Models in Aid of Traffic Management

Sven Maerivoet

Katholieke Universiteit Leuven Department of Electrical Engineering ESAT-SCD (SISTA)

Seminar "Transportation Models in Belgium" 03/05/2004

Overview

- Traditional four step approach
 - OmniTRANS
- Traffic flow models
 - Problems with most of the models
 - Macroscopic and microscopic models
- Module development
 - Pollutant/noise emissions
- Models used for traffic management
 - Evaluation of control strategies / infrastructural changes
- Conclusions

Traditional four step approach

• Historically, travellers make certain decisions, leading to a trip based model (⇔ activity based).

trip generation

(how many trips ?)

trip distribution

(where do they go ?)

modal split

(what kind of transportation ?)

traffic assignment

(which routes do they take ?)

www.OmniTRANS-International.com

• Better able to cope with **data flood**.

Efficiently manages *all* your data.

• Scenario evaluation (reproducability)

Project management.

www.OmniTRANS-International.com

• Better able to cope with data flood.

Efficiently manages *all* your data.

• Scenario evaluation (*reproducability*).

Project management.

- Standard 'designs' allow for:
 - Typical analyses.
 - Default graphical outputs and tabular reports.
- Extensible modelling:
 - Integrated existing OOP scripting language (*Ruby*).
 - Plugins (e.g., *INDY* for dynamic traffic assignment).

Traffic flow models

• We consider the *propagation* of <u>road</u> traffic.

Within the four step approach there exist submodels that "describe" traffic flows.

Traffic flow models

• We consider the *propagation* of <u>road</u> traffic.

Traffic flow models

• We consider the *propagation* of <u>road</u> traffic.

Problems with most of the models

- In reality, congestion is a **dynamic** phenomenon !
- Consider the following typical example of congestion at a *bottleneck* leading to a queue spill-back effect (e.g., Brussels' ring road):

The need for dynamic models

The need for dynamic models

Scales of dynamic models

- More complex models exist, allowing a more detailed capturing of congestion effects.
- Different levels of detail:
 - Consider traffic stream as a whole:
 - - macroscopic continuum models (compressible fluid), mesoscopic gas kinetic models (gas).
 - Consider traffic as being composed of individual vehicles: microscopic models.

Models employed in our research

• Standard fluid dynamic first order macroscopic Lighthill-Whitham-Richards (LWR) model.

extended to include *heterogeneous* classes.

- Second order macroscopic **METANET** model.
- Detailed microscopic models.
 PARAMICS, AIMSUN,
 traffic cellular automata.

Module development

• Microscopic traffic simulators (e.g., PARAMICS) lend themselves easily to the *extension* with different modules:

currently: development of a
 traffic safety module.

Models used for traffic management

ATMS

- Evaluation of **control strategies** ?
 - (1) road pricing / congestion charging,
 - (2) overtaking prohibition for trucks,
 - (3) ramp metering,
 - (4) dynamic speed limits.
- Effects of **infrastructural changes** ?
 - (5) capacity of a turbo-roundabout.

(1) Road pricing / congestion charging

- <u>Demand</u> = Vickrey's bottleneck model.
- <u>Traffic propagation</u> = **dynamic** LWR model.
- Aim towards a system/social optimum.
- Model queue spill-back !

16

(1) Road pricing / congestion charging

- <u>Demand</u> = Vickrey's bottleneck model.
- <u>Traffic propagation</u> = **dynamic** LWR model.
- Aim towards a system/social optimum.
- Model queue spill-back !
- Setting a variable optimal toll leads to:
 - congestion free (increased) traffic,
 - a better usage of the road network,
 - lower travel times (and travel costs don't increase).

(model used: 1st order homogeneous LWR)

 D_{2}

(2) Overtaking prohibition for trucks

- Is it worthwhile to impose such a policy ?
- Use the possible **gain in travel time** as a criterion (*under free–flow traffic conditions*).
- Differentiate between VOT of cars and trucks.

In cooperation with:

STA (model used: 1st order heterogeneous LWR)

(2) Overtaking prohibition for trucks

- Is it worthwhile to impose such a policy?
- Use the possible gain in travel time as a criterion (under free-flow traffic conditions).
- Differentiate between VOT of cars and trucks.
- There is an <u>advantage</u> if the car demand increases.
- But the advantage diminishes:

 - once the car demand exceeds the lane capacity,
 and/or the truck demand increases (const. car demand),
 and/or the number of lanes in one direction increases.
- (model used: 1st order heterogeneous LWR) 19

(3) Ramp metering (with MPC)

SISTA (model used: 2nd order homogeneous METANET) 20

(4) Dynamic speed limits (with MPC)

upstream moving shockwave

SISTA (model used: 2nd order homogeneous METANET) 21

(5) Capacity of a turbo-roundabout

• On classical roundabouts, drivers tend to use the outer lanes, leading to a suboptimal situation.

(model used: PARAMICS)

(5) Capacity of a turbo-roundabout

- On classical roundabouts, drivers tend to use the outer lanes, leading to a suboptimal situation.
- A turbo-roundabout (TR):
 - forces drivers to select lanes *before* entering the TR,
 - forces drivers to follow a *fixed route* once on the TR,
 - therefore, the inside lanes are used more efficiently.

Conclusions

- The **temporal character of congestion** is not to be neglected (e.g., changes in travel times, ...).
- Therefore, dynamic models are necessary !
- Even for long-term transportation planning models.
- Thus, allowing a better estimation of the (future) effects of certain traffic control measures/policies/ strategies.

