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Within the framework of transportation demand modelling, we are left with three major approaches, being trip-based,
activity-based, and equilibrium-based as put forward by Boyce. This diversification in the scientific field is a clear sign
that different techniques are considered, based on distinct ideas. All techniques nevertheless borrow certain elements from
one another, implying some generality between the models. As such, a travel forecasting model will most certainly be a
give-and-take between requirements/desires and the current state-of-the-art [21].

Looking at the structure behind these methodologies, it is known that a core component in each of them is the concept of
traffic assignment [23]. In this part of the dissertation, we propose a method for performing dynamic traffic assignment,
whereby we integrate departure time choice (leading to the phenomenon of peak spreading) and dynamic route choice,
coupled with a dynamic network loading model. The method is built around a traffic flow model that is represented as a
computationally efficient cellular automaton. The chapter ends with a brief overview of some possible applications.

I. INTEGRATED DYNAMIC TRAFFIC ASSIGNMENT

As already mentioned, the four step model of transportation demand modelling, contains a step called traffic assignment,
in which all traffic demand is assigned to the network: the routes vehicles will follow are calculated, such that the load
on the road network is evenly distributed over all links. This distribution is governed by Wardrop’s criteria, e.g., the user
equilibrium W1 which states that “the journey times on all the routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route”.

With respect to the assignment of vehicles to the available routes, there are mainly two different approaches that can be
followed: static (STA) or dynamic traffic assignment (DTA). When discussing the DTA approach, we hitherto mainly
focused on the route choice and dynamic network loading components. In this section, we introduce integrated dynamic
traffic assignment, by which we mean that our modelling framework consists of three components:

• departure time choice (DTC),

• dynamic route choice (DRC),

• and dynamic network loading (DNL).

The first part of this section discusses two approaches towards DTA, namely analytical DTA and simulation-based DTA.
In a second part, we explain our modelling framework that encapsulates the previously mentioned three components. The
DNL component is expanded upon separately in section II.

A. Approaches to dynamic traffic assignment

It is important to capture the temporal character of congestion: the buildup and dissolution play an important role. As
such, travel times depend on the history of the system, which should not be neglected. The ‘dynamic’ part in DTA refers
to this dependency, implying that two fundamental components are considered, i.e., route choice and dynamic network
loading. The former calculates the routes that vehicles take, by assuming that an equilibrium condition holds; the latter
is responsible for loading all the vehicles onto the network, by explicitly simulating the physical propagation of the
time-varying traffic flows[98]. The last two decades, a third fundamental component is considered, i.e., departure time
choice, which is typically associated with the route choice behaviour: the choice of which route to take now become
time-dependent.

In this section, we briefly describe the two main approaches towards DTA, being analytical DTA and simulation-based
DTA. Note that some of the models described in this overview constitute more than a simple DTA procedure; they are
embodied as complete travel forecasting models.
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1. Analytical dynamic traffic assignment

The attractiveness of analytical DTA is that it can build on a long line of previous research, starting in the 1950s with the
work of Beckmann et al. [12]. According to the overview of Joksimovic and Bliemer, we can distinguish between three
categories of analytical DTA models[99] [42]:

• Mathematical programming
The root of this technique can be traced back to the seminal work of Beckmann et al. in 1955, who reformulated
the Wardrop equilibrium as a convex optimisation problem [12]. Closely related to this work, is the approach taken
in static traffic assignment; more information can be found in the work of Patriksson [75]. A major drawback of
mathematical programming, is that it is not able to fully capture the time-varying interactions of traffic flows and
travel times.

• Optimal control theory
Around 1989, a number of researchers proposed to describe the temporal evolution of traffic flows in the framework
of optimal control theory (OCT), which deals with dynamic systems. Due to some of the severe limitations of this
approach, the OCT research in the context of traffic flow modelling has not received much attention nowadays. For
an overview of the OTC approach, we refer the reader to the work of Peeta and Ziliaskopoulos [77].

• Variational inequalities
The most promising approach to tackle analytical DTA models, is based on a variational inequality (VI), which
allows a natural incorporation of flow propagation constraints that explicitly contain link travel times. From the
early nineties on, the VI technique has been applied to the DTA problem, fuelled by its ability to include certain
measures in the models, e.g., the integration of road pricing policies. More information can be found in the works
of Nagurney [74] and Patriksson [76].

Some recent examples of this class of analytical DTA models include the work of Lo and Szeto who propose
a formulation that is based on a dynamic user equilibrium and an encapsulation of the cell-transmission model
[54, 55], the work of Bliemer et al. who propose a multi-class DTA model (i.e., different vehicle types) called
INteractive DYnamic traffic assignment (INDY) [18–20, 64], and the work of Liu et al. who introduce a probabilistic
framework for travel times with random perception errors [53].

Three of the more appealing aspects of this modelling class, are (i) the fact that due to their analytical nature, the solutions
can be readily evaluated, (ii) the existence of well-defined algorithms that can lead to stable convergence, and (iii) their
construction implies that computational complexity does not increase with a raise in traffic demand. A drawback however,
is the fact that with respect to the current state-of-the-art, these analytical DTA models are not capable of handling large-
scale road networks due to the computational complexity of the models themselves. Notwithstanding this critique, the
aforementioned work by Bliemer et al. seems promising in this direction [18, 20].

2. Simulation-based dynamic traffic assignment

In order to address the problems associated with the application of analytical DTA techniques to large-scale road networks,
simulation-based DTA can provide a solution. The iterative approach taken by this model class can largely be stated as
follows:

1. The traffic demand is specified to a dynamic route choice model.

2. Based on the current travel times, the dynamic route choice model is executed, specifying the routes for all vehicles.

3. The dynamic network loading model is executed (note that the DNL model can be micro-, meso-, or macroscopic
in nature).

4. The experienced travel times on all routes are extracted from the last simulation, and fed back to the route choice
model in step 2. The iterations terminate when the algorithm converges.

