Sustainability Effects of Traffic Management Systems

Sven Maerivoet

sven.maerivoet@esat.kuleuven.ac.be

Katholieke Universiteit Leuven (Belgium)
Department of Electrical Engineering
ESAT-SCD (SISTA)

Overview

• Project background
• Global setup
• Controlling traffic flows
 – Some applicable control measures
 – Characterising sustainability
 – Belgium as a case study?
 – Optimisation
• Conclusions
Belgian government funding

• Federal Science Policy.

• Sustainable production and consumption patterns – “Cluster Transportation”.

• PODO II – DWTC CP/40.

• Duration: 12/2001 – 11/2004 (three years).
• Budget: approximately 550,000 euro.
Partners involved

• All involved partners are universities:
 – *Katholieke Universiteit Leuven*
 • Department of Electrical Engineering
 • Department of Civil Engineering
 • Centre for Economic Studies.
 – *Université Catholique de Louvain*
 • Centre for Systems Engineering and Applied Mathematics.
 – *Universiteit Gent*
 • Electrical Energy, Systems, and Automation.

• Reporting to an external usergroup.
Global setup

- “Traffic is dynamic in nature”

Demand \[\rightarrow\] Supply

(travellers/traffic flows) \[\rightarrow\] (road infrastructure)

Optimise the traffic using the existing road infrastructure!

Tools for optimisation? \[\rightarrow\] adaptive control strategies

Optimisation criterion? \[\rightarrow\] sustainable cost function
Some applicable control measures

- Change the number of departing trips.
- Change the departure time of drivers (i.e., leave earlier/later).
- Influence the drivers’ route choice.
- Congestion pricing.
- Overtaking prohibitions for trucks.
- Use ATMS:
 - ramp metering,
 - speed harmonisation,
 - ...

“Sustainability Effects of Traffic Management Systems”
The Transport Science & Technology Conference, Athens 2004
Ramp metering

- “Try to control the inflow by drops”
The idea behind ramp metering

Overview
Project background
Global setup
Controlling traffic
Some applicable control measures
Ramp metering
Speed harmonisation
Characterising sustainability
Belgium as a case study?
Optimisation
Conclusions
RM-MPC versus ALINEA

Overview
Project background
Global setup
Controlling traffic
Some applicable control measures
Ramp metering
Speed harmonisation
Characterising sustainability
Belgium as a case study?
Optimisation

Conclusions

“Sustainability Effects of Traffic Management Systems”
The Transport Science & Technology Conference, Athens 2004
Dynamic speed limits (with MPC)

- Research from T.U. Delft (The Netherlands).

upstream moving shockwave

"Sustainability Effects of Traffic Management Systems"
The Transport Science & Technology Conference, Athens 2004
Characterising sustainability

- Characterise the concept of ‘sustainability’:

\[SCF = \text{emissions (air, noise)} + \text{incident risks} + \text{travel times} + \text{resource costs} - \text{tax receipts} \]

- Environment friendly capacity throughput

Important: the SCF involves a *trade-off*!
Air pollution costs

• Typically, pollution effects are site specific:
 → construct a dispersion model and use exposure-response curve to determine costs.
 Too expensive and time consuming!

• Our methodology consists of:
 – determine the fleet mix: diesel and petrol cars, light and heavy goods vehicles, and buses,
 – specify the speed related emission factor for all pollutants (e.g., carbon monoxides, benzene, …),
 – calculate total emissions on each link of the network and convert to monetary units.
Noise costs

• Similar to air pollution costs, in that they are site specific.
• Calculate **noise exposure** (in dB) above a given reference level:
 – using traffic flow variables and housing density.
• All based on long term (annual) data and at a country wide scale with little data for Belgium:
 – **disaggregate** to Belgium road network.
Accident costs

- **Economic cost of an accident:**
 - users’ *willingness to pay* for safety,
 - friends’ and relatives’ WTP for the user,
 - and the costs to the rest of the society (police, ...).

- **Number of accidents:**
 - affected by many factors (speed, weather, ...),
 - expected **U-shaped function** of traffic variables.

- Difficult to apply theoretical forms and to generalise from empirical studies:
 - calculate accident risks w.r.t. a **reference flow**.

“Sustainability Effects of Traffic Management Systems”
The Transport Science & Technology Conference, Athens 2004
Time costs

• Are a significant component of the SCF.
• The used traffic flow model returns the travel times:
 – convert to VOT (value of time).
• Incorporate time costs for early and late arrivals.
• Currently we distinguish between:
 – passenger cars, trucks, and buses.
 – A future extension is to include income effects.
Belgium as a case study?

• Tackling the entire (highway) road network is too ambitious!

 Reduce the scope to a simplified topology.
Test bed network topology

- Total length of the network is some **11.4 km** (a vehicle traverses 7 minutes at 100 km/h).

3 origins

3 destinations

- **highway** (3 lanes, 120 km/h)
- **urban road** (2 lanes, 90 km/h)
- **city region** (1 lane, 70 km/h)
Optimisation

• Determine the steady state distribution of the flows (this is the set point), using:
 – the sustainable cost function,
 – equality constraints:
 • conservation of vehicles,
 • origin/destination matrices,
 – inequality constraints:
 • positive flows,
 • maximal flows.

• Try to achieve the set point using control measures (current research).

“Sustainability Effects of Traffic Management Systems”
The Transport Science & Technology Conference, Athens 2004
Conclusions

• Most important aspect:
 – **sustainable cost function**.

• Modular setup:
 – incorporate SCF in traffic control methodology.

• During the project, we have also developed:
 – heterogeneous extension of the LWR-model,
 – **particle filter** approach for incomplete data,
 – **congestion charging** and queue spill-back effects,
 – investigate an **overtaking prohibition** for trucks,
 – distributed **traffic cellular automata** (in progress).