy

on a road with a low flow, a very large number of trips are
required [39, 84, 116].

One of the techniques that has entered the picture during
the last decade, is the use of so-called floating cars or
probe vehicles. They can be compared to the moving ob-
server method, but in this case, the vehicles are equip-
ped with GPS and GSM(C)/GPRS devices that determi-
ne their locations based on the USA’s NAVSTAR-GPS
(or Europe’s planned GNSS Galileo), and transmit this
information to some operator. Initially, this allows an ag-
ency, e.g., a parcel delivery service, to track its vehicles
throughout a network, based on their locations. Nowa-
days, the technique has evolved, resulting in several com-
pleted field tests of which the main goal was to estimate
the traffic conditions based on a small number of probe
vehicles. During field measurements, floating cars can
mimic several types of behaviour, most notably by tra-
velling at the traffic flows’ mean speed, or by trying to
travel at the road’s speed limit, or even by chasing ano-
ther randomly selected vehicle from the traffic stream.

Some examples of studies and experiments with floating
car data (FCD) are given in the following. Firstly, Fasten-
rath gives an overview of a telematic field trial (VEhicle
Relayed Dynamic Information, VERDI) that addresses is-
sues such as economical, political, and technical cons-
traints [38]. Secondly, Westerman provides an overview
of available techniques for obtaining real-time road traffic
information, with the goal of controlling the traffic flows
through telematics [118], and Wermuth et al. describe a
‘TeleTravel System’ used for surveying individual travel
behaviour [117]. Then, Taale et al. compare travel times
from floating car data with measured travel times (using a
fleet of sixty equipped vehicles driving around in Rotter-
dam, The Netherlands), concluding that they correspond
reasonably well [107]. Next, Michler derives the mini-
mum percentage of vehicles necessary, in order to estima-
te traffic stream characteristics for certain traffic patterns
(e.g., free-flow and congested traffic) based on rigid sta-
tistical grounds [81], and Linauer and Leihs measure the
travel time between points in a road network, based on a
high number of users that submit a low number of GSM
hand-over messages [73]. In addition, Demir et al. accu-
rately reconstruct link travel times during periods of traf-
fic congestion, using only a very limited number of FCD-
messages with a small number of users [33]. A final, mo-
re regional, example is the founding of the government-
supported Belgian ‘Telematics Cluster’[125], a platform
for encouraging the use of telematics solutions for ITS.
The initiative already includes some 57 members, stimu-
lating the cooperation between users, telecommunication
companies, and the automotive industry.

In conclusion, we can state that the use of probe vehicles
provides an effective way to gather accurate current
travel times in a road network, thereby allowing good up-
to-date estimations of traffic conditions. The technique
will continue to grow and evolve, already by introducing
personalised traffic information to drivers, based on their
location and the surrounding traffic conditions. This
development is furthermore stimulated by the fact that
GSM market penetration still rises above 70% [73], and
it is our belief this will also be the case for personal GPS
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devices and in-vehicle route planners.

Despite the obvious major advantage of obtaining
accurate information on the traffic conditions, the
technique suffers from a jurisprudential battle, in that
there are many delicately privacy concerns involved
with respect to the mobile operator that wants to
track individual people’s units (not to mention the
monetary cost associated with the numerously indu-
ced communications).

IV. PERFORMANCE INDICATORS

After considering the previously mentioned macroscopic
traffic flow characteristics, we now take a look at some
popular performance indicators used by traffic engineers
when assessing the quality of traffic operations. We con-
cisely discuss the peak hour factor, the reliability of travel
times, the levels of service, and a measure of efficiency
of a road. For a more complete overview, we refer the
reader to [105].

A. Peak hour factor

During high flow periods in the peak hour, a possible in-
dicator for traffic flow fluctuations is the so-called peak
hour factor (PHF). It is calculated for one day as the aver-
age flow during the hour with the maximum flow, divided
by the peak flow rate during one quarter hour within this
hour [79]:

PHF =
q|60

q|15
. (36)

For example, suppose we measure flows on a main unidi-
rectional road with three lanes, during a morning peak:
from 07:00 to 08:00 we measure consecutively 3500,
6600, 6200, and 4500 vehicles/hour during each quarter.
The total average flow q|60 is 5200 vehicles/hour, with a
peak 15 minute flow rate q|15 = 6600 vehicles/hour. The

PHF is therefore equal to 5200/6600 = 0.78.

Note that some manuals express the peak 15 minute flow
rate as the number of vehicles during that quarter hour,
necessitating an extra multiplication by 4 in the denomi-
nator of equation (36) to convert the flow rate to an hourly
rate.

We can immediately see that the PHF is constrained to
the interval [0.25,1.00]; the higher the PHF, the flatter the
peak period (i.e., a longer sustained state of high flow).
Typically, the PHF has values around 0.7 – 0.98. Note
that two of the obvious problems with the PHF are, on
the one hand, the question of when to pick the correct 15
minute interval, and on the other hand the fact that some
peak periods may last longer than one hour.

B. Travel times and their reliability

When travelling around, people like to know how long a
specific journey will take (e.g., by public transport, car,
bicycle, . . . ). This notion of an expected travel time, is
one of the most tangible aspects of journeying as percei-
ved by the travellers. When people are travelling to their
work, they are required to arrive on time at their destina-
tions. Based on this premise, we can naturally state that
people reason with a built-in safety margin: they consider
the average time it takes to reach a destination, and use
this to decide about their departure time.

Aside from the above obvious human rationale, there is
also an increased interest in obtaining precise informati-
on with respect to travel times in the context of advanced
traveller information systems (ATIS). Here, an essential
ingredient is the accurate prediction of future travel ti-
mes. Coupled with incident detection for example, dri-
vers can obtain correct travel time information, thereby
staying informed of the actual traffic conditions and pos-
sibly changing their journey. The requested information
can reach the driver by means of a cell-phone (e.g., as a
feature offered by the mobile service provider), it can be
broadcasted over radio (e.g., the Traffic Message Channel
– TMC), or it can be displayed using variable message
signs (VMS) above certain road sections (e.g., dynamic
route information panels – DRIPs), . . .

1. Travel time definitions

The travel time of a driver completing a journey, can be
defined as ‘the time necessary to traverse a route between
any two points of interest’ [111]. In this context, the ex-
perienced dynamic travel time, starting at a certain time
t0, over a road section of length K is defined as follows
[9]:

T (t0) =

∫ K

0

1
v(t, x)

dx ∀ t ≥ t0, (37)

for which it is assumed that all local instantaneous vehi-
cle speeds v(t, x) are known at all points along the rou-
te, and at all time instants (hence the term dynamic tra-
vel time). In most cases however, we do not know all
the v(t, x), but only a finite subset of them, defined by
the locations of the detector stations (demarcating secti-
on boundaries). The travel time can then be approximated
using the recorded speeds at the beginning and end of a
section (there is an underlying assumption here, namely
that vehicles travel at a more or less constant speed bet-
ween detector locations). As stated earlier, the experien-
ced travel time requires the knowledge of local vehicle
speeds at all time instants after T0. Because this is not
always possible, a simplification can be used, resulting in
the so-called experienced instantaneous travel time:

T̃ (t0) =

∫ K

0

1
v(t0, x)

dx, (38)
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In general, we can derive the travel time using equation
(25), i.e., the total distance travelled by all the vehicles,
divided by their space-mean speed:

T (t0) =
K

vs(t0)
, (39)

in which an accurate estimation of the space-mean speed
vs(t0) at time t0 is necessary (e.g., by taking the harmonic
average of the recorded spot speeds).

2. Queueing delays

Traffic congestion nearly always leads to the build up of
queues, introducing an increase (i.e., the delay) in the
experienced travel time. The congestion itself can have
originated due to traffic demand exceeding the capacity,
or because an incident occurred (e.g., road works, a traf-
fic accident, . . . )[126]. This can create incidental (non-
recurrent) or structural (recurrent) congestion. Congesti-
on can thus be seen as a loss in travel time with respect
to some base line reference. Two such commonly used
references are the travel time under free-flow conditions,
and the travel time under maximum (i.e., capacity) flow.
The delay is typically expressed in vehicle hours. As sta-
ted earlier, there are several ways to inform a driver of the
current and predicted travel time. Using DRIPs it is pos-
sible to advertise the extra travel time (the delay is now
typically expressed in vehicle minutes), as well as queue
lengths. We note that in our opinion it is more intuitive to
advertise a temporal estimation (i.e., the travel time or the
delay), than a spatial estimation (e.g., the queue length on
a motorway).

3. An example of travel time estimation using cumulative
plots

There exist several techniques for estimating the current
travel time; one method for directly ‘measuring’ the tra-
vel time, is by using a probe vehicle (we refer the reader
to section III E for more details). This way, it is possible
to extract actual travel times from a traffic stream. Note
that as traffic conditions get more congested, more probe
vehicles are required in order to obtain an accurate esti-
mation of the travel time.

Another method for measuring the travel time, is based
on historical data, namely cumulative plots (introduced
in section III B 2). As mentioned earlier, the travel time
can then be measured as the distance along the horizontal
(or oblique) time axis; any excess due to delays can then
easily be spotted on a set of oblique cumulative plots.

Based on cumulative plots of consecutive detector sta-
tions, we can calculate the travel time between the up-
stream and downstream end of a road section. To illustra-
te this, let us reconsider the cumulative curves shown in
Fig. 4 of section III B 2. The evolution of the travel time

during the day for these curves, is depicted in the top part
of Fig. 5. The derived histogram (indicative of the un-
derlying travel time probability density function), in the
bottom part of the figure, shows that the mean travel time
during the day is approximately 4 minutes.
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FIG. 5: Top: The evolution of the travel time during one day,
based on the cumulative plots from section III B 2. As can be
seen, an incident likely occurred at 11:00, increasing the travel
time from 4 to 7 minutes. Furthermore, at approximately 18:45
in the evening, all traffic seemed to simultaneously slow down
for a period of some 10 minutes. Bottom: Based on the calcula-
ted travel times during the day, we can derive a histogram that
is an approximation of the underlying travel time probability
density function. The mean is located around 4 minutes.