Whereas the analytical expression of a DNL model is in general too cumbersome to include detailed traffic operations
such as traffic lights, certain control measures, . . . , the simulation-based DTA methodology can easily incorporate these
effects (e.g., in a microscopic model). And although it can deal with large networks, there exists a subtle but major caveat,
i.e., it uses a heuristic approach with respect to convergence. To state it more clearly, convergence is not guaranteed. An
often employed method is a relaxation procedure that performs iterations until all travel times in the road network are
stationary [8, 33–35]. In this context, because the concept of mathematical convergence is too strict, researchers then refer
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to the terminology of ‘relaxation’. Note that the question as to whether or not the simulation relaxes, or when it does, if
it then relaxes to a unique equilibrium or instead exhibits oscillations, still remains an open debate; in some worst cases,
even a gridlock situation can occur [69, 71, 82].

Some examples of simulation-based DTA models include the following:

• Microscopic models: AIMSUN2 [7, 8], MITSIM [97], Paramics [25, 52], TRANSIMS [73], VISSIM [79].

• Mesoscopic models: CONTRAM [90], DynaMIT [15, 16, 88], DynaSMART [66], METROPOLIS [29, 65].

• Macroscopic models: METANET [68].

B. Integrated dynamic traffic assignment

As already highlighted in the introduction of section I, our transportation demand modelling framework encapsulates
three components, i.e., departure time choice (DTC), dynamic route choice (DRC), and dynamic network loading (DNL).
In the first part of this section, we give an overview of the framework, the second part then goes into more detail with
respect to the modelling of traffic demand, after which the following two parts describe the DTC and DRC components.
The section ends with some remarks on convergence criteria.

With respect to the issue of solving the combined DTC-DRC problem, we briefly mention some of the existing
research approaches in literature: Yang and Meng consider optimal pricing strategies (i.e., a congestion toll) by
solving a system optimisation problem that combines the DTC and DRC models, as well as the optimal tolls of
bottlenecks [96], de Palma and Marchal present the METROPOLIS toolbox who directly use the DTC model to
assign a static OD matrix to a commuter period [29, 65], Ettema et al. describe a microscopic traffic flow model
in which drivers base their departure time and route choice decisions on a mental model of the traffic conditions
(i.e., the mean and variances of the experienced travel times) [31], Lago and Daganzo describe a departure-time
user equilibrium model, combining Vickrey’s DTC work and the LWR first-order macroscopic model [48, 49],
Szeto and Lo propose a formulation based on the cell-transmission model through a variational inequality pro-
blem [89], and Lim and Heydecker identify a new equilibrium condition for the combined DTC-DRC problem,
providing a computationally efficient solution algorithm that is based on the concept of reasonable paths [51].

1. Overview of the framework

Our approach towards dynamic traffic assignment is simulation-based; it combines a departure time choice (DTC) model
with a dynamic route choice (DRC) model, and incorporates a dynamic network loading (DNL) model based on an
efficient traffic cellular automaton. A flow chart of the framework is given in Fig. 1.

In general, we can describe our modelling technique as follows:

1. Based on the information contained in a static OD matrix that is valid for the time period under consideration (e.g.,
the morning rush hour), we create a population of N agents by disaggregating the entire OD matrix.

2. Based on the description of the road network, and on the information from the static OD matrix, we generate a set of
routes that connect the origins and the destinations. This set actually denotes feasible routes, as not all paths between
an origin and a destination should be considered (doing this selection beforehand avoids extra complications in the
DRC model).

3. All agents’ departure times are re-calculated according to the DTC model (they are uniformly distributed over the
entire time period, before the first iteration, thus corresponding to the assumption of a constant flow).

4. Using the information contained in the route set, and the current experienced travel times on the links in the road
network, all agents get a route assigned, corresponding to their current shortest path in the network (shortest in the
sense of minimal cost expressed as the travel time).

5. All agents are then put into queues located at the origins of the road network, after which the DNL model is
executed until all of them have reached their destination. Note that advanced traveller information systems (ATIS)
can influence the route choice model, as well as the DNL model; ATIS can also draw information from the last run
of the DNL model. Furthermore, event-based incidents leading to, e.g., lane closures can easily be included in the
DNL model.
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static OD matrix
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execute DNL

W1 convergence ?
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FIG. 1: A flow chart of our framework for simulation-based dynamic traffic assignment (DTA); it combines a departure time choice
(DTC) model with a dynamic route choice (DRC) model, and incorporates a dynamic network loading (DNL) model based on an
efficient traffic cellular automaton. The part containing the module for advanced traveller information systems (ATIS) is optional. The
upper dashed block represents the disaggregation of the traffic demand into individual agents (i.e., commuters), the lower dashed block
denotes the DRC model.

6. A convergence criterion is checked, corresponding to a W1 user equilibrium; the associated cost for each agent is
its total travel time. If convergence is not reached, we return to step 4 and recalculate the new shortest routes, based
on the last experienced total travel times after execution of the DNL (their departure times remain fixed during
subsequent iterations).

7. If the previous step resulted in sufficient convergence with respect to the routing of the vehicles, another convergence
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criterion is checked, but this time with respect to the agents’ departure times. In this step, schedule delay costs are
taken into account for all agents, thereby including effects of arriving too early or too late at their destinations. If
the algorithm does not converge, we return to step 3.

Note that as opposed to analytical DTA models for the combined DTC and DRC problem, we adopt two different con-
vergence criteria in this framework. In the former they are simultaneously combined, whereas we work with a sequential
procedure[100]. The modified W1 user equilibrium as used in step 7 when checking the convergence, is based on a gene-
ralised travel cost. It corresponds to the following formulation: “The generalised travel costs for all agents are equal and
less than those which would be experienced by a single agent departuring at a different time.”

In the following sections, we discuss the modelling of traffic demand, after which we describe the DTC and DRC compo-
nents, concluding with some remarks on the convergence of simulation-based DTA.

2. Traffic demand generation

In most travel forecasting models, traffic demand is typically expressed as one or more origin-destination (OD) matrices.
Within the classic four step model, it is assumed that steps (I) to (III) result in an OD matrix that is fed to the fourth step,
i.e., the traffic assignment which calculates the routes vehicles will take.

The estimation of these OD matrices, forms a theme on its own; a typically encountered problem is the fact that due to
the large amount of unknown variables (it is a considerably under determined system of equations), additional constraints
need to be introduced. Besides the already existing OD matrix estimation techniques, we also mention some other me-
thodologies, e.g., the doctoral dissertation of Bierlaire, which provides a nice overview of several different OD matrix
estimation techniques [17], Abrahamsson who gives a detailed literature survey of OD estimation based on traffic counts
[1], and the work of Balakrishna who provides a detailed methodology for the joint calibration of OD matrix estimation
and route choice models within the DynaSMART model [3, 66].

