Universitaire I nstelling Antwer pen
Department of Mathematics and Computer Science

Advanced Computer Graphics
using OpenGL.

Sven M aerivoet

http://svengl.dyns.cx

2000 - 2001

Contents

1

Introduction 1
1.1 Aword about the framework 1
1.2 Howtousethelibrary 2
121 TheGL-class 2
1.2.2 Theinstantiator 4
1.3 Compilingandlinking 6
1.31 UNIXandLinux 6
1.3.2 Windows 95/98/2000/NT/ME 7
TOpenGLApp base class 9
2.1 General considerations 9
2.1.1 Usefulconstants 10
2.1.2 nitialization 10
2.1.3 Callback registrations. 10
2.1.4 Defaultcallbacks 11
2.1.5 Continuous camera movements versus momentum-mode 13
2.1.6 Miscellaneous functions 13
2.2 VIEWING o e 14
2.2.1 Window-to-viewportmapping 14
2.2.2 Projectionmanagement. 14
2.3 Color, fog, lighting and texture management 16
231 Color e 17
232 FOQ e 18
2.3.3 Lighting. 19

2.3.4 Texture management 20

2.4 GraphiCSTOULINES o 20
2.4.1 2D-graphicsroutines L 20

2.4.2 3D-graphicsroutines 21

2.4.3 Miscellaneous 3D-graphicsroutines, 22

2.4.4 Scene-rendering (OpenGL andray tracing) 23

2.45 2D-and 3D-transformations L. 24

3 SDL 25
3.1 Generallayout. 25
3.2 Thedifferentcategories 25
3.21 Comments 25

322 Lights oo 26

3.23 Transformations 26

3.24 Boolean-objects. 26

3.2.5 Material-properties 27

3.26 Motionblur 28

3.2.7 Globalsceneattributes o 28

3.28 TeXIUIES 29

3.29 MaCros 31
3.2.10 Including other SDL-files 31

3.3 Thedifferentshapes. 31
3.31 Polyhedra e 32

3.32 Taperedcylinders 32

3.3.3 Cube, sphereandteapot 32

334 Meshes 33

3.35 Torus e e 34

3.3.6 Algebraicsurfaces 35

4 Ray tracing

4.1 The lighting-model
4.1.1 Surfaceroughness
4.1.2
4.1.3 Diffuse and specular components

4.2

4.3

4.4

45
4.6
4.7

4.3.1 Solid texturing
4.3.2 Flat texturing
Anti-aliasing

4.4.2 Stochastic supersampling

Adding a new shape
471 ModifyingSDL
4.7.2 Implementingtheshape
4.7.3 Using a world-extent

4.1.4 Reflection and transparency
4.1.5 Atmospheric attenuation
416 FOQ
Shadows
421 Hardandsoftshadows
4.2.2 Indirectlighting.
Texturing

441 Regularsupersampling

Motionblur
Post-normalization of thecolors

A Utilities

Al
A2

A3

B Key-assignments

B.1 Assigned keys
B.2 Available keys

Emissive and ambientcomponents

List of Figures

2.1

3.1

41
4.2
4.3
4.4
4.5
4.6
4.7

The various software-components. 9
Cross-sections of the three kindsof tori. 35
Non-weighted jittered discrete cone tracing. 42
Atmospheric attenuation. 44
Unsupported indirect lighting. 45
Decision-tree when applying texture mapping. 46
Regular supersampling. 52
Stochastic supersampling. 53
Distribution of time-samples over one frame. 53

Chapter 1

| ntroduction

In this manual, a general framework for easily creating OpenGL-applications is considered. This
framework is written in C++ and relies heavily on the concept of Object-Oriented Program-
ming (OOP). General knowledge of encapsulation, inheritance and polymorphism is assumed.
Various aspects are discussed, ranging from a general introduction and detailed explanations of
class-methods to an in-depth treatment of the ray tracer, which was (partially) built using this
framework.

Much of the work is based on the book [Hil01], the OpenGL-standard as defined in [SA99],
the GLUT-API as defined in [Kil96] and the ‘standard-bible’ [FvDFH90]. The programming-
techniques used, are based on those as presented in [Str97] and [CL95].