We already mentioned the likely occurrence of an inci-
dent at 11:00, resulting in the formation of a queue. Du-
ring this period, the travel time shot up, reaching first 5,
then 7 minutes. Looking at the top part of Fig. 5, we fur-
thermore notice a slight increase in the travel time at ap-
proximately 18:45, for a short period of some 10 minutes.
Investigation of the detector data, revealed that the flow
remained constant at about 4500 vehicles per hour, but
the speed dropped to some 90 km/h (as opposed to 110
km/h); we can conclude that all vehicles were probably
simultaneously slowing down during this period (perhaps
a rubbernecking effect). Another possibility is a platoon
of slower moving vehicles, but then it would seem to have
dissipated rather quickly after 10 minutes.

Using ample historical data, we can analyse the travel ti-
me over a period of many weeks, months, or even years.
This would allow us to make intuitive statements such as:

“The typical travel time over this section of
the road during a working Monday, lies ap-
proximately between 4 and 6 minutes. There
is however an 8% probability that the travel
time increases to some 22 minutes (e.g., due
to an occurring incident).”

Finally note that, besides the two previously mentioned
techniques for estimating travel times, an extensive over-
view can be found in the Travel Time Data Collection
Handbook [111]. Another concise but more theoretically-
oriented overview is provided by Bovy and Thijs [9].
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4. Reliability and robustness properties

As mentioned in the introduction of this section, people
reason about their expected travel times based on a built-
in safety margin. Central to this is the concept of the
average travel time. The reliability of such a travel time
is then characterised by its standard deviation. Drivers
typically accept (and sometimes expect) a small delay in
their expected travel time. A traveller knows the expected
travel time because of the familiarity with the associated
trip. To the traveller, this is personal historical informa-
tion, for instance obtained by learning the trip’s details
(e.g., the traffic conditions during a typical morning rush
hour) [5].

Directly linked to the reliability of a certain expected tra-
vel time, is its variability. They are said to be unreliable
when both expected and experienced travel times differ
sufficiently. A typical characterisation of reliability in-
volves the mean and standard deviation (i.e., the variance,
which is a measure of variability) of a travel time distri-
bution [19]. An example of such a travel time distribution
for one day is shown in the histogram in the bottom part
of Fig. 5.

Both first- and second-order measures of a distribution
are by themselves insufficient to capture the complete
picture. In order to grasp the notion of the previously
mentioned safety margin, another typical statistical me-
asure is considered, namely the 90th percentile. The ra-
tionale behind the use of this percentile is that travellers
adopt a certain ‘safe’ threshold with respect to their ex-
pected journey times. Considering the 90th percentile,
this means that only one out of ten times the experienced
travel time will differ significantly from the expected tra-
vel time. Travel time reliability can thus be viewed upon
as a measure of service quality (similar to the concept of
‘quality of service’ (QoS) in telecommunications).

There has been some research into the analytic form of
travel time distributions (e.g., the work of Arroyo and
Kornhauser, concluding that a lognormal distribution
seems the most appropriate [4]). There exist however
significant differences between travel time distributions:
in general, a smaller standard deviation indicates a better
service quality and reliability. In contrast to this, a large
standard deviation is indicative of chaotic behaviour
of the traffic flow, the latter being totally unstable.
Furthermore, travel time distributions can have a long
tail; this signifies seldom events (e.g., incidents), that can
have significant repercussions on the quality of traffic
operations.

Let us finally note that there is an increased inte-
rest in the reliability of complete transportation net-
works, and their robustness against incidents. To
this end, Immers et al. consider reliability as a
user-oriented quality, whereas robustness is more a
property of the system itself [51]. Among several
characterising factors for robustness of transportati-
on systems, they also introduce the following prac-
tical notions in this context: redundancy, denoting a
spare capacity, and resilience, which is the ability to
repeatedly recover from a temporary overload. Their
conclusion is that the key element in securing trans-
portation reliability lies in a good network design.

C. Level of service

Historically, one of the main performance indicators to
assess the quality of traffic operations, was the level of
service (LOS), introduced in the 1960s. It is represented
as a grading system using one of six letters (A – F), whe-
reby LOS A denotes the best operating conditions and
LOS F the worst. These LOS measures are based on
road characteristics such as speed, travel time, . . . , and
drivers’ perceptions of comfort, convenience, . . . [1]. As
is customary among traffic engineers, these representati-
ve statistics of these characteristics are collectively called
measures of effectiveness (MOE).

Levels A through D are representative for free-flow con-
ditions whereby LOS A corresponds to free flow, LOS B
to reasonable free flow, LOS C to stable traffic operations,
and LOS D to bordering unstable traffic operations. LOS
E is reminiscent of near-capacity flow conditions that are
extremely unstable, whereas LOS F corresponds to con-
gested flow conditions (caused by either structural or in-
cidental congestion) [79].

As an example, we provide an overview of the different
levels of service in Table I (based on [79], in similar form
originally published in the Highway Capacity Manual
(HCM) of 1985 as the Transportation Research Board’s
(TRB)[127] special report #209.

LOS Density (veh/km) Occupancy (%) Speed (km/h)

A 0→ 7 0→ 5 ≥ 97
B 7→ 12 5→ 8 ≥ 92
C 12→ 19 8→ 12 ≥ 87
D 19→ 26 12→ 17 ≥ 74
E 26→ 42 17→ 28 ≥ 48
F 42→ 62 28→ 42 < 48

> 62 > 42

TABLE I: Level of service (LOS) indicators for a motorway
(adapted from [79], in similar form originally published in the
1985 HCM).

Calculating levels of service can be done using a multitu-
de of methods; some examples include using the density
(at motorways), using the space-mean speed (at arterial
streets), using the delay (at signallised and unsignallised
intersections), . . . [1]. The distinction between different
LOS is primarily based on the measured average speed,
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and secondly on the density (or occupancy). Furthermo-
re, as traditional analyses only focus on a select number
of hours, a new trend is to conduct whole year analyses
(WYA) based on aggregated measurements such as
e.g., the monthly average daily traffic (MADT) and the
annual average daily traffic (AADT) [10]. The MADT
is calculated as the average amount of traffic recorded
during each day of the week, averaged over all days
within a month. Averaging the resulting twelve MADTs
gives the AADT.

Regarding the use of the LOS, we note that it is a
rather old-fashioned method for evaluating the qua-
lity of traffic operations. In general, it is difficult
to calculate, mainly because the defined standards
at which the different levels are set, always depend
on the specific type of traffic situation that is studied
(e.g., type of road, . . . ). This makes the LOS more of
an engineering tool, used when assessing and plan-
ning operational analyses. Instead of using the LOS,
we therefore propose to adopt the more suited appro-
ach based on oblique cumulative plots (we refer the
reader to section III B 2). These allow for example
to assess the differences between travel times under
free-flow and congested conditions, thereby giving a
more meaningful and intuitive indication of the qua-
lity of traffic operations to the drivers.

D. Efficiency

In [18], Chen et al. state that the main reason for conge-
stion is not demand exceeding capacity (i.e., the number
of travellers who want to use a certain part of the trans-
portation network, exceeds the available infrastructure’s
capacity), but is in fact the inefficient operation of motor-
ways during periods of high demand. In order to quantify
this efficiency, they first look at what the prevailing speed
is when a motorway is operating at its maximum effici-
ency, i.e., the highest flow (corresponding to the effecti-
ve capacity, which is different from the HCM’s capacity
which is calculated from the road’s physical characteris-
tics). Based on the distribution of 5-minute data samples
from some 3300 detectors, they investigate the speed du-
ring periods of very high flows. This leads them to a so-
called sustained speed vsust = 60 miles per hour (which
corresponds to 60 mi/h× 1.609 ≈ 97 km/h).

The performance indicator they propose, is called the ef-
ficiency η and it based on the ratio of the total vehicle
miles travelled (VMT), divided by the total vehicle hours
travelled (VHT). Note that as the units of VMT and vsust

should correspond to each other, we propose to use the
terminology of total vehicle distance travelled (VDT) in-
stead of the VMT, in order to eliminate possible confusi-
on. Both VDT and VHT are defined as follows:

VDT = q K, (40)

VHT =
VDT
vs

, (41)

with, as before, q the flow, K the length of the road sec-
tion, and vs the space-mean speed. Using the above defi-
nitions, we can write the efficiency of a road section as:

η =
VDT/VHT

vsust
. (42)

The efficiency is expressed as a percentage, and it can
rise above 100% when the recorded average speeds sur-
pass the sustained speed vsust. In general, the discussed
efficiency can also easily be calculated for a complete
road network and an arbitrary time period. It can
furthermore be seen as the ratio of the actual productivity
of a road section (the output produced by this section
during one hour), to its maximum possible production
(the input to the section) under high flow conditions.

Note that as a solution to their original claim (“con-
gestion arises due to inefficient operation”), Chen
et al. propose to increase the operational efficiency,
mainly through the technique of suitable ramp mete-
ring (using an idealised ramp metering control prac-
tice that maintains the occupancy downstream of an
on ramp to its critical level). But in our opinion, they
neglect to take into account the entire situation, i.e.,
they fail to consider the extra effects induced by hol-
ding vehicles back at some on ramps (e.g., the total
time travelled by all the vehicles, including delays),
thus rendering their statement practically worthless
by giving a feeble argument. Careful examination
of their reasoning, reveals that these extra effects are
dealt with by shifting demand during the peak peri-
ods. . . but this just confirms our hypothesis that con-
gestion occurs when demand exceeds capacity, even
when this capacity is for example controlled through
ramp metering !

In contrast to the work of Chen et al., Brilon proposes
another definition for the efficiency (now denoted as E):
it is expressed as the number of vehicle kilometres that
are produced by a motorway section per unit of time [10]:

E = q vs Tmp, (43)

with now q the total flow recorded during the time in-
terval Tmp. Brilon concludes that in order for motorways
to operate at maximum efficiency, their hourly flows typi-
cally have to remain below the capacity flow (e.g., at 90%
of qcap). Brilon also proposes to use this point of maxi-
mum efficiency as the threshold when going from LOS D
to LOS E.
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V. FUNDAMENTAL DIAGRAMS

Whereas the previous sections dealt with individual traf-
fic flow characteristics, this section discusses some of the
relations between them. We first give some characteri-
sations of different traffic flow conditions and the rudi-
mentary transitions between them, followed by a discus-
sion of the relations (which are expressed as fundamental
diagrams) between the traffic flow characteristics, giving
special attention to the different points of view adopted
by traffic engineers.