Another approach for traffic demand specification builds upon the activity-based modelling approach. Examples in this
direction include the work of Balmer et al. who develop a methodology for creating individual demand (i.e., tailored
towards individual commuters) out of a general specification; they allow for the construction of agents’ plans out of
general OD matrix data [4, 6], the work of McNally who integrated household activities, land-use distributions, regional
demographics, . . . into a microscopic model for traffic demand forecasting [67]. A recent approach closely related to ours,
is the one by Kemper who disaggregates one static OD matrix into individual commuters, whilst taking into account traffic
flow profiles over time. However, his model currently does not support departure time choice [44, 45].

Within our framework, we start from a known single static OD matrix that captures an entire time period (e.g., the morning
rush hour). We furthermore assume unimodal traffic in the network, but we allow for a distinction between cars and trucks.
From this single OD matrix we create a population of N agents by disaggregation (note that by ‘plans’ we mean an agent’s
route end points, but not the actual path of the route taken). As can be seen in Fig. 2, our approach also borrows ideas
from the activity-based modelling approach, such that — as opposed to the paradigm of a single static OD matrix — it
is flexible enough to incorporate historical OD matrices, an explicit synthetic population of households, land-use data,
. . . Note that if necessary, it is possible to recreate a single OD matrix from the generated agents.

3. Departure time choice (DTC)

Within our framework we explicitly provide time-of-day modelling in the form of a departure time choice model. We
assume the single static OD matrix specifies the traffic demand over a given time period [tdemand,start, tdemand,end], e.g.,
between 07:00 and 09:00. As such, it represents the total number of commuters that want to depart during the specified
time period. For this latter time period, it is important that it completely encapsulates the period of heavy congestion
(otherwise, some exogeneously given boundary conditions are needed); it is also preferred that all commuters can reach
their destinations within the time period.

At the first iteration of the DTC model’s execution, all agents’ departure times are uniformly distributed over the entire
time period (we thus assume a constant flow); the departure time for the ith agent is given as:

tdeparture,i = tdemand,start + (i− 1)
tdemand,end − tdemand,start

N
. (1)

Once the DNL model has been executed and the agents have reached their destinations (assuming an equilibrium situation
was achieved according to step 6 of the framework in section I B 1), we can calculate the general costs experienced by each
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historical OD matrices

generate agents and plans

land-use data

miscellaneous data

synthetic population (households)

create static OD matrix

FIG. 2: An overview of our flexible approach that borrows ideas from activity-based modelling. As opposed to the paradigm of a
single static OD matrix, it can incorporate historical OD matrices, an explicit synthetic population of households, land-use data, . . . If
necessary, it is possible to recreate a single OD matrix from the generated agents.

individual traveller. At this point, we know the departure times tdeparture,i of all the agents, as well as their waiting times
µi(tdeparture,i) in the queues at the origins, and their travel times Ti(tdeparture,i). With the latter two of these quantities, we
associate certain costs, resulting in Cµ,i and CT,i. With respect to the departure time, we incorporate so-called schedule
delay costs Csd,i, as used in Vickrey’s bottleneck model. In this model[101], each agent is assumed to have a certain
preferred arrival time (PAT) tPAT,i; extra costs are incurred if the agent arrives too early or too late [93]. Combining all
these costs, the generalised travel cost for each agent is then defined as:

Ctotal,i(tdeparture,i) = Cµ,i(µi(tdeparture,i)) +

CT,i(Ti(tdeparture,i)) +

max{Cβ,i(tPAT,i − (tdeparture,i + Ti(tdeparture,i))), 0}+

max{Cγ,i(tdeparture,i + Ti(tdeparture,i)− tPAT,i), 0}, (2)

with Cβ,i < CT,i < Cγ,i the costs for arriving too early or too late, respectively[102]; as such, arriving too late carries a
higher weight than arriving too early.

Note that it is also possible to specify a cost associated with an agent’s departure time; this cost can for instance be
represented as a utility function Udeparture(t), which assigns a ‘score’ to each possible time instant for departure (e.g., some
people don’t want to leave too early). As such, the range of the time period in which a commuter wishes to depart is
demarcated, such that utility maximisation of the individual results in a chosen departure time [11].

Our DTC model then selects the 10% agents with the highest costs and shifts their departure times towards those associated
with the lowest costs (we reserve an indifference band for small shifts on the order of five minutes). In terms of Wardrop,
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this corresponds to a W1 user equilibrium, but now with respect to the agents’ departure times: “The generalised travel
costs for all agents are equal and less than those which would be experienced by a single agent departuring at a different
time.” At this step, it is important to take into account certain constraints, e.g., placing a restriction on the maximum
number of agents that can depart in a certain time period (as the absolute inflow into the network is bounded by the
capacity at that point).

Let us finally mention that there are other approaches towards integrated DTC modelling, e.g., the model of Levinson and
Kumar, which constitutes an implementation of the four step model. They extend it with a DTC model that is based on a
binomial logit model, whereby commuters can choose between travelling in the peak hour or in the shoulder hours of the
peak period (they use a static user equilibrium method for solving the DRC component) [50]. Discrete choice modelling
is a popular approach for dealing with these kinds of decisions in a DTA context [13, 14]. All techniques have one
thing in common: when the projected demand exceeds the capacity, this will lead to the phenomenon of peak spreading.
Commuters change their departure times in order to accomodate the excess demand during the assignment procedure.

Note that the previously discussed algorithm is based on a single static OD matrix that encapsulates, e.g., the
morning rush hour. Another approach would be to use multiple exogeneously given time-dependent/dynamic
OD matrices. Each of these latter non-overlapping matrices covers, e.g., one half hour. As the DNL simulation
is executed, all traffic demand matrices are to be consecutively assigned to the network. When performing
this step, agents’ departure times can be shifted within one matrix’s time period, but also between subsequent
matrices’ time periods. In this case, it is important to put a constraint on the maximum number of vehicles
transferred between such OD periods; e.g., it is impossible to allow a million agents to start at the same time
instant at a single origin.