There are also several interesting papers available : [3DCO01], [ARTO01], [Arv86], [Bry00],
[BHHOO0], [Bus00], [CSS], [CS], [CKO01], [Cla01], [Cof01], [DH92], [EIi0Q], [FSJ], [Gan01],
[GTS], [Hai01], [Har01], [HunOO], [IRTO1], [Kaj83], [KA88], [KMH], [LKR*96], [MCFS00],
[Met00], [NYHO1], [Nor97], [PPD98], [PSL*98], [PMS*99], [Per97], [PKGH97], [Pix00],
[RSH], [RJ97], [Sch], [SW92], [Sto95], [TCRSO00], [The01], [Tig99], [Tur], [WSB], [WBWS01],
[WS01] and [z2ha00].

1.1 A word about the framework

The general idea was to use (and create) as little low-level code as possible and to construct
a high-level interface. This resulted in the use of GLUT, the OpenGL Utility Toolkit and the
creation of a class-interface, suited for most needs. It is therefore required to operate on a system
which has OpenGL installed, as well as the availability of GLUT.

It is assumed that the software-package (as it is available) is installed in a default directory,
called ~/SvenGL*. Within this directory, several noteworthy subdirectories are located. One of
them is the ~/SvenGL/data-directory which contains over 20 Mb of texture-images, mesh-files

INote that a UNIX/Linux-style convention is used for directories and filenames.

and SDL-scenes. Another important subdirectory is ~/SvenGL/docs, in which several docu-
mentation files (all the key-assignments for the various applications and the syntax of the SDL-
language) can be found. The most important subdirectory however, is ~/SvenGL/opengl, which
contains the library-files.

1.2 Howtousethelibrary

From the high-level point of view, the only thing an application-programmer needs to do, is
to derive his own GL-class (this is the name used for denoting a class that performs OpenGL-
graphics) from the base-class TOpenGLApp, and instantiate it in a file containing the proper
initialization-code inside it’s mai n() -function.

This scheme might seem a bit awkward at first, but it is the only logical solution to a rather com-
plex problem : GLUT relies on callback-functions, which are actually pointers to C-functions
passed as parameters to the GLUT-API. If however, a C++ class is used, these pointers no longer
refer to C-functions but to C++ member-functions. This introduces some annoying difficul-
ties, and the only solution that seems straightforward, is to declare callback-functions as virtual
member-functions (so they can be overridden) and to call these member-functions from within
file-scope C-functions (called wrappers). These C-functions are then passed to the GLUT-API.
The whole process can be a automated to a degree, but it is necesarry to understand this scheme.

1.2.1 The GL-class

Typically, the file " opengl / opengl . h" isincluded. This gives access to the base-class, from
which a specific GL-class is derived. For example :

/) -
// this file is called demo-gl.h
/) -

#include "opengl/opengl._h"
using namespace std;
class DemoGLApp : public TOpenGLApp {
public:
// constructor

DemoGLApp(int aParameter);

// destructor
“DemoGLApp(void);

// explicit initialization
void explicitlnitialize(void);

private:
// data-members
int fClassMember;

¥

It is straightforward to create standard OpenGL-applications, just override the proper callback-
functions (see section 2.1.4 for a detailed description of the supported callback-functions).

Passing parameters (for example, command-line parameters) to the derived GL-class, can be
accomplished by using a specific constructor (as can be seen in the above example) with an ini-
tialization-list (see the example below). There is also a special method, calledi ni ti al i ze(),
that the base-class uses to perform some OpenGL-specific configurations. In order to perform
specific initialization of GL-class specific data, the expl i citlnitiali ze() -function can
be overridden (it is automatically called by i ni ti al i ze()).

// -
// this fTile is called demo-gl.cpp
// -

#ifdeF _WIN32
#include <windows.h>
#endif

#include "‘demo-gl.h"
#include <GL/gl.h>

#include <GL/glu.h>
#include <GL/glut.h>

using namespace std;

// -
// class DemoGLApp
/-

// -
// constructor
// -
DemoGLApp: :DemoGLApp(int aParameter) : fClassMember(aParameter)

{
}

/-

// destructor
/-

DemoGLApp: :“DemoGLApp(void)
{

}

/) -
// explicit initialization

// -
DemoGLApp: :explicitlnitialize(void)
{
// setup camera-position and -shape
}

Note (1) how the OpenGL-library is included at the beginning of the file and (2) the use of the
#i f def _W N32 directive.