A. Traffic flow regimes

Considering a stream of traffic flow, we can distinguish
different types of operational characteristics, called re-
gimes (two other commonly used terms are traffic flow
phases and states). As each of these regimes is characte-
rised by a certain set of unique properties, classification
of them is sometimes based on occupancy measurements
(see for example the discussion about levels of service in
section IV C), or it is based on combinations of different
macroscopic traffic flow characteristics (e.g., the work of
Kerner [55]).

In the following sections, we discuss the regimes known
as free-flow traffic, capacity-flow traffic, congested, stop-
and-go, and jammed traffic. Our discussion of these re-
gimes is in fact based on the commonly adopted way
of looking at traffic flows, as opposed to for example
Kerner’s three-phase traffic theory that includes a regime
known as synchronised traffic (we refer the reader to sec-
tion V D for more details). We conclude the section with
a note on the transitions that occur from one regime to
another.

1. Free-flow traffic

Under light traffic conditions, vehicles are able to freely
travel at their desired speed. As they are largely unim-
peded by other vehicles, drivers strive to attain their own
comfortable travelling speed (we assume that in case a
vehicle encounters a slower moving vehicle ahead, it can
easily change lanes in order to overtake the slower ve-
hicle). Notwithstanding this ability for unconstrained tra-
velling, drivers have to take into account the maximum al-
lowed speed (denoted by vmax), as well as road-, engine-,
and other vehicle characteristics. Note that in some cases,
depending on the country under scrutiny, drivers perform
speeding.

In essence, the previous description of free-flow traffic
considers a traffic flow to be unrestricted, i.e., no signi-
ficant delays are introduced due to possible overtaking
manoeuvres. As a consequence, the free-flow speed (by
some called the nominal speed) is the mean speed of all
vehicles, travelling at their own pace (e.g., 100 km/h); it
is denoted by vff.

Free-flow traffic occurs exclusively at low densities, im-
plying large average space headways according to equa-
tion (10). As a result, small local disturbances in the tem-
poral and spatial patterns of the traffic stream have no
significant effects, hence traffic flow is stable in the free-
flow regime.

2. Capacity-flow traffic

When the traffic density increases, vehicles are driving
closer to each other. Considering the number of vehicles
that pass a certain location alongside the road, an
observer will notice an increase in the flow. At a certain
moment, the flow will reach a maximum value (which is
determined by the mean speed of the traffic stream and
the current density). This maximum flow is called the
capacity flow, denoted by qc, qcap, or even qmax. A typical
value for the capacity flow on a three-lane Belgian
motorway with vmax equal to 120 km/h, can reach a
maximum of some 7000 vehicles [113]. According to
equation (17), the average time headway is minimal at
capacity-flow traffic, indicating the (local) formation of
tightly packed clusters of vehicles (i.e., platoons), which
are moving at a certain capacity-flow speed vc (or vcap)
which is normally a bit lower than the free-flow speed.
Note that some of these fast platoons are very unstable
when they are composed of tail-gating vehicles: whene-
ver in such a string a vehicle slows down a little, it can
have a cascading effect, leading to exaggerate braking of
following vehicles. Hence, these latter manoeuvres can
destroy the local state of capacity-flow, and can in the
worst case lead to multiple rear-end collisions. At this
point, traffic becomes unstable.

The calculation of the capacity flow is a daunting
task, holding traffic engineers occupied for the last
six decades. The fact of the matter is that there exists
no rigourous definition for the concept of ‘capaci-
ty’. As a result, after many years of research, this
culminated in the publication of the fourth edition
of the already previously mentioned Highway Ca-
pacity Manual. It contains an impressive overview,
spanning methodologies for assessing the capacity at
specific types of road infrastructures (motorway fa-
cilities, weaving sections, on- and off-ramps, signal-
lised and unsignallised urban intersections, . . . ) [1].

3. Congested, stop-and-go, and jammed traffic

Considering the regime of capacity-flow traffic, it is rea-
sonable to assume that drivers are more mentally aware
and alert in this regime, as they have to adapt their driving
style to the smaller space and time headways under high
speeds. However, when more vehicles are present, the
density is increased even further, allowing a sufficient-
ly large disturbance to take place. For example, a driver
with too small space and time headways, will have to bra-
ke in order to avoid a collision with the leader directly in
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front; this can lead to a local chain of reactions that dis-
rupts the traffic stream and triggers a breakdown of the
flow. The resulting state of saturated traffic conditions, is
called congested traffic. The moderately high density at
which this breakdown occurs, is called the critical densi-
ty, and is denoted by kc or kcrit (for a typical motorway,
its value lies around 25 vehicles (PCUs) per kilometre
per lane, [113]). From this knowledge, we can derive
the optimal driving speed for single-lane traffic flows as
vs = qcap/kcrit = 2000÷ 25 =≈ 85 km/h.

Higher values for the density indicate almost always a
worsening of the traffic conditions; congested traffic can
result in stop-and-go traffic, whereby vehicles encounter
so-called stop-and-go waves. These waves require them
to slow down severely, or even stop completely. When
traffic becomes motionless, the space headway reaches a
minimum as all vehicles are standing bumper-to-bumper;
this extreme state is called jammed traffic. Clearly, there
exists a maximum density at which the traffic seems to
turn into a ‘parking lot’, called the jam density and it is
denoted by kj , kjam, or kmax. For a typical motorway, its
value lies around 140 vehicles (PCUs) per kilometre per
lane [113].

Note that the jam density is typically expressed in ve-
hicles per kilometre. As already stated in the intro-
duction of section III A, density ignores the effects
of traffic composition and vehicle lengths. For a ty-
pical value of some 140 vehicles/km/lane for the jam
density, this means that we express the density by
using passenger car units (see section III A 2 for mo-
re details). Suppose now for example that an average
trailer truck equals 4.5 PCUs, then the jam density
would decrease to some 140 ÷ 4.5 ≈ 31 trucks for
this class of vehicles. As a consequence, the value of
the jam density is different for each vehicle class.

4. A note on the transitions between different regimes

Streams of traffic flows can be regarded as many-particle
systems (e.g., gasses, magnetic spin systems, . . . ); as they
have a large number of degrees of freedom, it is often in-
tractable when it comes to solving them exactly. Howe-
ver, from a physical point of view, these systems can be
described in the framework of statistical physics, whe-
reby the collective behaviour of their constituents is ap-
proximately treated using statistical techniques.

Within this context, the changeover from one traffic re-
gime to another, can be looked upon as a phase transi-
tion. Within thermodynamics and statistical physics, an
order parameter is often used to describe the phase tran-
sition: when the system shifts from one phase to another
(e.g., at a critical point for liquid-gas transitions), the or-
der parameter expresses a different qualitative behaviour.
Two examples of such an order parameter that is appli-
cable to traffic flows, can be found in Schadschneider et
al. who considered nearest neighbour correlations [104],
and in Jost and Nagel who devised a measure of inhomo-
geneity [53] (we refer the reader to our work in [78] for

an example in which they are used and compared when
tracking phase transitions).

There exists a difference in which a phase transition can
express itself. This difference is designated by the order
of the transition; generally speaking, the two most com-
mon phase transitions are first-order and second-order
transitions. According to Ehrenfest’s classification, first-
order transitions have an abrupt, discontinuous change in
the order parameter that characterises the transition. In
contrast to this, the changeover to the new phase occurs
smoothly for second-order transitions [71, 119]. Note
that higher-order phase transitions also exist, e.g., in su-
perconducting materials [23].

With respect to the description of regimes in traffic flows,
it is commonly agreed that there exists a first-order phase
transition when going from the capacity-flow to the con-
gested regime. The point at which this transition occurs,
is the critical density. Studying the phase transitions en-
countered in fluid dynamics, there exists a transition from
the laminar flow (i.e., a fluid flowing in layers, each mo-
ving at a different velocity) to the turbulent flow (i.e., the
disturbed random and unorganised state in which vortices
form). However, the transition here is triggered by an in-
crease in the velocity of the fluid, as opposed to the tran-
sition in traffic flows where a change in the density can
lead to a cascading instability. In this respect, the analo-
gy for traffic flows holds better when comparing them to
gas-liquid transitions. Here free-flow traffic corresponds
to a gaseous phase, in which particles are evenly spread
out in the system. At the point of the phase transition, li-
quid droplets will form, coagulating together into bigger
droplets. This leads to a state where both gaseous and li-
quid phases coexist, typically in the form of a big liquid
droplet surrounded by gas particles. For even higher den-
sities, particles are so close to each other, and the only
remaining state is the liquid phase [37, 52–54, 68, 93].

In conclusion, we refer the reader to the work of Tampère,
where an excellent overview is given, detailing the diffe-
rent traffic flow regimes, their transitions, and mechanis-
ms with respect to jamming behaviour [108].

B. Correlations between traffic flow characteristics

Whereas the previous sections all treated the macroscopic
traffic flow characteristics on an individual basis, this sec-
tion considers some of the relations between them. We
start our discussion with a look at the historic origin of
fundamental diagrams, after which we shed some light on
the different classical approaches. The section concludes
with some considerations with respect to empirical mea-
surements.

1. The historic origin of the fundamental diagram

As in many scientific disciplines, the resulting statements
and theories are often preceded by an investigation of ob-
tained experimental data, which serves as empirical evi-
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dence for them. In this line of reasoning, Greenshields
was among the first to provide — as far back as 1935 —
a basis for most of the classic work on, what are called,
empirical fundamental diagrams. In his seminal paper,
he sketched a linear relation between the density and the
mean speed, based on empirically obtained data [44]:

v = vff

(
1−

k

kj

)
. (44)

As can be seen from Greenshields’ relation, when
increasing the density from zero to the jam density kj ,
the mean speed will monotonically decrease from the
free-flow speed vff to zero (note that we dropped the ‘s’
or ‘t’ subscript from the mean speed, as it is not sure
whether or not Greenshields used space- or time-mean
speed, respectively). The relation can be understood
intuitively, by assuming that drivers will tend to slow
down in crowded traffic, because this naturally gives
them more time to react to changes (e.g., sudden braking
of the lead vehicle). As it is reasonable to assume that the
mean speed remains unaffected for very low densities,
Greenshields furthermore flattened the upper-left part
of the regression line (corresponding to the free-flow
speed), although this effect is not incorporated in equati-
on (44).
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FIG. 6: Greenshields’ original linear relation between the den-
sity and the mean speed. Note that the regression line is based
on only seven measurements points, and that artificial flattening
of its upper-left part (figure based on [72] and [39]).