4. Dynamic route choice (DRC)

With respect to the routing of vehicles through the network, there are two approaches possible, i.e.:

• Pre-route assignment
This method is also known as equilibrium assignment, because each driver now tends to minimise his travel cost;
it is built on the assumption that travellers have perfect information of the experienced travel times (corresponding
to day-to-day learning of the traffic pattern on a typical day, given the current traffic demand [26]), such that their
travel time costs are fixed and known at the time of departure. Due to its equilibrium nature, iterations are required
until convergence is met.

• En-route assignment
As opposed to the former method, this one is based on the instantaneous travel times, and allows vehicles to change
their routes as they proceed through the road network (this is what is meant by ‘dynamic’ route choice). Note that
this approach requires only one simulation run of the DNL, whereby vehicles can change their route at each junction
they encounter in the road network. Within this method, it is quite straightforward to incorporate route guidance;
the caveat however is that each vehicle should have a default route, i.e., pre-trip assignment, in case no attention is
given to route guidance.

Because in general there exists more than one route between an origin and destination pair, commuters have to select
which route they will take. We use the following approach towards route choice:

1. At the first iteration of the DRC model’s execution, we calculate an initial travel time for each link in the road
network; this travel time is defined as the length of the link divided by its free-flow speed. In subsequent iterations,
we define the travel time of a link as the arithmetic average of the travel times of all the vehicles traversing the link.

2. Based on the current travel times of all the links, shortest paths are calculated for each OD-pair, using, e.g., Dijkstra’s
algorithm [30], the heuristic shortest-path algorithms of Jacob et al. [41], or the efficient algorithm of Rosswog et
al. which is based on tree heuristics that uses the hierarchical information of a road network [84], and taking into
account the set of predefined feasible routes Rpre (see step 2 in section I B 1).

3. All vehicles now select a route from this set, according to the following multinomial logit model[103], which gives
the probability of a given alternative route i at departure time tdeparture as:

pi(tdeparture) =
eµ(−Ui(tdeparture)+εi)

∑

j∈R

eµ(−Uj(tdeparture)+εj)
, (3)
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in which Ui(tdeparture) is the utility of route i at the specified departure time, R ⊆ Rpre is the set of all available
routes between a vehicle’s origin and destination pair, µ is a dispersion factor and εi is a stochastic error term.

5. Some remarks on the convergence of simulation-based DTA

As already mentioned in section I A 2, convergence is in general not a guarantee in simulation-based dynamic traffic
assignment. Issues such as existence and uniqueness of a well-defined equilibrium, as well as stability of the solution,
still remain an open question. Due to the stochastic nature of the simulations, convergence can be hindered in the case of
oscillations, or even a gridlock situation.

The primary technique adopted in this case, is called heuristic relaxation: a pre-defined performance measure is com-
pared for subsequent iterations, until the difference is no longer significant. Two possible performance measures are the
following:

• the total travel time in the system, i.e., the sum of the travel times of all the vehicles at the end of the simulation,

• or the combined variances of the travel times of all links separately, or the variance of the total travel time in the
system.

Note that it is advisable to set a pre-defined upper limit on the number of feedback iterations in the framework depicted
in section I B 1 (this might indicate a failure to converge). Finally note that this construction assumes the existence of an
equilibrium; it is however not a necessity, as the algoritm will stop anyway after a finite number of iterations.

II. AN EFFICIENT DYNAMIC NETWORK LOADING MODEL (DNL)

Today, a main challenge is the construction of macroscopic and microscopic models that lend themselves to a faithful
representation of road traffic, as these models are used in several key aspects in the control of traffic flows.

Within this context, our research is aimed at assisting traffic engineers who wish to evaluate what-if scenarios and/or
perform real-time control of traffic flows. Whereas the former requires a sufficiently detailed model, the latter calls for an
efficient implementation that allows fast simulations. The challenge thus consists of the development of a flexible testbed
environment that is capable of providing us with a detailed simulation model of a real-world road network, not containing
too many parameters that require extensive calibration: the TCA models fit this description nicely.

Although these TCA models allow for fast computations, they are nevertheless computationally very expensive because
they are based on behavioural models that need to be applied to each vehicle at each timestep (i.e., the car-following and
lane-changing models). We thus need to find the most optimal solution in terms of time and space complexity. A logical
step in this direction, is an efficient parallellisation scheme that lowers the computational overhead involved. This can
be accomplished by using distributed computing, where we partition the road network in several distinct geographical
regions that are assigned to different machines which run in parallel.

We automatically gain platform independency using JavaTM . The challenge now is to get reliable and efficient (i.e., faster
than real-time) operation of a very heterogeneous computing environment. To this end, the simulator consists of one
master, controlling several different workers that efficiently simulate local traffic flows.

In this section, we first give an introduction that describes traffic flow simulation from a historical perspective, paying
attention to the role of open-source software development. We then give a functional description of our DNL model,
called Cellular Automata Traffic SIMulation (CATSIM). This is followed by some implementation details of the code, after
which we discuss our approach towards an efficiency increase through the paradigm of distributed computing [59, 62].

A. Development of traffic flow simulators

In this section, we first give a brief overview of the development of traffic flow simulators, looked at from the perspective
of the programming languages involved and the computational complexity of the models. The second part of this section
considers the effects of developing software under an open-source flag. It is worthwhile to take a look at this aspect, as
most of the traffic flow models tend to be developed in an accessible academic setting, but once commercialisation ‘kicks
in’, the model’s internals tend to get shrouded in legalese. In our discussion, we contrast open-source development with
the classic approach of non-disclosure of the software’s internals, give pointers to some of the existing licences that can
regulate the commercial and non-commercial use of this type of software, and finally conclude with a note on legal issues
related to intellectual property rights, the patenting of ideas, inventions, and algorithms.
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1. Traffic simulation from a historical perspective

Traffic flow simulators have come a long way since their inception in the early fifties (see, e.g., the TRAffic Network
Simulator – TRANS, which shows a remarkable parallel with early traffic cellular automata models [43]). In those days,
computers operated in both an analogue and digital fashion. However, as the former became more expensive when larger
systems were simulated, the latter gained a strong foothold in the simulation community [38]. Nowadays, as desktop
computers get smaller and more powerful, the traffic flow simulation software has undergone a drastic evolution. It is
implemented in either procedural languages (e.g., C, FORTRAN, . . . ) or object-oriented ones (mainly C++ and JavaTM ),
with the latest trend to employ script-based languages (e.g., Ruby) within the environment of a simulator itself (see for
example the OmniTRANS project [92]). The simulators are applied to moderately sized transportation networks, whilst
still allowing a rather detailed view on traffic operations.