1.2.2 The instantiator

In section 1.2, the general underlying concept was explained. Some file-scope C-functions are
necessitated, and these are typically included in a standard file (the instantiator) that also contains
the mai n() -function. For example :

/) -
// this File is called demo-main.cpp
/)

#include "‘demo-gl.h"
#include "opengl/opengl._h"

using namespace std;

/) -
// global OpenGL Application object
/) -
TOpenGLApp* TfOpenGLApp;

/) -

// wrappers for callback-functions

/) -

void displayFuncWrapper(void)
{ fOpenGLApp->antiAliasedDisplayFunc(); }

void reshapeFuncWrapper(int width, int height)
{ fOpenGLApp->reshapeFunc(width,height); }

void keyboardFuncWrapper(unsigned char key, int x, int y)
{ fOpenGLApp->keyboardFunc(key,x,y); }

void specialFuncWrapper(int key, int x, int y)
{ fOpenGLApp->specialFunc(key,X,y); }

void mouseFuncWrapper(int button, int state, int x, int y)
{ fOpenGLApp->mouseFunc(button,state,x,y); }

void motionFuncWrapper(int x, int y)
{ fOpenGLApp->motionFunc(x,y); }

void passiveMotionFuncWrapper(int x, int y)
{ fOpenGLApp->passiveMotionFunc(x,y); }
void idleFuncWrapper(void)
{ fOpenGLApp->idleFunc(Q); }

void cleanUp(void)
{
if (fOpenGLApp '= 0) {
delete TOpenGLApp;
}
3

void main(int argc, char* argv[])
{
// register the cleanup-routine
atexit(&cleanUp);

// perform command-line parsing
// note that convertStringTolnt() must be defined !
int parameter = convertStringTolnt(argv[1l]);

// create and initialize the OpenGL Application object
TfOpenGLApp = new DemoGLApp(parameter);
fOpenGLApp->initialize(0,0,
640,480,
"Demo OpenGL-application,
TOpenGLApp: :kEnableDoubleBuffering,
TOpenGLApp: : kEnableDepthBuffer);

// register the necessary callback-functions
fOpenGLApp->registerDisplayFunc(displayFuncWrapper);
TOpenGLApp->registerReshapeFunc(reshapeFuncWrapper) ;
TOpenGLApp->registerKeyboardFunc(keyboardFuncWrapper);

// activate the event handling
TfOpenGLApp->activateEventHandling();

}

It is important to note that this demo-main.cpp includes the header-file in which the De-
Mo GLApp-class is declared. When creating and initializing the global f OQpenGLApp-object,
the derived DenmoGLApp-class is used (to access it’s specific constructor). From here on, it is
also possible to specify which callback-functions will be registered and which won’t.

The description of the parameters to the function def aul t I niti ali ze() can be found in
section 2.1.2.

1.3 Compiling and linking

Creating OpenGL-applications is one thing, getting them running is another. The fact that the
whole interface is based on GLUT, has the advantage that any operating system supporting
OpenGL and GLUT will be able to run the software. In the next two sections, compiling and
linking the software on two popular kinds of operating systems (UNIX/Linux and Windows
95/98/2000/NT/ME) is discussed.

1.3.1 UNIX and Linux

When working under Unix or Linux, it is assumed that the GNU C++ compiler is available. A
Makefile is provided and compiling and linking the software as-is, is nothing more than per-
forming a simple ‘make’. Note that it might be necessary, depending on the current system con-
figuration, to change some predefined settings in the Makefile :

CC=g++
LINKFLAGS=-L/usr/lib/libglut.so0.3.7.0 -IGL -1GLU -lIglut

The above default settings assume that the compiler is called g++ and that the GLUT-library
resides in /usr/lib/libglut.so0.3.7.0.