Although Greenshields’ derivation of the linear relation
between density and space-mean speed appears elegant
and simple, it should nevertheless be taken with a grain
of salt. The fact of the matter is that his hypothesis is, as
can be seen in Fig. 6, based on only seven measurement
points, which comprise aerial observations taken on
September 3rd (Monday, Labor Day), 1934 [79]. One of
the problems is that these observations are not indepen-
dent. An even more serious problem is that six of these
observations were obtained for free-flow conditions,
whereas the one single point that indicates congested

conditions, was obtained at an entirely different road, on
a different day [39] !

Some twenty years later, Lighthill and Whitham develo-
ped a theory that describes the traffic flows on long crow-
ded roads using a first-order fluid-dynamic model [72].
As one of the main ingredients in their theory, they pos-
tulated the following fundamental hypothesis: “at any
point of the road, the flow q is a function of the density
k”. They called this function the flow-concentration cur-
ve (recall from section III C that density in the past got
sometimes referred to as concentration).

Continuing their reasoning, Lighthill and Whitham then
referred to Greenshields’ earlier work, relating the space-
mean speed to the density, and, by means of equation
(31), thus relating the flow to the density. The existen-
ce of the concept of the flow-concentration curve menti-
oned above, was justified on the grounds that it descri-
bes traffic operating under steady-state conditions, i.e.,
homogeneous and stationary traffic as explained in sec-
tion III D 2. In this context, the flow-concentration cur-
ve therefore describes the average characteristics of a
traffic flow. So Greenshields first fitted a regression li-
ne to scarce data, after which his functional form seemed
to be taken for granted for the following seventy years.
The key aspect in Lighthill and Whitham’s (and also Ri-
chards’ [102]) approach, lay in the fact that they broa-
dened the flow-concentration curve’s validity, including
also conditions of non-stationary traffic. They also stated
that, because of e.g., changes in the traffic composition,
the curve can vary from day to day, or even within a day
(e.g., rush hours, . . . ). The same statement holds also true
when considering the flow-concentration curves of diffe-
rent vehicle classes (e.g., cars and trucks).

The term fundamental diagram itself, is historically
based on Lighthill and Whitham’s fundamental hy-
pothesis of the existence of such a one-dimensional
flow-concentration curve. As traffic engineers grew
accustomed to the graphical representation of this curve,
they started talking about the diagram that represents it,
i.e., the ’fundamental diagram’ [45].

In its original form, the fundamental diagram repre-
sents an equilibrium relation between flow and den-
sity, denoted by qe(k). But note that, because of the
fundamental relation of traffic flow theory (see sec-
tion III D 2), is it equally justified to talk about the
vse

(k) or the vse
(q) fundamental diagrams. Due to

this equilibrium property, the traffic states (i.e., the
density, flow, and space-mean speed) can be thought
of as ‘moving’ over the fundamental diagrams’ cur-
ves.

2. The general shape of a fundamental diagram

We now give an overview of some of the qualitative featu-
res of the different possible fundamental diagrams, repre-
senting the equilibrium relations between density, space-
mean speed, and average space headway, and flow. Note
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that in each example, we consider a possible fundamental
diagram, as they can take on many (functional) shapes.

Space-mean speed versus density
We start our discussion based on the equilibrium relation
between space-mean speed and density, i.e., the vse

(k)
fundamental diagram. The main reason for starting here,
is the fact that this diagram is the easiest to understand
intuitively. Complementary to the example of Greens-
hields in Fig. 6, we give a small overview of its most
prominent features:

• the density is restricted between 0 and the maxi-
mum density, i.e., the jam density kj ,

• the space-mean speed is restricted between 0 and
the maximum average speed, i.e., the free-flow
speed vff,

• as density increases, the space-mean speed mono-
tonically decreases,

• there exists a small range of low densities, in which
the space-mean speed remains unaffected and cor-
responds more or less to the free-flow speed,

• and finally, the flow (equal to density times space-
mean speed), can be derived as the area demarcated
by a rectangle who’s lower-left and upper-right cor-
ners are the origin and a point on the fundamental
diagram, respectively.

Space-mean speed versus average space headway
Microscopic and macroscopic traffic flow characteristics
are related to each other by means of equations (10) and
(17). According to the former, density k is inversely pro-
portional to the average space headway hs. We can the-
refore derive a fundamental diagram, similar to the pre-
vious one, by substituting the density with the average
space headway. As as result, the abscissa gets ‘inverted’,
resulting in the fundamental diagram as shown in Fig. 7.
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FIG. 7: A fundamental diagram relating the average space he-
adway hs to the space-mean speed vs. Note that the average
space headway is proportional to the inverse of the density, i.e.,
k−1.

The interesting features of this type of fundamental dia-
gram, can be summed as follows:

• the curve starts not in the origin, but at k−1
j , cor-

responding to the average space headway when the
jam density is reached (i.e., all vehicles are stan-
ding nearly bumper to bumper),

• as the average space headway increases, its inverse
(the density) decreases, and the space-mean speed
increases,

• the space-mean speed continues to rise with an in-
creasing average space headway, until it reaches
the maximum average speed, i.e., the free-flow
speed vff; this happens at the inverse of the criti-
cal density k−1

c ,

• from then on, the space-mean speed remains con-
stant with increasing average space headway.

The above features can be understood intuitively: at
large average space headways, a driver experiences no
influence from its direct frontal leader. However, there
exists a point at which the driver comes ‘close enough’ to
this leader (i.e., in crowded traffic), so that its speed will
decrease. This slowing down will continue to persist as
traffic gets more dense (this the same reasoning behind
Greenshields’ derivation in section V B 1).

Flow versus density
Probably the most encountered form of a fundamental
diagram, is that of flow versus density. Its origins da-
te back to the seminal work of Lighthill and Whitham
who, as described earlier, referred to it as the flow-
concentration curve. An example of the qe(k) fundamen-
tal diagram is depicted in Fig. 8.
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Noteworthy features of this type of fundamental diagram
are:

• for moderately low densities (i.e., below the cri-
tical density kc), the flow increases more or less
linearly (this is called the free-flow branch of the
fundamental diagram),

• near the critical density kc, the fundamental dia-
gram can bend slightly, due to faster vehicles being
obstructed by slower vehicles, thereby lowering the
free-flow speed [97],
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• at the critical density kc, the flow reaches a maxi-
mum, called the capacity flow[128] qcap,

• in the congested regime (i.e., for densities higher
than the critical density), the flow starts to degrade
with increasing density, until the jam density kj is
reached and traffic comes to a stand still, resulting
in a zero flow (this is called the congested branch
of the fundamental diagram),

• the space-mean speed vs for any point on the qe(k)
fundamental diagram, can be found as the slope of
the line through that point and the origin,

There is one more piece of information revealed by the
qe(k) fundamental diagram: When taking the slope of
the tangent in any point of the diagram, we obtain what
is called the kinematic wave speed. These speeds w cor-
respond to shock waves encountered in traffic flows (e.g.,
the stop-and-go waves). As can be seen from the figu-
re, the shock waves travel forwards, i.e., downstream, in
free-flow traffic (w ≥ 0), but backwards, i.e., upstream,
in congested traffic (w ≤ 0).

The above shape of the qe(k) fundamental diagram is just
one possibility. There exist many different flavours, ori-
ginally derived by traffic engineers seeking a better fit of
these curves to empirical data. After the work of Greens-
hields, another functional form — based on a logarithm
— was proposed by Greenberg [43]. Another possible
form was introduced by Underwood [112]. All of the
previous diagrams are called single-regime models, be-
cause they formulate only one relation between the ma-
croscopic traffic flow characteristics for the entire range
of densities (i.e., traffic flow regimes) [79]. In contrast to
this, Edie started developing multi-regime models, allo-
wing for discontinuities and a better fit to empirical data
coming from different traffic flow regimes [35]. We refer
the reader to the work of Drake et al. [34] and the book
of May [79] for an extensive comparison and overview of
these different modelling approaches (note that Drake et
al. used time-mean speed).

During the last two decades, other, sometimes more so-
phisticated, functional relationships between density and
flow have been proposed. Examples are the work of
Smulders who created a non-differentiable point at the
critical density in a two-regime fundamental diagram
[106], the METANET model of Messmer and Papage-
orgiou who’s single-regime fundamental diagram con-
tains an inflection point near the jam density [80], the
work of De Romph who generalised Smulders’ functi-
onal description of his two-regime fundamental diagram
[103], the typical triangular shape of the fundamental dia-
gram introduced by Newell, resulting in only two possi-
ble values for the kinematic wave speed w [97], . . . As
can be seen, these fundamental diagrams sometimes ta-
ke on non-concave forms, depending on the existence of
inflection points in the functional relation between flow
and density. In general, they can be convex, concave,
(dis)continuous, piecewise-linear, everywhere differenti-
able, have inflection points, . . . Variations in shape will
continu to be proposed, as it is for certain that there is no

general consensus among traffic engineers regarding the
correct shape of this fundamental diagram. To illustra-
te this, a more exotic approach is based on catastrophe
theory, which is, in a sense, a three-dimensional model
that jointly treats density, flow, and space-mean speed.
Acha-Daza and Hall applied the technique, resulting in a
satisfactory fit with empirical data [2].

The most extreme argument with respect to the shape
of the fundamental diagram, came from Kerner who
questioned its validity, and consequently rejected it alto-
gether by replacing it with his fundamental hypothesis of
three-phase traffic flow theory (refer to section V D for
more details) [55].

Space-mean speed versus flow
An often spotted shape is that of the vse

(q) fundamental
diagram, depicted in Fig. 9. As opposed to the earlier
discussed vse

(k) fundamental diagram, the space-mean
speed versus flow curve no longer embodies a function in
the strict mathematical sense: for each value of the flow,
there exists two different mean speeds, namely one in the
free-flow regime (upper branch) and one in the congested
regime (lower branch).
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FIG. 9: A fundamental diagram relating the flow q to the space-
mean speed vs. The capacity flow qcap is located at the right
edge of the diagram, i.e., it is defined as the maximum average
flow. Note that there are two possible speeds associated with
each value of the flow.

Some people, e.g., economists who use the flow to re-
present traffic demand, find this kind of fundamental dia-
gram easy to cope with. But in our opinion, we are con-
vinced however, that this diagram is rather difficult to un-
derstand at first sight. We believe the vse

(k) fundamental
diagram is a much better candidate, because density can
intuitively be understood as a measure for how crowded
traffic is, as opposed to some flow giving rise to two dif-
ferent values for the space-mean speed.