Another evolution that is noticeable, is the upcoming market of complete travel forecasting models that are based on
dynamic traffic flow models. This class of software applications has features such as complete GUIs, fully integrated
travel demand modelling, calculation of measures of effectiveness (e.g., noise and pollutant emissions), . . . Examples of
such full-fledged models are TransCAD [24], OmniTRANS [92], DynaSMART [66], . . . In many cases, the DNL core of
these models is formed by a mesoscopic or macroscopic model, but there is an evolving trend towards more realistically
microscopic models. However, noting the current state-of-the-practice in the field of traffic flow engineering, we note that
it is becoming more and more appealing to move from static paradigms towards the use of fully integrated DTA models
on a commercial basis [60].

In our view, it is not necessary to get all the dynamics correct on a detailed microscopic level. As such, TCA
models can offer a certain degree of detail, while retaining computational performance and remaining compara-
ble to their mesoscopic/macroscopic counterparts. One of the main advantages of the TCA modelling paradigm
is that it does not require many parameters, as opposed to other microscopic traffic flow models in which the
plethora of parameters and features clouds a clear understanding of the models’ dynamic properties.

2. The benefits of software development under an open-source flag

Despite the fact that most of the traffic flow models tend to be developed in an accessible academic setting, the traditional
approach towards the creation of the majority of ready-to-use software is mainly oriented towards its commercialisation.
As a consequence, it is beneficial from a marketing perspective to provide prospective customers with complete packages
that integrate transportation planning models, e.g., the four-step model.

In many cases, the main stream company policy is aimed towards the non-disclosure of the models’ internals, effectively
reducing these commercial packages to advanced versions of black-box models. When such software starts to grow more
mature and complex, it becomes increasingly difficulty to answer the question “What is really under the hood ?” The
importance of this statement should not be underestimated, as it is vital for transportation engineers to be acquainted with
a model’s inner workings, features, and limitations, when interpreting results for, e.g., policy decisions.

This lack of openness, can be remedied by developing the software under an open-source flag. From this point on, the
complete underlying model structure remains revealed at all times, as it is now possible for many programmers to read,
redistribute, and modify the source code. When a company exhibits this sagacity, the unlocked potential of open source
can be fully brought into play. One of the main benefits of this paradigm is that there are effectively ‘many eyes looking
at one single problem’. As a direct result, the debugging, maintenance, and support life cycles of such software become
more transparent, as opposed to the monolithic approach typically encountered in propriety software [80]. If such an open-
source project is properly managed (which implicitly requires skilled people), it can receive an increased gain from the
feedback of its user base. Already, several successful examples of this type of software development can be found in real
life, e.g., the Linux operating system, the Netscape and Mozilla web browsers, the StarOffice suite and OpenOffice.org
project, . . . Within the traffic community, the open-source approach is slowly starting to pick up, for instance with a prime
example such as the Simulation of Urban MObility[104] (SUMO) [46].

When releasing open-source software, there literally exists a myriad of licences that regulate the commercial and non-
commercial use of this type of software, as well as its incorporation in third-party software. Archetypical examples are
the Free Software Foundation’s GNU General Public Licence[105] (GPL) with the popular catch phrase “free as in free
speech, not as in free beer”, the Open-Source Initiative[106] (OSI) which provides a marketing vessel for ‘selling’ free
software, the Creative Commons Licences[107] (CCL) that offer a flexible copyright for creative work, . . .

Finally, note that in our discussion, we did not state anything about legal issues such as the management of intellectual
property rights, issues related to the patenting of ideas, inventions, and algorithms, et cetera. Indeed, most licences
undoubtedly steer clear of these topics, allowing their interpretation to remain up to the developer and/or the company.
However, the central core that forms the business model for open-source software, is to freely share the software, whilst
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selling support. With respect to academic institutions and their management of intellectual property, dissemination of
algorithms by means of publications in journals might be discouraged. In these cases, we still deem it appropriate to
publish the results, as we believe that the money remains in the selling of the software. Another less-commercial track that
can be followed, is to release the software as a web service, thus effectively hiding the underlying code of an algorithm’s
implementation.

B. Functional description of the simulator

Considering the CATSIM DNL model from a functional point of view, this section first gives a description of the topo-
logical and geographical structure of the road network, after which we explain some vehicle-related information, ending
with what kinds of statistical data can be collected during a simulation run.

1. Topological and geographical structure of the road network

In CATSIM we opt for an intuitive structure, whereby the network is topologically decomposed into nodes and edges.
Geographically, these graph characteristics correspond to nodes and links. Different link types may exist (such as on-
ramps, off-ramps, merging areas, . . . ). For reasons of efficiency, we define each link to consist of one or more undivisible
road segments. All links are connected by special junction nodes, where vehicles are transferred from one link to another
(more than one link can enter or exit a junction node). The intermediate nodes connecting the different segments of a link
are called bend nodes (note that the entire road section containing all the segments is represented with just one single CA
lattice). They allow for a more realistic modelling of the road network. Note that the specification of a node requires X, Y
and Z coordinates, thus we take road gradients (e.g., elevations, tunnels, . . . ) explicitly into account (although it is up to
the car-following model to actually use this information). With these elementary building blocks, the motorway network
can easily be constructed using data provided by satellite images and/or geographical information systems (GIS).

It should be stated that in our current specification, there is no definition of what the actual underlying low-level TCA
models are. They may even vary from link to link if necessary, giving a flexible and open architecture. Notwithstanding
this freedom, they do have to agree ‘functionally’, e.g., lane changes should either be mandatory or discretionary, time
steps should be comparable, . . .

2. Vehicle-related information

As heterogenity of a traffic stream is a necessity for a rich dynamical behaviour, we allow for different classes of vehicles.
This includes cars and trucks, with trucks occupying extra cells. A convenient method for representating this difference,
is using passenger car units. Note that the rule sets do not model a vehicle as explicitly occupying more than one cell, but
instead adjust the safe space headway to account for the difference in vehicle length.