In order to compile and link self-made programs, the Makefile can easily be modified to perform
these tasks :

1. first, create an entry in the user’s entries-section for the CPP-file (don’t forget to specify
the opengl.o-relation), for example :

demo-gl.o: demo-gl.h demo-gl.cpp opengl.o
$(CC) -c demo-gl.cpp -o demo-gl.o

2. Next, create an entry (in the same section) for the file containing the wrappers and the
mai n() -function :

demo-main: demo-main.cpp demo-gl.o
$(CC) $(LINKFLAGS) demo-main.cpp $(OPENGLFILES) demo-gl.o -0 demo-main

3. Finally, create an entry in the clean entries-section :

rm - cube

Compiling and linking is thus done by executing the ‘make demo-main’-command, running the
program is done by executing the *./demo-main’-command and cleaning everything is done by
executing the *‘make clean’-command.

1.3.2 Windows 95/98/2000/NT/ME

When compiling and linking under the Windows 95/98/2000/NT/ME operating system, it is as-
sumed that Microsoft Visual C++ 6.0 has been installed and configured correctly. The following
two subsections explain how to get the software up and running when using the default project
and when starting from scratch.

Using the default project

A default Microsoft Visual C++ 6.0 project workspace is available.
It is called svengl-msvcpp6.zip and it is configured to run SDLViewer. Take the following steps
in order to use it :

1. unzip svengl-msvcpp6.zip to a directory (e.g., C:\). This will create
C:\SvenGL\SvenGL.dsp and C:\SvenGL\SvenGL.dsw.

2. Unzip all SvenGL-files (data-directory and sourcecode) to C:\SvenGL.
3. Open the project workspace by double clicking on the C:\SvenGL\SvenGL.dsw-file.

4. Select Build SvenGL.exe from the Build-menu and press CTRL-F5 to run the application.

Doing it from scratch

Starting from scratch, the following steps should be taken :

1. start Microsoft Visual C++ 6.0 and select New from the File-menu. Click on the Projects-
tab in the following dialog-box and select Win32 console application. Don’t forget to spe-
cify a project name (e.g., SvenGL) and a location (e.g., C:\). Note that the project name
is appended to the location. Click Ok to execute the changes.

2. Inthe following dialog-box, select the radio-button An empty project, click Finish and then
click Ok.

3. Unzip all SvenGL-files (data-directory and sourcecode) to C:\SvenGL.

4. In the newly created workspace, select Add to project from the Project-menu and then
select Files from the submenu. Double-click the opengl-directory (which was unzipped in
the previous step) and press CTRL-A to select all files. Click Ok to close the dialog-box.

5. Repeat the previous step to add the newly created class from section 1.2. These files are
called demo-gl.h, demo-gl.cpp and demo-main.cpp.

6. Select Settings. .. from the Project-menu and make sure that Category is set to General.

In the left-side of the dialog-box, click on the SvenGL-project, then click on the Link-
tab at the right and add the following files opengl32.lib, glu32.lib and glut32.lib to the
Object/library modules. Click Ok to close the dialog-box.

7. Don’t forget to save the workspace by selecting Save Workspace from the File-menu.

8.

Select Build SvenGL.exe from the Build-menu and press CTRL-F5 to run the application.

Note that it is possible to disable the popping-up of the console-window, by taking the following
steps :

A LN

select Settings. . . from the Project-menu. Click on the Link-tab at the right and make sure
that Category is set to Output.

Change the Entry-point symbol to mainCRT Startup.
In the list of Project Options, change /subsystem:console to /subsystem:windows.
Don’t forget to save the workspace by selecting Save Workspace from the File-menu.

Select Rebuild All from the Build-menu and press CTRL-F5 to run the application.

Chapter 2

TOpenGL App base class

The TOpenGLApp-class contains all the basic functions for drawing with OpenGL, as well as
complete camera- and projection-management. This chapter describes in detail the class-methods
that are available when deriving from this base class.

2.1 General considerations

Understanding how the base class operates, is crucial for quickly and successfully developing
OpenGL-applications. Because the base class is built around GLUT, many low-level code has
been replaced with easily accessible high-level class-methods. A central role is these methods
is played by the so-called primitives, which can be found in ~/SvenGL/opengl/primitives.h :
Poi nt 2D, Poi nt 3D, Rect angl e2D, Vect or 2D, Vect or 3Dand Col or . Note that nearly
all the data-members of these classes are based on C++ doubles.