As a final comment, we would like to point out that
the previously discussed bivariate functional relations-
hips between the traffic flow characteristics (e.g., density
and flow), are based on observations. More importantly,
this means that there is no direct causal relation assumed
between any two variables. Fundamental diagrams sketch
only possible correlations, implying that the nature of the
transitions between different traffic regimes thus remains
to be explored (see section V A 4 for a discussion).
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3. Empirical measurements

As mentioned earlier, the fundamental diagrams discus-
sed in the previous section represent equilibrium relati-
ons between the macroscopic traffic flow characteristics
of section III. In sharp contrast to this, real empirical me-
asurements from detector stations do not describe such
nice one-dimensional curves corresponding to the functi-
onal relationships.

As an illustrative example, we provide some scatter plots
in Fig. 10. The shown data comprises detector measure-
ments (the sampling interval was one minute) during the
entire year 2003; they were obtained by means of a vi-
deo camera [113] located at the E17 three-lane motorway
near Linkeroever[129], Belgium. Because of the nature
of this data, we only obtained flows, occupancies, and
time-mean speeds. After calculating the average vehi-
cle length, the occupancies were converted into densities
using equation (22). Using these recorded time series, we
then constructed scatter plots of the density, time-mean
speed, flow, and average space headway. Note that no
substantial changes are introduced in these plots due to
e.g., our using of densities calculated from occupancies,
instead of using real measured densities.
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FIG. 10: Illustrative scatter plots of the relations between traffic
flow characteristics as measured by video camera CLO3 located
at the E17 three-lane motorway near Linkeroever, Belgium. The
measured occupancies were converted into densities, the time-
mean speed remained unchanged. Shown are scatter plots of a
(k,vt) diagram (top-left), a (hs,vt) diagram (top-right), a (k,q)
diagram (bottom-left), and a (q,vt) diagram (bottom-right).

As the dimension of time is removed in these scatter
plots, Daganzo calls them time-independent models [27].
It is important to understand that these scatter plots are
not fundamental diagrams, because the latter represent
one-dimensional equilibrium curves. According to Hel-
bing, a better designation would be regression models
[47]. In this dissertation, we introduce a terminology ba-
sed on phase spaces (or equivalently state spaces), resul-
ting in e.g., the (k,q) diagram (note that we dropped the
adjective ‘fundamental’).

In reality, traffic is not homogeneous, nor is it stationary,

thus having the effect of a large amount of scatter in
the presented diagrams. In free-flow traffic, interactions
between vehicles are rare, and their small local distur-
bances have no significant effects on the traffic stream.
As a result, all points are somewhat densely concentrated
along a line — representing the free-flow speed — in
all four diagrams. However, in the congested regime,
a wide range of scatter is visible due to the interactions
between vehicles. Furthermore, vehicle accelerations
and decelerations lead to large fluctuations in the traffic
stream, as can be seen by the thin, but large, cloud of
data points. The effect is especially pronounced for
intermediate densities, leading to large fluctuations in the
time-mean speed and flow.

The occurrence of all this scatter in the data, leads
some traffic engineers to question the validity of the
fundamental diagram. More specifically, the behavi-
our in congested traffic seems ill-defined to some. As
stated earlier, Kerner is the most intense opponent in
this debate, as he outright rejects Lighthill and Whit-
ham’s hypothesis that remained popular over the last
fifty years. Despite this criticism, the fundamental
diagram remains, to the majority of the community,
a fairly accurate description of the average behavi-
our of a traffic stream. Cassidy even provided quan-
tifiable evidence of the existence of well-defined bi-
variate relations between traffic flow characteristics.
The key here was to separate stationary periods from
non-stationary ones in the detector data (i.e., strati-
fying it) [14, 27]. Prior work of Del Castillo and
Benı́tez resulted in a more mathematically justified
method, for fitting empirical curves in data regions
of stationary traffic, after construction of a rigid set
of properties that all fundamental diagrams should
satisfy [31, 32].

As a final note, we remark that the distribution of the
cloud-like data points of the diagrams in Fig. 10, is a re-
sult of various kinds of phenomena. First and foremost,
there is the heterogeneity in the traffic composition (fast
passenger cars, slow trailer trucks, . . . ). Secondly, as al-
ready mentioned, the non-stationary behaviour of traffic
introduces a significant amount of scatter in the conge-
sted regime. Thirdly, each scatter plot is dependent on
the type of road, and the time of day at which the mea-
surements were collected. In this respect, the influence
of (changing) weather conditions is not to be underesti-
mated (e.g., rain fall results in different diagrams). In
conclusion, it is clear that if we want these scatter plots to
better fit the fundamental diagrams, all data points should
be collected under similar conditions. Even more so, the
relative location on the road at which the data points were
recorded plays a significant role: e.g., a jam that propa-
gates upstream, passing an on-ramp will show different
effects, depending on where the observations were gat-
hered (upstream, right at, or downstream of the on-ramp)
and on whether or not the particular bottleneck was active
[79].
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C. Capacity drop and the hysteresis phenomenon

In the early sixties, traffic engineers frequently observed a
discontinuity in the measurements near the capacity flow.
To this end, Edie proposed a two-regime model that inclu-
ded such a discontinuity at the critical density [35]. No-
wadays, this typical form of the qe(k) fundamental dia-
gram is known as a reversed lambda shape (the name was
originally suggested by Koshi et al. [67]).

An example of such a reversed λ fundamental diagram,
is shown in the left part of Fig. 11. Note however, that
the depicted discontinuity apparently leads to overlap-
ping branches of the free-flow and congested regimes, re-
sulting in a multi-valued fundamental diagram.
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FIG. 11: Left: the typical inverted λ shape of the (k,q) funda-
mental diagram, showing a capacity drop from qcap to below
qout � qcap (i.e., the queue discharge flow). The hysteresis
effect occurs when going from the congested to the free-flow
branch, as indicated by the three arrows (1) – (3). Right: a (k,q)
diagram based on empirical data of one day, obtained by vi-
deo camera CLO3, at the E17 three-lane motorway near Linker-
oever, Belgium. The black dots denote minute measurements,
whereas the thick solid line represents the time-traced evoluti-
on of traffic conditions. The observed hysteresis loop was based
on consecutive 5-minute intervals covering a period that encom-
passes the morning rush hour between 06:30 and 09:30.

Considering the left part of Fig. 11, it appears the flow
can take on two different values (hence the name ‘two-
regime, two-capacity’ model) depending on the traffic
conditions, i.e., whether traffic is moving from the free-
flow to the congested regime on the equilibrium curve or
vice versa. In order to comprehensively understand this
hysteretic behaviour, we consider the following intuitive
sequence of events:

(1) In the free-flow regime, the flow steadily
rises with increasing density, small perturba-
tions in the traffic flow have no significant
effects (see section V A 1).

(2) At the critical density kc, traffic is said to
be metastable: for small disturbances, traf-
fic is stable, but when these disturbances are
sufficiently large, they can lead to a casca-
ding effect (see section V A 2), resulting in a
breakdown of traffic and kicking it onto the
congested branch. The state of capacity flow
at qcap is destroyed, due to a sudden decrease
of the flow, called the capacity drop.

(3) In order to recover from the congested
to the free-flow regime, the traffic density

has to be reduced substantially (in compa-
rison with the reverse transition), i.e., well
below the critical density kc. After this reco-
very, the flow will not be equal to qcap, but to
qout � qcap, which is called the outflow from
a jam or the queue discharge capacity.

The above sequence signifies a hysteresis loop in the flow
versus density fundamental diagram: going from the free-
flow to the congested regime occurs via the capacity flow,
but the reverse transition proceeds via another way. The
phenomenon was first observed by Treiterer and Meyers,
who used aerial photography to calculate densities and
space-mean speeds, extracted from a platoon of moving
vehicles [110]. Hall et al. later observed a similar pheno-
menon [46].

The right part of Fig. 11 shows a (k,q) diagram, obtai-
ned with empirical data collected at Monday Septem-
ber 10th, 2001. The data was recorded by video came-
ra CLO3, at the E17 three-lane motorway near Linker-
oever, Belgium. The small dots represent minute-based
measurements, whereas the thick solid line represents the
time-traced evolution of traffic conditions. The observed
hysteresis loop was based on consecutive 5-minute inter-
vals covering a period that encompasses the morning rush
hour between 06:30 and 09:30.

Zhang is among the few who try to give a possible ri-
gourous mathematical explanation for the occurrence of
this hysteresis phenomenon [120]. His exposition is ba-
sed on the behaviour of individual drivers during car-
following: central to his interpretation is the existence
of an asymmetry between accelerating and decelerating
vehicles (a related notion was already explored by Ne-
well back in 1963 [94]). The former are associated with
larger space headways, whereas the latter typically have
smaller space headways. Both observations can be un-
derstood when considering the characteristic ‘harmonica’
effect of a string of consecutive vehicles: when the next
stop-and-go wave is encountered, a driver is more alert
as he typically has to brake rather hard in order to avoid
a collision. But once this wave has passed, a driver gets
more relaxed, resulting in a larger response time when ap-
plying the gas pedal. The deceleration reaction leads to
a sudden decrease of the space headway, whereas the ac-
celeration reaction leads to a gradually developing larger
space headway. To this end, Zhang introduces three dis-
tinct traffic phases, respectively called the acceleration
phase, the deceleration phase, and a strong equilibrium
(indicating a constant speed). Because the space head-
way is thus treated differently under these qualitatively
different circumstances, the result is that there are now
different functional relations for the vse

(hs) fundamental
diagram. As a consequence, a hysteresis loop can ap-
pear in the (density,flow) state space. Note that Zhang’s
work describes a continuous loop in state space, where-
as in most cases hysteresis is assumed to follow a dis-
continuous fundamental diagram. Furthermore, as there
are three different ways for vehicles to reside in a traffic
stream (i.e., Zhang’s traffic phases), there are now three
different capacities related to these conditions; it is the
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capacity under a stationary equilibrium flow that should
be considered as the ideal capacity of a roadway [121].

Note that depending on the location where the traf-
fic stream measurements were performed, the transition
from the free-flow to the congested regime and vice versa
does not always have to pass via the capacity flow. In-
stead, observations can indicate that the traffic state can
jump abruptly from one branch to another in the diagram
[39]. A possible explanation is that upstream of a jam,
vehicles arrive with high speeds, resulting in strong de-
celerations; a detector station located at this point would
observe traffic jumping from the uncongested branch im-
mediately to the congested branch, without necessarily
having to pass via the capacity [95]. This has led Hall et
al. to believe the reversed lambda shape is more correctly
replaced by a continuous but non-differentiable inverted
V shape [46].