Furthermore, as opposed to most other implementations, our cells do not just contain a number indicating the presence
and/or speed of a vehicle. Instead, we allow for complete objects to be contained in the cells, e.g., a vehicle with a
commuter’s personal routing plan. Because most interactions of the vehicles are based on local information, we add
another subtle refinement: information such as link travel times for example, can be put in a central data storage that is
available to the network simulator. This means that some vehicles can be considered as ‘informed drivers’ having access
to this data storage, and are thereby able to reroute their trip in order to avoid encountering network congestion.

3. Collecting statistical data

The simulator’s road network can be equipped with artificial loop detectors. They accurately compute various statistics
from the passing traffic flow, continuously storing all results in the central data storage. Even travel times recorded by
probe vehicles can be contained, such that this information becomes available to some of the vehicles (i.e., the informed
drivers) as they travel through the network.
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C. Code implementation details

Beside the functional description of the previous section, we now shed some light on our proposed choice of program-
ming language for implementing a traffic flow simulator. Afterwards, we illustrate some technical aspects related to the
implementation of CA lattices, as well as some details regarding the implementation of links in a road network.

1. Choice of programming language

Whereas earlier designs of traffic flow simulators were based on procedural languages (e.g., pure C code), we nowadays
observe a trend towards the adoption of object-oriented programming languages. In this spirit, we propose to use the
JavaTM language, as it has been designed around a “write once, run anywhere” (WORE) philosophy, implying cross-
platform portability without needing any recompilation of the code base.

2. Some technical aspects related to the implementation of CAs

Classical implementations of CA models were typically aimed at obtaining a high computational speed. This led to the use
of techniques, e.g., single-bit coding schemes, typically targeted towards specific hardware platforms. The coming of po-
pular object-oriented programming languages such as C++ and JavaTM , coupled with the steady increase of computational
power in average desktop computers, makes the original line of work a bit outdated.

As with respect to the implementation of a CA’s grid itself, there are two approaches possible:

• site oriented: this is typically based on an array of cells, which is more suited for links having high densities,

• particle oriented: this is typically based on a linked list of vehicles, which is more suited for links having low
densities.

In practice, it is best to consider the best of both worlds, i.e., only relevant sites are updated. In this view, a site corresponds
to a lateral section of a multi-lane link (i.e., all cells located at the same longitudinal position).

When exchanging vehicles between consecutive links at junction nodes, we use a lane connectivity table that contains the
numbers of all outgoing and incoming lanes, each time in the local numbering scheme (the same holds for all intersection
logic). The following table gives the connectivity for the example of a main road and on-ramp towards a merge section as
depicted in Fig. 3:





1a.1 → 2.2
1a.2 → 2.3
1b.1 → 2.1





PSfrag replacements

link 1a (main road)

link 1b (on-ramp)

link2 (merge)

1

1

1 2

2 3

FIG. 3: A graphical sketch of the lane connectivity for a main road and on-ramp towards a merge section; vehicles are exchanged
between consecutive links based on a lane connectivity table corresponding to the diagram.

Furthermore, in CATSIM, each link has both a car-following and lane-changing TCA model with corresponding parameter
vectors. Separating the parameters from the models allows us to keep the latter while performing on-line adjustments to
the former. Finally, the slowdown probabilities are a property of the links, not of individual vehicles.
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D. Increasing efficiency through distributed computing

As already stated, using microscopic traffic simulators places a large computational burden on the employed machine ar-
chitecture. Many existing simulators were initially designed to run on a single CPU. Only afterwards were they converted
for parallel operations (e.g., AIMSUN2 [7, 8], TRANSIMS [70, 73], . . . ), with some exceptions such as PARAMICS
which was designed in a parallel fashion from the ground up [25, 52].

The same train of thought holds for most of the traffic cellular automata models. In the beginning, when they were built
using parallel implementations, the parallellisation scheme was strongly reflected in their codebase, relying heavily on the
underlying machine architecture. Examples are models whose computations were performed on a large number of CPUs
(e.g., 1024), all contained in one shared memory architecture, employing special techniques such as single-bit encoding
et cetera [72].

In the recent past, we already developed a microscopic traffic simulator in JavaTM , called Mitrasim 2000. Instead of being
a true parallel implementation, it was based on a client-server architecture (CSA), in the sense that the simulator ran on
one machine (the server); several different other machines (the clients) showed an animation of the traffic evolution on
the motorway network [58]. A major problem was that, mainly due to the single CPU architecture, the simulator did not
achieve real-time speed at all. However, our past experiences allow us to build a more efficient and scalable simulator, in
which parallellism can be implemented through distributed computing.

In our framework, the concept of distributed computing implies that we no longer use a homogeneous environment of
CPUs working in a shared memory architecture. Instead, a very heterogeneous computing environment is provided, like
for example a Beowulf cluster [70]. Whereas supercomputers performed intensive tasks in the past, we can nowadays
observe a shift towards grid-based computing [2]. For us, the challenge now is to get reliable and efficient (i.e., faster than
real-time) operation of this latest networked architecture. In Fig. 4, we can see an example of distributing the load of the
motorway network over a group of computing units.

FIG. 4: The idea behind distributed computing in the CATSIM dynamic network loading model: one computer (the master) controls
several workers in a heterogeneous computing environment. All these computing units work together, whereby the load of the entire
road network is distributed. In the shown example, three major motorways are modelled whereby the responsibility of each motorway
is assigned to several grouped workers.

The flexible functional description set out in section II B, allows several implementations. In this part, we present such
a possible approach, in which parallellism is achieved using distributed computing. In the following sections, we first
shed some light on the difference between high-throughput and high-performance computing. We then give a description
of the technologies used with respect to direct communication between different processing units, as well as a method
that provides us with a shared memory. In a subsequent section, we explain the adopted parallellisation scheme from a
programmatorical and technical point of view. We end with a brief consideration of some issues related to synchronisation,
graph cycles, and data sharing.
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1. High-throughput versus high-performance computing

As desktop computers got increasingly more powerful during the last decade, the paradigm of distributed computing has
started to gain serious importance. Within this concept, a distinction is made between two radically different methodolo-
gies:

• High-throughput computing (HTC)
In this setting, software is installed in a heterogeneous computing environment, thereby distributing the processing
power over different computing nodes (e.g., all desktop computers in a university’s research group). Users can
submit tasks, which are then optimally assigned to these nodes, taking into account priorities, waiting queues,
performance, . . . At each time, attention is given to the fact that a user can regain and keep control over all the
processing power of his/her own machine, at which point the running task is scheduled and resumed at another free
computing node. As a result, HTC offers a large degree of fault-tolerant computing power, available of long periods
of time. Two examples of these kinds of environments are the Condor [91] and the H2O projects [47].