Figure 2.1 shows which various software-components talk to each other.

™ GL-class ™
A
Y
TOpenGLApp ™
A
Y Y
> GLUT-API <7 OpenGL-API [

Y
Host OS

\
i
Y

Figure 2.1: The various software-components.

2.1.1 Useful constants
Many constants are defined and because they are declared static, they can be accessed as follows :

TOpenGLApp: :kQuasiFul IScreen

These constants mainly come in two varieties : booleans and enums. They are declared to use
meaningful names as parameters for the methods. In some of these methods — described further —
these constants are used as parameters whenever appropriate.

2.1.2 Initialization

Besides the constructor of the derived class, there is also the following method which must
explicitly be called, since it performs some OpenGL-specific configurations for the base class :

void initialize(int clientWindowXPos,
int clientWindowYPos,
int clientWindowXSize,
int clientWindowYSize,
string clientWindowTitle,
bool enableDoubleBuffering,
bool enableDepthBuffer);

In order to make an application-window that fills the entire screen, the kQuasi Ful | Scr een-
constant must be used for both the cl i ent W ndowXSi ze- and cl i ent W ndowYSi ze-
parameters. Double buffering is necessary for flicker-free animations, the kEnabl eDoubl e-
Buf f eri ng- and kDi sabl eDoubl eBuf f er i ng-constants are used to control this. The
same holds for enabling and disabling the use of OpenGL’s depth buffer, by using the KEna-
bl eDept hBuf f er - and kDi sabl eDept hBuf f er -constants.

Explicit initialization of data-members in the derived class, can be accomplished by overriding
the following method :

virtual void explicitlnitialize(void);
Typically, the camera’s position and shape are setup inside this method. Note that it automatically
getscalledbyinitialize().
2.1.3 Callback registrations
The registration of the callback-functions to the GLUT-API is performed using the r egi s-
t er XXXFunc() -methods. These methods are to be called only once, during the initial registra-

tion-part, as shown in section 1.2.2. For optimal performance, only the needed callback-functions
should be registered.

10

2.1.4 Default callbacks

As mentioned before, understanding how the base class works (and how GLUT works) is neces-
sary for developing OpenGL-applications. The main scheme is as follows : all the needed call-
backs are registered (each of them performs a specific task) and then GLUT’s main-event-loop
IS activated.

The callbacks are divided into categories : screen management, user input and background pro-
cessing. Note that not all GLUT-callbacks are supported (this was done in order to maintain a
simple high-level interface).

Screen management

virtual void displayFunc(void);
virtual void reshapeFunc(int width, int height);

The default di spl ayFunc() -callback shows a yellow cross on a blue background (this is vis-
ible when the callback is registered but not overridden). This callback is the most important and
everything that has to be drawn should reside inside it. Note that the GLUT-API only redisplays
a window when a redisplay is posted (e.g., when parts of it have changed), see section 2.1.6 for
more details.

Note that the base class also containsanant i Al i asedDi spl ayFunc() -callback which gets
assigned as the default callback. This method must not be called directly, since it handles anti-
aliasing by using OpenGL’s accumulation-buffer in combination with a set of jitter-vectors. It
automatically calls the (overridden) di spl ayFunc() -callback.

The task of the default r eshapeFunc() -callback is to maintain aspect-ratio of original world-
window when the application’s window is resized, so no distortions occur. The application’s
window’s new dimensions are automatically given as the parameters wi dt h and hei ght (both
of them are expressed in pixels).

User input

virtual void keyboardFunc(unsigned char key, int x, int y);
virtual void specialFunc(int key, int x, int y);

virtual void mouseFunc(int button, int state, int x, int y);
virtual void motionFunc(int x, int y);

virtual void passiveMotionFunc(int x, int y);

The default callbacks for user input provide a rich set of controls, including camera and projec-
tion management, lighting, shading and other miscellaneous controls. The default behaviour is to
simulate a controlled flight, by letting the camera move in the world-coordinate system, slide in
its own coordinate system and rotate, pitch and yaw around its own axes. There is also a toggle
provided for a windowed or a full-screen view, and support for taking snapshots of the visual

11

data in the application’s window (these snapshots are saved to BMP-files, starting with the prefix
snapshot and concatenated with a number, starting at 0, that counts the number of snapshots
taken).