Continuing this latter train of thought, Daganzo believes
that many of these ‘extravagant’ phenomena (e.g., a
multi-valued fundamental diagram) are uncalled for.
Applying the stratification methodology of Cassidy [14],
the scatter in the empirical data may vanish, restoring a
smooth continuous equilibrium relation between density
and flow. One way of explaining the high tip of the
lambda, is to assume that it is caused by statistical
fluctuations that comprise platoons of densely packed
vehicles [27].

During the last seventy years, there has been a
continuing quest to find the ‘correct’ form of the
fundamental diagrams. In this respect, we like to
stress the fact that ‘only looking at the measure-
ments’ is not sufficient: traffic engineers wanting
to mine the gigabytes of empirical data, should
always look at the global picture. This means that
the typical driving patterns, as well as the local
geometry/infrastructure, should also be taken into
account, so that the local measurements can be
interpreted with respect to the traffic flow dynamics.
If this is neglected, the danger exists that traffic is
only sampled at discrete locations, giving a sort
of ‘truncated’ view of the occurring dynamical
processes.

Finally, we like to agree with Zhang’s comments:
the root cause of most of the differences in the con-
struction of fundamental diagrams, is the erroneous
treatment of data (e.g., mixing data stemming from
different traffic flow regimes) [120]. Because funda-
mental diagrams imply the notion of an equilibrium,
care should be taken when using the data, i.e., on-
ly considering stationary periods after removing the
transients.

D. Kerner’s three-phase theory

In the mid-nineties, Kerner and other fellow researchers,
studied various traffic flow measurements stemming from
detector stations along German motorways. Initially, they

agreed with the classic notion of Lighthill and Whit-
ham’s fundamental hypothesis of the existence of one-
dimensional equilibrium relation between the macrosco-
pic traffic flow characteristics (see section V B 1 for more
details). However, upon discovery of a rich and com-
plex set of empirical tempo-spatial patterns in conge-
sted traffic flow, Kerner decided to abolish this hypothe-
sis, as it could not adequately capture all of these obser-
ved patterns. As a consequence, Kerner rejects all traf-
fic flow theories and models that are based on this one-
dimensional equilibrium relation [55].

In the search for a more correct theory that could accu-
rately describe empirical traffic flow observations, Ker-
ner developed what is known as the three-phase theory of
traffic flow.

1. Free flow, synchronised flow, and wide-moving jam

In section V A, we elaborated on a classic approach to
traffic flow, general assuming two qualitatively different
regimes, namely free-flow and congested traffic. Based
on empirical findings, Kerner and Rehborn in 1996 pro-
posed three different regimes, separating the congested
regime into two other regimes. This led them to the in-
troduction of the following regimes [61]:

• free flow,

• synchronised flow,

• and wide-moving jam.

The main difference between synchronised flow and the
wide-moving jam, is that in the former low speeds but
high flows (comparable to free-flow traffic) can be obser-
ved, whereas in the latter both low speeds and low flows
are observed. The description by the term ‘synchroni-
sed’ was based on the discovery that the time series of
flows, densities, and mean speeds exhibited large degrees
of correlation among neighbouring lanes. And although
synchronised flow is treated as a form of congestion, it
nevertheless is characterised by a high continuous flow.
Furthermore, a typical tempo-spatial region of synchro-
nised flow has a fixed downstream front (that could be
located at a bottleneck’s position), whereas both the up-
stream and downstream fronts of a wide-moving jam can
propagate undisturbed in the upstream direction of a traf-
fic stream [60].

Kerner distinguishes several congestion patterns with
respect to traffic flows. A first typical pattern is a
synchronised-flow pattern (SP), which can be further
classified as a moving SP (MSP), a widening SP (WSP),
and a localised SP (LSP). An SP can only contain syn-
chronised flow; as we will shortly mention in section
V D 3, a moving jam can only occur inside such an SP.
When such a jam transforms into a wide-moving jam,
the resulting pattern is called a general pattern (GP); a
GP therefore contains both synchronised flow and wide-
moving jams. Just as with the SP, there exist different
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types of GP. These are a dissolving GP (DGP), a GP un-
der weak congestion, and a GP under strong congestion.
A final often encountered pattern occurs when two bott-
lenecks are spatially close to each other, resulting in what
is called an expanded congested pattern (EP).

Taking the above considerations into account, the disco-
very and distinction between both types of congested traf-
fic patterns should be made on the basis of tempo-spatial
plots of the speed, rather than the flow (because the flow
in synchronised traffic is difficult to differentiate from
that of free-flow traffic) [55]. To this end, Kerner et al.
developed two applications that are capable of accurate-
ly estimating, automatically tracking, and reliably predic-
ting the above mentioned congested traffic patterns. Their
models are the Forecasting of Traffic Objects (FOTO) and
Automatische StauDynamikAnalyse (ASDA) [63].

2. Fundamental hypothesis of three-phase traffic theory

Central to Kerner’s theory, is the fundamental hypothesis
of three-phase traffic theory, which basically states that
hypothetical steady states of synchronised flow, cover a
two-dimensional region in a flow versus density diagram
(as opposed to the classic notion of a one-dimensional
equilibrium relation). An example of such a diagram can
be seen in Fig. 12.
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FIG. 12: The flow versus density relation according to Kerner’s
three-phase traffic theory. The curve of free flow (denoted by
F ) is reminiscent of observations in the classic free-flow re-
gime. It levels of a bit towards the capacity flow qcap at the
critical density kc. As a result of Kerner’s fundamental hypo-
thesis, the region of synchronised flow (denoted by S) covers
a large two-dimensional part of the density-flow phase space.
It is intersected by the line J , denoting the steady propagation
of wide-moving jams. The line J also intersects the curve of
free flow in the outflow from a jam qout � qcap at the associated
density kout.

In the flow versus density diagram in Fig. 12, the three re-
gimes are depicted: the curve of free flow (denoted by F ),
the region of synchronised flow (denoted by S) and the
wide-moving jam (denoted by the empirical line J). Just
as in the classic fundamental diagrams, the observations
in free-flow traffic lie on a sharp line that linearly increa-
ses the flow with higher densities (note the levelling of the

curve near the capacity flow qcap associated with the cri-
tical density kc). The region of synchronised flow spans
a large part of the density-flow phase space; an important
remark here is that consecutive measurement points are
scattered within this region, meaning that an increase in
the flow can happen with both higher and lower densities
(as opposed to the free-flow regime) [61].

The characteristic line J denotes the steady, undisturbed
propagation of wide-moving jams. Its slope corresponds
to the speed of a wide-moving jam’s downstream front,
which typically lies around w ≈ -15 km/h [60]. The
upper-left point of the line J is located at a density kout

corresponding to the outflow qout � qcap from a wide-
moving jam. This is an illustration of the capacity drop
phenomenon, elucidated in section V C. The line J is
defined as follows:

q(k) =
1
T

(
1−

k

kjam

)
, (45)

with T the time gap in congested traffic flows; it is used
to tune the outflow from a jam. Because wide-moving
jams travel undisturbed, their outflow — caused by vehi-
cles that leave the downstream front — can be either free
flow or synchronised flow. Typical values for this outflow
range from 1500 to 2000 vehicles/hour/lane [55]. The
average flow rate within such a wide-moving jam can be
almost zero, meaning that vehicles continuously encoun-
ter stop-and-go waves.

Related to the wild scatter in the (k,q) diagram of three-
phase traffic theory, is the microscopic behaviour of in-
dividual vehicles. The explanation given by Kerner and
Klenov, is that vehicles in synchronised flow do not assu-
me a fixed preferred distance to their direct frontal leader,
but rather accept a certain range of distances. Within this
range, drivers have both the tendency to over-accelerate
when they think there is the ability to overtake, and the
tendency for drivers to adjust their speed to that of their
leader, when this overtaking can not be fulfilled [55, 58].

3. Transitions towards a wide-moving jam

The breakdown of traffic from the free-flow to the wide-
moving jam state, is nearly always characterised by two
successive F → S and S → J transitions, between free
flow and synchronised flow, and synchronised flow and
wide-moving jam respectively. In the first stage, a state
of free flow changes to synchronised flow by the F → S
transition. Central to the idea of this phase transition, is
the fact that there is no explicit need for an external dis-
turbance for its occurrence. A sufficiently large (i.e., su-
percritical) internal disturbance inside the traffic stream
(e.g., a lane change) causes a nucleation effect that in-
stigates the F → S transition. Once it has set in, the
onset of congestion is accompanied by a sharp drop in
the mean vehicle speed. During the second stage, a set of
narrow-moving jams can grow inside the tempo-spatial
region of synchronised flow. A narrow-moving jam is
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different from a wide-moving jam, in that vehicles typi-
cally do not on average come to a full stop inside the jam.
But, due to a compression of synchronised flow (an effect
termed the pinch effect), these narrow-moving jams can
coalesce into a wide-moving jam, thereby completing the
cascade of the F → S → J transition, resulting in stop-
and-go traffic [57].

With respect to the flow versus density diagram in
Fig. 12, it can be seen that the line J actually divides the
region of synchronised flow in two parts. Points that lie
underneath this line, characterise stable traffic states whe-
re no S → J transition can occur. Points above the line J
however, characterise metastable traffic states, meaning
that sufficiently large disturbances can trigger a S → J
transition [55, 66].

Note that the direct F → J transition between free flow
and wide-moving jam can also occur, but it has a very
small probability, i.e., the critical perturbation needed, is
much higher than that of the frequently occurring F → S
transition between free flow and synchronised flow. So in
general, wide-moving jams do not emerge spontaneously
in free flow, but a situation where such a transition may
occur, is when an off-ramp gets filled with slow-moving
vehicles. This results in a local obstruction at the motor-
way’s lane directly adjacent to the off-ramp, which can
cause a local breakdown of the upstream traffic, resulting
in a wide-moving jam. Finally, it is important to distin-
guish the nature of this transition from that of the F → S
transition: the former is a transition induced by an exter-
nal disturbance of the local traffic flow, whereas the latter
is considered as a spontaneous transition due to an inter-
nal disturbance within the local traffic flow (e.g., a lane
change) [55].