• High-performance computing (HPC)
Another important aspect of distributed systems, is their ability to quickly execute certain tasks. As opposed to
HTC, for which the speed of the requested computation is not per se a strict constraint but the availability of
computing power on a large spatial scale is, HTC is centred around a close tie between computing power in space
and time. Examples of applications in this direction are aspects such as ray tracing [57], and microscopic traffic
flow simulation (see, e.g., the introduction of section II D).

2. Technologies used

As the whole simulator will be constructed for the JavaTM Virtual Machine (JVM), we automatically achieve cross-platform
portability; this is a necessity in order to efficiently address the heterogeneous computing environment.

Reliably controlling such a networked architecture requires a strict scheduling scheme: all processing nodes in the com-
puting network are tightly coupled with each other. In this case, we have opted for a mixture of the ‘master/worker’
and ‘command’ application patterns [32]. This means that we have one master computer that controls N distinct worker
computers who execute the different tasks.

Currently, most distributed implementations of traffic simulators use classic communication techniques such as a Message
Passing Interface (MPI) [56] and/or Parallel Virtual Machines (PVM) [36]. In spite of this, we strongly believe that this
is not sufficient for our envisioned architecture. There’s a trade-off involved, between on the one hand efficient direct
communication and on the other hand an accessible shared memory architecture:

• Direct communication
It is very important that the computation/communication ratio remains as high as possible, after parallellising[108]
the simulator [32]. Translating this to our JavaTM implementation, we establish dedicated communication channels
between the master and the workers and between the workers themselves; sockets provide a suitable and efficient
method for this type of communication. Furthermore, all communication done between the workers, should be
scheduled simultaneously with the computations they perform, so delay times can be minimized.

• Shared memory
Because we are working in a heterogeneous computing environment, no standard shared memory architecture is
directly available. There is however a nice solution to this: JavaSpaces provide a generic environment that can
be accessed by any worker located anywhere in the network. It is based on the concept of Linda Spaces [37],
implemented using JavaTM ’s Remote Method Invocation (RMI) facility [39], and provided as a service of the Jini
Network Technology [32, 87]. A major advantage is that when using a JavaSpace, no explicit network addresses
(e.g., IP addresses and TCP port numbers) need to be known when communicating. All communication can be done
anonymously (loose coupling in space), and even asynchronously (loose coupling in time). Despite its flexibility,
the JavaSpaces service is — as stated before — in essence a medium for loosely coupled communication, and thus
not well suited for performant dedicated communications. Because of this, we only use it for setup purposes and
infrequently accessed resources and information.

Furthermore, it is important to keep the following two points in mind:

– the underlying Jini technology is a network based protocol, that does not offer any real-time guarantees,

– and JavaSpaces is semi-scalable: it runs in a single JVM, implying that the service itself might become a
bottleneck for communication, or worse, it might fail. A solution to this problem can be to use multiple
JavaSpaces that are clustered together.
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3. Programmatorical and technical aspects

After discussing the communication aspects and shared memory setup mentioned in the previous section, we now explain
the adopted parallellisation scheme from both a programmatorical and technical point of view. We describe how the wor-
kers’ tasks are set up and distributed. We then give details on how the dedicated communication channels are constructed,
ending with some comments on the execution of a simulation step.

• Setting up the workers’ tasks
We assume that, at the beginning of the simulation, the master has all the information available about the road
network infrastructure, the travel demand and routing plans, . . . It then performs a domain decomposition on a
geographical basis, dividing the network in exactly N partitions (the splitting of the links is preferably done far
away enough from any junction nodes, such that we can avoid the complexities of intersection logic). Note that this
encompasses static load balancing (see Fig. 4 for an example of such a decomposition); it is also possible to opt for
another scheme, thereby providing us with some means to perform dynamic load balancing. This can, for example,
be accomplished by keeping track of the workers’ computation times and redividing and reassigning partitions.

• Distributing the tasks
The next step consists of the master distributing the tasks (i.e., the different motorway stretches in each partition)
into the JavaSpace. All the workers then check this JavaSpace and each worker picks one task. Note that we assume
at this point that each task comprises more or less an equal amount of workload.

• Setting up dedicated communication channels
Once all tasks are distributed among the workers, they proceed to create direct channels for communication with
their nearest-reachable neighbours (all the workers’ IP addresses are broadcasted in the JavaSpace, together with
information on the neighbouring partitions). This is necessary, as all workers need to exchange information of the
traffic flows at their respective boundaries. The master also advertises its location in the JavaSpace, after which each
worker requests a private communication channel to the master. Fig. 5 shows the relations between the computing
units in the heterogeneous network architecture. Note that, because of its reliability, the TCP/IP protocol remains
the communication mechanism of the underlying network transport layer.

FIG. 5: A schematic overview of the three different kinds of dedicated communication channels; communication
between the master and the workers (shown as thick lines), between workers’ neighbours (shown as thin lines) and
with the JavaSpace (shown as dotted arrows).

• A simulation step
The master then initiates communication with all the workers, instructing them to advance to the next timestep of
the master clock. At this stage, several intricate aspects need to be dealt with:
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– each worker knows its neighbours, and communicates with them in order to transfer vehicles that are crossing
zones,

– communication should only be performed when there are vehicles to transfer; consecutive links have small
overlapping regions such that vehicles transfers only occur within these regions,

– for reasons of computational efficiency, we propose a hybrid cell/vehicle oriented approach: when simulating,
only active cells (i.e., containing vehicles) are updated,

– because the JavaSpace itself is not efficient enough yet and because it assumes loose coupling, we only use it
for information that is not frequently accessed (e.g., link travel times that are conventionally broadcasted on a
radio station or displayed above a certain road section), as mentioned in section II D 2.