When overriding these functions, it is best that their counterparts in the base class still get called
first, so the default behaviour and functionality is retained. A special measure has to be taken
when overriding the keyboar dFunc () -method, resulting in some ‘redisplay-code’ at the end
of the method :

void keyboardFunc(unsigned char key, int x, int y)

{

// call the counterpart in the base class
TOpenGLApp: - keyboardFunc(key, X,y);

// perform specific key parsing
/7 ...

// post a redisplay to the GLUT-API
it (fScheduleRedisplay) {
redisplay();

}

The keyboar dFunc () -method is used for parsing ordinary keys (which are send as ASCII-
characters), the speci al Func() -method is used for parsing function-keys (refer to the GLUT-
API for more details).

When a user presses and releases mouse buttons, each press generates a mouse callback which
can be handled by nouseFunc() . The but t on-parameter can be GLUT_LEFT_BUTTON,
GLUT_M DDLE BUTTON or GLUT_RI GHT_BUTTON. The st at e-parameter can be GLUT _UP
or GLUT_DOWN. The x- and y-parameters indicate — when the mouse button state changed — the
mouse-position, relative to the application’s window upper-left corner.

Capturing the movement of the mouse is accomplished using the not i onFunc() - and pas-
si veMbt i onFunc() -methods. The difference between them is that the first method gets
called whenever the mouse moves within the application’s window and one ore more mouse but-
tons are being pressed. The second methods gets called whenever the mouse moves within the
application’s window and none of the mouse buttons are being pressed. The x- and y -parameters
indicate the mouse location in the application’s window relative coordinates.

Note that there is no default behaviour for the mouse-related callbacks.

12

Background processing

virtual void idleFunc(void);

When window system events are not being received by the GLUT-API, the i dl eFunc() -
method can be continuously called, which allows animation. The default behaviour is to enable
continuous camera movements when flying (the flight can be controlled by the default behaviour
the key-related callbacks offer) or momentum-mode (see section 2.1.5 for the distinction between
the two modes).

2.1.5 Continuous camera movements versus momentum-mode

When the continuous movement of the camera is enabled, it will have the effect that each com-
mand given will continuously repeat. For example, pressing the key for rolling the camera to the
left will let the camera roll until another command has been given (which then in turn will repeat
itself) or until continuous movement is disabled.

On the other hand, momentum-mode will make the camera fly continuously in its current direc-
tion. It is however still possible to control this direction by rotating the camera around any of its
three axes.

Note that both modes are mutually exclusive, which means that only one of them can be active
at any time.

2.1.6 Miscellaneous functions

void enableAntiAliasing(double jitterFactor,
EJitterVectors nrOfJitterVectors);

void disableAntiAliasing(void);

void redisplay(void) const;

int getClientWindowXSize(void) const;

int getClientWindowYSize(void) const;

void takeSnapshot(string Ffilename) const;

The use of anti-aliasing is toggled with the enabl eAnti Al i asi ng() - and di sabl eAn-
ti Al'i asi ng() -methods. Anti-aliasing is done by slightly moving the camera around (con-
trolled by means of the j i tt er Fact or -parameter), and averaging all the obtained images
which generally results in smoother transitions on the screen (as for example can be seen when
OpenGL is scan-converting the primitives on the screen). The possible values for the nr Of Ji t -
t er Vect or s-parameter, are : kJi tt er Vectors2,kJitterVectors3,kJitterVec-
tors4, kJitterVectors8, kJitterVectorsl5, kJitterVectors24 and kJit -
t er Vect or s66. Note that using more jitter-vectors results on the one hand in a higher image-
quality, but on the other hand it dramatically slows down the rendering.

13

A word of caution is to be said about the r edi spl ay() -method : don’t call this method from
inside a di spl ayFunc() - or r eshapeFunc() -override ! It is however necessary to call it
at the end of the other callback-functions, in order to post a redisplay to the base class, which
in turn will post a redisplay to the GLUT-API (whilst taking into account the anti-aliasing that
might need to be performed).