4. From descriptions to simulations

As Kerner himself describes his three-phase theory, it
is a qualitative theory. In essence, it gives no expla-
nation of why certain transitions occur, as it only de-
scribes them [55]. However, several exemplary micro-
scopic traffic flow models have already been developed
(i.e., treating all vehicles and their interactions individu-
ally). These models can reproduce the different empirical
tempo-spatial patterns described by Kerner’s theory. As
examples, we mention two models based on cellular au-
tomata: a first attempt was made by Knospe et al., who
developed a model that takes into account a driver’s re-
action to the brake-lights of his direct frontal leader [65].
Kerner et al. refined this approach by extending it; their
work resulted in a family of models based on the notion
of a synchronisation distance for individual vehicles; they
are commonly called the KKW-models (from its three au-
thors, Kerner, Klenov, and Wolf) [56].

The theory can describe most of the encountered tempo-
spatial features of congested traffic. And at the moment,
successful microscopic models have been developed, but
the work is not yet over: an important challenge that
remains for theoreticians, is the mathematical derivation
of a consistent macroscopic theory (i.e., one that treats

traffic at a more aggregate level as a continuum) [55].
In pursuit of such a model, Kim incorporated Kerner’s
traffic regimes into a broader framework, encompassing
six different possible states: the transitions between the-
se states are tracked with a modified macroscopic model
that uses concepts from fuzzy logic theory [64].

E. Theories of traffic breakdown

A central question that is often asked in the field of traf-
fic flow theory, is the following: “What causes conge-
stion ?” Clearly, the answer to this question should be
a bit more detailed than the obvious “Because there too
many vehicles on the road !” With respect to the phase
transitions that signal a breakdown of the traffic flow, va-
rious — seemingly contradicting — theories exist. Are
they merely a matter of belief, or can they be rigourously
‘proven’ ? Opinions are divided, but nowadays, two qua-
litatively different mainstream theories exist, attributed to
different schools of thought [12, 77, 108]:

The European (German) school
In the early seventies, Treiterer and Meyers performed so-
me aerial observations of a platoon of vehicles. As they
constructed individual vehicle trajectories, they could ob-
serve a growing instability in the stream of vehicles, lea-
ding to an apparently emerging phantom jam (i.e., a jam
‘out of nothing’) [110].

Some twenty years later, in the mid-nineties, Kerner and
Konhäuser made detailed studies of traffic flow measure-
ments, obtained at various detector stations along Ger-
man motorways. Their findings indicated that phantom
jams seemed to emerge in regions of unstable traffic flow
[59]. This stimulated Kerner and Rehborn to further re-
search efforts directed towards the behaviour of propa-
gating jams [60, 61]. They proposed a different set of
traffic flow regimes, culminating in what is now called
three-phase traffic theory (see section V D for more de-
tails) [55, 57, 62]. The main idea supported by followers
of this school of researchers, is that traffic jams can spon-
taneously emerge, without necessarily having an infra-
structural reason (e.g., on-ramps, incidents, . . . )[130]. In
dense enough traffic, phase transitions from the free-flow
to the synchronised-flow regime can occur, after which a
local instability such as e.g., a lane change can grow (the
so-called pinch effect), triggering a stable jam leading to
stop-and-go behaviour [57]. Kerner’s three-phase theo-
ry stands out as an archetypical example of these modern
views. But although his theory has, in our opinion, been
worked out well enough, he more than frequently encoun-
ters harsh criticisms when conveying it to most audiences
(perhaps the main cause for this human behaviour is the
fact that Kerner always mentions the same view, i.e., “all
existing traffic flow theories are wrong”).

Inspired by Kerner’s work, Helbing et al. gave in 1999
an extended treatise on the different types of congestion
patterns that can be observed in the vicinity of spatial in-
homogeneities (e.g., on-ramps). Their work resulted in a
universal phase diagram, containing a whole plethora of
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patterns of congested traffic states (called homogeneous-
ly congested traffic – HCT, oscillatory congested traffic –
OCT, triggered stop-and-go traffic – TSG, pinned locali-
sed cluster – PLC, and moving localised cluster – MLC),
each one having unique characteristics [48][131]. In that
same year, Lee et al. studied the patterns that emerge
at on-ramps, thereby agreeing with the findings of Hel-
bing et al. [70]. As the previous research into congestion
patterns was largely based on the use of analytical traffic
flow models and computer simulations, the need for va-
lidation with empirical data grew. In 2000, the work of
Treiber et al. among others, proved the existence of the
previously mentioned congestion patterns [109].

At this point, it is noteworthy to mention the seminal
work of Nagel and Schreckenberg [92], who in 1992
developed a model that describes traffic flows in which
local jams can form spontaneously. As many variations
on this model have been proposed, later work also
focussed on the stability of traffic flows in these models,
e.g., the work of Jost and Nagel [53].

The Berkeley school
Including names such as the late Newell, Daganzo, Ber-
tini, Cassidy, Muñoz, . . . , the ‘Berkeley school’ (Univer-
sity of California) supports the theory that all congestion
is strictly induced by bottlenecks. The hypothesis holds
for both recurrent and, in the case of an incident, non-
recurrent congestion.

The main starting point states that there is always a ‘ge-
ometrical’ explanation for the breakdown. This expla-
nation is based on the presence of road inhomogeneities
such as on- and off-ramps, tunnels, weaving areas, lane
drops, sharp bends, elevations, . . . Once a jam occurs due
to such a (temporary) bottleneck, it does not dissipate im-
mediately; as a result, drivers can wonder why they enter
and exit a congestion wave, without there being an appa-
rent reason for its presence (since it happened earlier and
the cause e.g., an incident, already got cleared). Dagan-
zo uses this line of reasoning as an explanation for the
dismissal of phantom jams [28].

The school uses a specific terminology with respect to
bottlenecks (being road inhomogeneities). Two qualita-
tively different regimes exist: the free-flow regime and
the queued regime. The latter occurs when a bottleneck
becomes active, which will result in a queue growing up-
stream of the bottleneck while a free-flow regime exists
downstream. The bottleneck capacity is then defined as
the maximum sustainable flow downstream (which is dif-
ferent from the maximum flow that can be observed prior
to the bottleneck’s activation).

The location of these bottlenecks has some peculiarities
involved: one of them is the concept of a capacity fun-
nel [11]. It assumes that drivers are at times more alert,
e.g., when they are driving on a motorway and nearing an
on-ramp in rather dense traffic conditions [121]. This im-
pels them to accept shorter headways, so they are driving
closely behind each other at a relatively high speed. On-
ce they have passed the on-ramp’s location, they tend to
relax, resulting in larger headways. The effect is that the
bottleneck’s actual position is located more downstream.

Shortly after the publication of Kerner and Rehborn’s fin-
dings about the peculiar phase transitions that seemed to
occur on German motorways, Daganzo et al. provided a
swift response where they stated that the occurring phase
transitions could also be caused by bottlenecks in a pre-
dictable way [29]. They implied that no spontaneously
emerging traffic jams are suggested, and that the obser-
ved traffic data from both German and North American
motorways did not contradict their own statements about
the cause of the phase transitions [91]. In short, the subt-
le difference between their work and that of Kerner and
Rehborn, is that instabilities in the traffic stream are the
result and not the cause of the queues that emerge at acti-
ve bottlenecks. With respect to a spontaneous breakdown
of traffic flow at on- and off-ramps (i.e., bottlenecks), Da-
ganzo also states that this can be explained using a simple
traffic flow model operating under the assumption of a too
high inflow from the on-ramp or a caused by blocking of
the off-ramp [26].

The studies undertaken by this school, are heavily based
on the researchers’ use of cumulative plots and elegantly
simple traffic flow models, as opposed to the classic me-
thodology that investigates time series of recorded counts
and speeds. As stated earlier (see section III B 2), some
recent examples include the work of Muñoz and Daganzo
[85–87, 89] and Cassidy and Bertini [7, 15].

Recently, Tampère argued that both theories, as enuncia-
ted by the two schools, are not entirely contradictory. His
statement is based on the fact that the mechanisms be-
hind the bottleneck-induced breakdown and spontaneous
breakdown are approximately the same, only differing in
the probability of such a breakdown (which is related to
the instability of a traffic flow) [108].

In our view, both theories are sufficiently different,
but compatible, in that the first school elaborately
describes traffic flow breakdown more or less as ha-
ving an inherently probabilistic nature, whereas the
second school treats breakdown a strict determinis-
tic process. The former introduces a complex vari-
ety of congestion patterns, while the latter primarily
focusses on an elegantly simple description of traffic
flow breakdown. Even more characteristically, is the
observation that most adepts of the European school,
inherently need stochasticity in the models in order to
produce their sought phantom traffic jams (note that
notwithstanding the fact that stochastic models are
in a strict sense also deterministic, we nevertheless
adopt in this dissertation, the convention that deter-
ministic means ‘non-stochastic’). Our argument is in
a way also supported by Nagel and Nelson, who sta-
te that the purpose of the traffic flow model (e.g., the
effect of moving bottlenecks versus predicting mean
traffic behaviour) decide whether or not stochasticity
in the model is required [91].
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Furthermore, there might be some room for stochas-
ticity in the Berkeley models after all, with the work
of Laval which suggests that (disruptive) lane chan-
ges form the main cause for instabilities in a traffic
stream [69]. Deciding which school is right, is the-
refore in our opinion a matter of personal taste, but
in the end, we agree with Daganzo when he states
that research into bottleneck behaviour is the most
important in the context of traffic flow theory [30].

VI. CONCLUSIONS

In this paper, an extensive account was given, detailing
several aspects related to the description of traffic flows.
Most importantly, we have introduced a nomenclature
convention, built upon a consistent set of notations. Our
discussion of traffic flow characteristics centred around
the space and time headways as microscopic characteris-
tics, with densities and flows as their macroscopic coun-
terparts. Several noteworthy highlights are the technique
of oblique cumulative plots and the derivation of travel
times based on these plots. A finally large part of this
paper reviewed some of the relations between traffic flow
characteristics, i.e., the fundamental diagrams, and clari-
fied some of the different points of view adopted by the
traffic engineering community.