Note that with respect to the real-time simulation of traffic flows, several promising projects were carried
out. Examples of this are the simulations of Duisburg, Germany [9] and those of the German Autobahn net-
work of the North- Rhine-Westphalia (NRW) region [81–83, 94]. This latter example also provides the user
with a prediction of the traffic state up to one hour in the future. It can be consulted on-line via a website
http://www.autobahn.nrw.de (see Fig. 6). The prediction is based on the On-Line SIMulator (OL-
SIM), which is an implementation of the brake-light BL-TCA model [28, 78]. The tuning of the simulation
to the current state of the real-world road network, is done by comparing measurements from virtual detectors
in the model and real-world loop detectors from the motorways at certain checkpoints (containing sources and
sinks). Whenever a mismatch is found, vehicles are either added or removed, taking into account to avoid severe
disturbances of the current traffic flow [9, 94].

FIG. 6: A visualisation of the traffic in the Autobahn network of the North- Rhine-Westphalia (NRW) region in Germany. The figure
shows the traffic state in the Ruhr area, predicted one half hour in the future, as broadcasted on an on-line website.

4. Issues related to synchronisation, graph cycles, and data sharing

Because the workers in the computing environment need to exchange information at their boundaries, deadlocks may
occur in which some workers are mutually waiting for each other. However, in our implementation as described earlier,
this can not happen because all the workers are directed by the master computer. This kind of arbitration by an external
third party, is frequently done in systems needing robust synchronisation.

In a previous attempt at describing traffic in a road network, all links were initially topologically sorted after which they
could be processed [58]. This excluded the presence of cycles in the graph describing the road network, which we now
consider to be a major flaw of any simulator that exhibits this phenomenon. Using traffic cellular automata models solves
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this problem seamlessly, because all vehicle updates are now being executed simultaneously. In general, vehicles are
tagged for lane changes (taking care of side effects such as ping-pong traffic, then they execute their respective lane
changes completing the lane-change model. Each vehicle’s speed is then re-evaluated, after which all vehicles are moved
to their new positions, completing the car-following model.

We conclude this section by mentioning that any data that should be shared among the workers, can be kept by a dedicated
data server. In our implementation, we choose this data server to be the JavaSpace itself, providing an anonymous service
of which the network address no longer explicitly needs to be known. The fact that the JavaSpace service is not yet
efficient enough, is no problem because all time critical operations are done using dedicated communication channels,
whereas the JavaSpace is only used for distributing tasks, sharing infrequently accessed information, . . .

III. SOME EXAMPLE APPLICATIONS

Let us briefly consider some of the target applications of our framework (i.e., the integrated DTA methodology from
section I and the DNL model described in section II), these encompass traffic state estimation, sustainability effects of
traffic management systems, and assessing the impacts of traffic control measures.

A. Reliable state estimation of the road network

As implied at the end of section II D 3, it is possible to estimate the collective state of the traffic on the entire road network,
based on information from the real-world (e.g., measurements stemming from single inductive loop detectors). As such,
the framework can either simulate traffic in an off-line setting, based on historical data captured, e.g., in a single static OD
matrix. It is then possible to derive information for a typical day, whereby the following aspects can be studied:

• the lengths of jams in both time and space,

• travel time losses and robustness properties,

• indicators for high-risk zones that contain recurrent congestion,

• and assessing the impact of an incident, leading to, e.g., lane closures.

In an on-line setting, the framework needs to be fed with real-time data, after which the simulation is ran to get a global
updated view of the traffic state. Coupled with a prediction step, this leads to a powerful methodology that can be used to
steer traffic, e.g., by advertising travel times on variable message signs (VMS).

B. Sustainability effects of traffic management systems

When thinking in a sustainable mobility framework, one approach could be to limit the traffic demand and to balance this
demand over different traffic modes. As a complementary approach, one could also try to optimise the use of the existing
infrastructure. With respect to the latter approach, we carried out a project, funded by the Belgian Federal Science Policy
(DWTC) [61, 63].

One of the central components within the project, is a method to assess the ‘quality’ of a simulated traffic situation. To this
end, we needed to define goals we would like to achieve; stated in control terms, this corresponds to a cost function, called
the sustainable cost function (SCF). In the scope of this project on sustainable mobility, a definition of the cost function
includes penalisations for pollutant emissions (environmental costs), congestion (socio-economic costs), noise emissions,
dangerous situations (like shock waves), . . . The cost function is expressed in terms of the states of the model and can be
evaluated during simulation (all these costs are expressed in monetary terms). Within the project, we controlled traffic
flows with respect to this cost function. If we use the SCF in steps 4 and 6 of the framework described in section I B 1,
then this will lead to a social optimum with respecto to the concept of road pricing policies. The framework can then be
used as a mirror of the real world.
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C. Assessing the impacts of traffic control measures

As we believe all political decisions should hinge on advice from studies, these require an a posteriori interpretation
with a good dose of common sense. Most of the time, such studies try to assess the impact of policy decisions that are
implemented by means of local and global control measures. Typical decisions and measures include the following:

• rerouting effects, requiring a study of day-to-day and within-day replanning of commuters,

• ATMS effects (e.g., ramp metering, speed harmonisation, platoon driving, . . . ),

• policy decisions (e.g., overtaking prohibitions for trucks, road pricing strategies, . . . ),

• and changes in the road infrastructure, possibly leading to induced traffic, which we believe requires a more activity-
based approach.

IV. CONCLUSIONS

In this chapter, we constructed a framework that allows us to perform dynamic traffic assignment (DTA), integrating
departure time choice (DTC) and dynamic route choice (DRC), coupled with a dynamic network loading (DNL) model.
The method is built around a traffic flow model that is represented as a computationally efficient cellular automaton.
After explaining two of the mainstream DTA approaches, i.e., analytical and simulation-based, we gave an overview of
each of the framework’s components. In a separate section, we payed explicit attention to the DNL model, considering
traffic flow simulation from a historical perspective, and discussing the benefits of open-source software development.
After a functional description of the simulator, some code implementation details were given, ending with an overview of
parallellisation through distributed computing. In a final section of the chapter, we discussed some example applications
such as traffic state estimation, sustainability effects of traffic management systems, and assessing the impacts of traffic
control measures.
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