Refer to the user input in section 2.1.4 for the operation of the t akeSnapshot () -method.

2.2 Viewing

The base class TOpenG.App provides a rich set of methods for viewing two- and three-dimen-
sional worlds. The window-to-viewport mapping basically handles two-dimensional drawing (be
it a projection on the XY-plane).

2.2.1 Window-to-viewport mapping

Two main ingredients are needed : a window on the world and a viewport in the application’s
window. The viewport is directly related to the pixels on the screen, whilst the world-window
is a completely different thing. A correspondence mapping has to be set up between the two.
The only thing needed is the specification of the window and the viewport (the mapping is done
automatically).

void setWorldWindow(double left, double top,
double right, double bottom);
void setViewport(int left, int top, int right, int bottom);
Rectangle2D getWorldWindow(void) const;
double getWorldWindowAspectRatio(void) const;
Rectangle2D getViewport(void) const;

The aspect-ratio of the world-window is defined as its width divided by its height. Note that when
using these methods, OpenGL uses an orthographic projection.

2.2.2 Projection management

When moving into the realm of three-dimensional graphics, the concept of ‘projection” comes
into play and essentially defines how the objects in the world will be transformed to objects on
the screen (that is, to objects in the viewport). A camera is defined, which can be shaped as a
pyramid (for a perspective projection) or as a parallellipiped (for an orthographic projection).
There is also support for an oblique projection, which gives a more intuitive three-dimensional
appearance than a pure orthographic projection, by means of incorporating shears.

14

All these projections are defined in OpenGL using a so-called projection-matrix. The setup of
this matrix (i.e., the setting up and controlling of the camera) can be fully automated by using
the following methods :

void setCamera(const Point3D& cameraEyePoint,

const Point3D& cameraV
const Vector3Dé& camera

iewPoint,
UpDirection);

Point3D getCameraEyePoint(void) const;
Point3D getCameraViewPoint(void) const;
Vector3D getCameraUpDirection(void) const;

void
void
void

slideCamera(double du, double dv
rolICamera(double degrees);
pitchCamera(double degrees);

void yawCamera(double degrees);

void

double
double
double
double
double
double
double
double

setCameraPerspectiveShape(double
double
double
double
setCameraPerspectiveShape(double
double
double
double
double
double
setCameraObl iqueShape(const Vect
double cam
double cam
double cam
double cam
double cam
double cam
setCameraOrthogonalShape(const V
double
double
double
double
double
double
getCameraViewAngle(void) const
getCameraAspectRatio(void) con
getCameraLeftPlane(void) const
getCameraTopPlane(void) const;
getCameraRightPlane(void) cons
getCameraBottomPlane(void) con

getCameraDistanceOfFarPlane(vo

, double dn);

cameraViewAnglelnDegrees,
cameraAspectRatio,
cameraDistanceOfNearPlane,
cameraDistanceOfFarPlane);
cameralLeftPlane,
cameraTopPlane,
cameraRightPlane,
cameraBottomPlane,
cameraDistanceOfNearPlane,
cameraDistanceOfFarPlane);
or3D& projectionDirection,
eraLeftPlane,

eraTopPlane,

eraRightPlane,
eraBottomPlane,
eraDistanceOfNearPlane,
eraDistanceOfFarPlane);
ector3D& projectionDirection,
cameraLeftPlane,
cameraTopPlane,
cameraRightPlane,
cameraBottomPlane,
cameraDistanceOfNearPlane,
cameraDistanceOfFarPlane);
st;

t;
st;

getCameraDistanceOfNearPlane(void) const;

id) const;

Note that for an oblique projection, a pr oj ecti onDi r ect i on must be supplied. If this di-
rection is (0, 0, 1), then the oblique projection reverts to a classical orthographic projection. Also

15

note that, whilst in the world a right-hand coordinate system is used, the camera uses a left-hand
coordinate system. This has the effect of looking down the negative Z-axis of the world.