APPENDIX A: GLOSSARY OF TERMS

1. Acronyms and abbreviations

4SM four step model
AADT annual average daily traffic
ABM activity-based modelling
ACC adaptive cruise control
ACF average cost function
ADAS advanced driver assistance systems
AIMSUN2 Advanced Interactive Microscopic

Simulator for Urban and Non-Urban
Networks

AMICI Advanced Multi-agent Information and
Control for Integrated multi-class traffic
networks

AON all-or-nothing
ASDA Automatische StauDynamikAnalyse
ASEP asymmetric simple exclusion process
ATIS advanced traveller information systems
ATMS advanced traffic management systems
BCA Burgers cellular automaton
BJH Benjamin, Johnso, and Hui
BJH-TCA Benjamin-Johnson-Hui traffic cellular

automaton
BL-TCA brake-light traffic cellular automaton
BML Biham, Middleton, and Levine
BML-TCA Biham-Middleton-Levine traffic cellular

automaton
BMW Beckmann, McGuire, and Winsten
BPR Bureau of Public Roads

CA cellular automaton
CA-184 Wolfram’s cellular automaton rule 184
CAD computer aided design
CBD central business district
CFD computational fluid dynamics
CFL Courant-Friedrichs-Lewy
ChSch-TCA Chowdhury-Schadschneider traffic

cellular automaton
CLO camera Linkeroever
CML coupled map lattice
CONTRAM CONtinuous TRaffic Assignment

Model
COMF car-oriented mean-field theory
CPM computational process models
CTM cell transmission model
DDE delayed differential equation
DFI-TCA deterministic Fukui-Ishibashi traffic

cellular automaton
DGP dissolving general pattern
DLC discretionary lane change
DLD double inductive loop detector
DNL dynamic network loading
DRIP dynamic route information panel
DTA dynamic traffic assignment
DTC dynamic traffic control
DTM dynamic traffic management
DUE deterministic user equilibrium
DynaMIT Dynamic network assignment for the

Management of Information to
Travellers

DYNASMART DYnamic Network Assignment-
Simulation Model for Advanced
Roadway Telematics

ECA elementary cellular automaton
EP expanded congested pattern
ER-TCA Emmerich-Rank traffic cellular

automaton
FCD floating car data
FDE finite difference equation
FIFO first-in, first-out
FOTO Forecasting of Traffic Objects
GETRAM Generic Environment for TRaffic

Analysis and Modeling
GHR Gazis-Herman-Rothery
GIS geographical information systems
GNSS Global Navigation Satellite System

(e.g., Europe’s Galileo)
GoE Garden of Eden state
GP general pattern
GPRS General Packet Radio Service
GPS Global Positioning System

(e.g., USA’s NAVSTAR)
GRP generalised Riemann problem
GSM Groupe Spéciale Mobile
GSMC Global System for Mobile

Communications
HAPP household activity pattern problem
HCM Highway Capacity Manual
HCT homogeneously congested traffic
HDM human driver model
HKM human-kinetic model
HRB Highway Research Board
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HS-TCA Helbing-Schreckenberg traffic cellular
automaton

ICC intelligent cruise control
IDM intelligent driver model
INDY INteractive DYnamic traffic assignment
ITS intelligent transportation systems
IVP initial value problem
JDK JavaTM Development Kit
KKT Karush-Kuhn-Tucker
KKW-TCA Kerner-Klenov-Wolf traffic cellular

automaton
KWM kinematic wave model
LGA lattice gas automaton
LOD level of detail
LOS level of service
LSP localised synchronised-flow pattern
LTM link transmission model
LWR Lighthill, Whitham, and Richards
MADT monthly average daily traffic
MC-STCA multi-cell stochastic traffic cellular

automaton
MesoTS Mesoscopic Traffic Simulator
MFT mean-field theory
MITRASIM MIcroscopic TRAffic flow SIMulator
MITSIM MIcroscopic Traffic flow SIMulator
MIXIC Microscopic model for Simulation of

Intelligent Cruise Control
MLC mandatory lane change

moving localised cluster
MOE measure of effectiveness
MPA matrix-product ansatz
MPCF marginal private cost function
MSA method of successive averages
MSCF marginal social cost function
MSP moving synchronised-flow pattern
MT movement time
MUC-PSD multi-class phase-space density
NaSch Nagel and Schreckenberg
NAVSTAR Navigation Satellite Timing and Ranging
NCCA number conserving cellular automaton
NSE Navier-Stokes equations
OCT oscillatory congested traffic
OD origin-destination
ODE ordinary differential equation
OSS Open Source Software
OVF optimal velocity function
OVM optimal velocity model
Paramics Parallel microscopic traffic simulator
PATH California Partners for Advanced Transit

and Highways
Program on Advanced Technology for
the Highway

PCE passenger car equivalent
PCU passenger car unit
PDE partial differential equation
PELOPS Program for the dEvelopment of

Longitudinal micrOscopic traffic
Processes in a Systemrelevant
environment

PeMS California Freeway Performance
Measurement System

PHF peak hour factor

PLC pinned localised cluster
pMFT paradisiacal mean-field theory
PRT perception-reaction time
PSD phase-space density
PW Payne-Whitham
QoS quality of service
SFI-TCA stochastic Fukui-Ishibashi traffic

cellular automaton
Simone Simulation model of Motorways with

Next generation vehicles
SLD single inductive loop detector
SMARTEST Simulation Modelling Applied to Road

Transport European Scheme Tests
SMS space-mean speed
SOC self-organised criticality
SOMF site-oriented mean-field theory
SP synchronised-flow pattern
SSEP symmetric simple exclusion process
STA static traffic assignment
STCA stochastic traffic cellular automaton
STCA-CC stochastic traffic cellular automaton

with cruise control
SUE stochastic user equilibrium
SUMO Simulation of Urban MObility
T2-TCA Takayasu-Takayasu traffic cellular

automaton
TASEP totally asymmetric simple exclusion

process
TCA traffic cellular automaton
TDF travel demand function
TMC Traffic Message Channel
TMS time-mean speed
TOCA time-oriented traffic cellular

automaton
TRANSIMS TRansportation ANalysis and SIMulation

System
TRB Transportation Research Board
TSG triggered stop-and-go traffic
UDM ultra-discretisation method
UMTS Universal Mobile Telecommunications

System
VDR-TCA velocity-dependent randomisation traffic

cellular automaton
VDT total vehicle distance travelled
VHT total vehicle hours travelled
VMS variable message sign
VMT total vehicle miles travelled
VOT value of time
WSP widening synchronised-flow pattern
WYA whole year analysis

2. List of symbols

ai the acceleration of vehicle i

C the number of substreams in a traffic flow
dx a single infinitesimal location in space
dt a single infinitesimal instant in time
η the efficiency of a road section

(according to Chen et al, [18])
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E the efficiency of a road section
(according to Brilon, [10])

F the free-flow curve in three-phase traffic theory
gsi

the space gap of vehicle i

gl,b
si

the space gap at the left-back of vehicle i

gl,f
si

the space gap at the left-front of vehicle i

gr,b
si

the space gap at the right-back of vehicle i

gr,f
si

the space gap at the right-front of vehicle i

gti
the time gap of vehicle i

gl,b
ti

the time gap at the left-back of vehicle i

gl,f
ti

the time gap at the left-front of vehicle i

gr,b
ti

the time gap at the right-back of vehicle i

gr,f
ti

the time gap at the right-front of vehicle i

hs the average space headway
hsi

the space headway of vehicle i

hl,b
si

the space headway at the left-back of vehicle i

hl,f
si

the space headway at the left-front of vehicle i

hr,b
si

the space headway at the right-back of vehicle i

hr,f
si

the space headway at the right-front of vehicle i

ht the average time headway
hti

the time headway of vehicle i

hl,b
ti

the time headway at the left-back of vehicle i

hl,f
ti

the time headway at the left-front of vehicle i

hr,b
ti

the time headway at the right-back of vehicle i

hr,f
ti

the time headway at the right-front of vehicle i

J the wide moving jam line J in three-phase
traffic theory

k the density
kc the density of the c-th substream in a

traffic flow
kc the critical density
kcrit the critical density
kj the jam density
kjam the jam density
kmax the jam density
kl the density in lane l

kout the density associated with the queue discharge
capacity

k(t) the density at time t

K the length of a measurement region
(i.e., a certain road section)

Kld the length of a detection zone
l the average length of a vehicle
li the length of vehicle i

L the number of lanes on a road
N the number of vehicles in a measurement region
Nl the number of vehicles in the measurement

region in lane l

Nl(t) the number of vehicles in the measurement
region in lane l at time t

N(t) a cumulative count function

Ñ(t) a smooth approximation of N(t)

ot the average on-time of a set of vehicles
oti

the on-time of vehicle i

oti,l
the on-time of vehicle i in lane l

q the flow
q|15 the peak flow rate during one quarter hour

within an hour
q|60 the average flow during the hour with the

maximum flow in one day
qb a background flow
qc the flow of the c-th substream in a traffic flow
qc the capacity flow
qcap the capacity flow
qe(k) an equilibrium relation between the flow and

the density
ql the flow in lane l

qmax the capacity flow
qout the outflow from a (wide moving) jam,

the queue discharge capacity
q(t) the flow at time t

ρ the occupancy
ρi the occupancy time of vehicle i

ρl the occupancy in lane l

Rs a spatial measurement region at a fixed time
instant

Rt a temporal measurement region at a fixed
location

Rt,s a general measurement region
σ2

s the statistical sample variance of the space-
mean speed

σ2
t the statistical sample variance of the time-

mean speed
S the synchronised-flow region in three-phase

traffic theory
τi the reaction time of vehicle i’s driver
t a time instant
Ti the travel time of vehicle i

Tmp the duration of a measurement period
T (t0) the experienced dynamic travel time, starting at

time instant t0

T̃ (t0) the experienced instantaneous travel time,
starting at time instant t0

vc the capacity-flow speed
vcap the capacity-flow speed
vff the free-flow speed
vi the speed of vehicle i

vi,l the speed of vehicle i in lane l

vi,l(t) the speed of vehicle i in lane l at time t

vmax the maximum allowed speed (e.g., by an
imposed speed limit)

vs the space-mean speed
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vsc
the space-mean speed of the c-th substream

vse
(hs) an equilibrium relation between the

SMS and the average space headway
vse

(k) an equilibrium relation between the
SMS and the density

vse
(q) an equilibrium relation between the

SMS and the flow
vsust the sustained speed during a period of high

flow
vt the space-mean speed
vtc

the time-mean speed of the c-th substream
v(t, x) the local instantaneous vehicle speed at time

instant t and location x

w the characteristic/kinematic wave speed (of a
wide moving jam)

xi the longitudinal position of vehicle i

Xi the distance travelled by vehicle i
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