void setCameraSlideStepSize(double cameraSlideStepSize);

void setCameraRotateStepSize(double cameraRotateStepSizelnDegrees);
void setCameraViewAngleStepSize(double cameraViewAngleStepSizelnDegrees);
void setCameraAspectRatioStepSize(double cameraAspectRatioStepSize);
void setCameraAdvanceStepSize(double cameraAdvanceStepSize);

double getCameraSlideStepSize(void) const;

double getCameraRotateStepSize(void) const;

double getCameraViewAngleStepSize(void) const;

double getCameraAspectRatioStepSize(void) const;

double getCameraAdvanceStepSize(void);

void loadCameraPath(string filename);

bool advanceCameraAlongPath(void);

void enableContinuousCameraMovements(void);

void disableContinuousCameraMovements(void);

void enableCameraMomentum(void);

void disableCameraMomentum(void);

void decoupleCameraYawAndRoll(void);

void coupleCameraYawAndRoll(void);

It is possible to fly the camera along a predefined-path in the world. To accomplish this, supply
a filename to the | oadCaner aPat h() -method. To advance the camera one step along this
path, use the advanceCaner aAl ongPat h() -method (which returns f al se when the end
of the path is reached or t r ue otherwise). The layout of such a path-file is very straightforward :
the first number defines the total number of control-points along which the camera should pass.
These control-points are given, after this number, by supplying their X-, Y- and Z-coordinates
(separated by white-space) in the world. The camera flies along the control-points and its trajec-
tory is linearly interpolated between two successive control-points. The stepsize can be controlled
by using the set Canmer aAdvanceSt epSi ze() -method.

Besides these various methods that influence the camera’s appearance and moving behaviour,
there are two methods, decoupl eCaner aYawAndRol | () and coupl eCaner aYawAnd-
Rol I (), which give control over the coupling of yawing with rolling. When flying around and
performing a yaw, the camera is rolled proportionally with the new direction (this is the default
behaviour), just as it happens in a real airplane.

2.3 Color, fog, lighting and texture management

OpenGL’s lighting-model is rigidly defined. To obtain the most out of it, it is necessary to under-
stand its inner-workings (which can be explored in [SA99]). The TOpenGLApp-class provides
some straightforward methods for controlling this lighting-model.

16

2.3.1 Color

Colors are specified by using their red-, green- and blue-components (which lie in the [0, 1]-
interval) or by using a Col or -object (as defined in ~/SvenGL/opengl/primitives.h). The back-
ground-color can take an extra parameter (its alpha-component) which specifies it opacity (0 in-
dicates complete transparency, 1 indicates total opacity). When using OpenGL’s lighting-model,
ten material-components have to be defined : the red-, green- and blue- ambient-components,
the red-, green- and blue- diffuse-components, the red-, green- and blue- specular-components
and finally a shininess-coefficient (refer to OpenGL’s lighting-model for more complete details).
Several predefined materials are provided with the set Mat er i al ToXXX() -methods. Note
that an (optional) emissive-component can be specified (that is to say, its red-, green- and blue-
components) by using the set G ow() -method.

When using these methods, OpenGL colors objects according to the light that shines on them.
In order to produce a color that is invariant under lighting, use the set Har dCol or () -method
(for example, to draw objects/strings that always need to be visible, regardless of the lighting).

Note that when specifying colors using the Col or -class, it is possible to use the following
predefined colors : kBl ack, kBl ue, kG een, kCyan, kRed, kMagent a, kDar kBr own,
kBr own, kLi ght Br own, kDar kG ay, kG ay, kLi ght G- ay, kWhi t e and kYel | ow.

void clearScreen(void) const;
void setBackgroundColor(double red,
double green,
double blue,
double alpha) const;
void setBackgroundColor(const Color& color) const;
void setColor(const Color& color) const;
void enableSmoothShading(void) const;
void enableFlatShading(void) const;
void setMaterial(const Color& ambientColor,
const Coloré& diffuseColor,
const Color& specularColor,
double shininessCoefficient) const;
void setMaterialToBlackPlastic(void) const;
void setMaterialToBrass(void) const;
void setMaterialToBronze(void) const;
void setMaterialToChrome(void) const;
void setMaterialToCopper(void) const;
void setMaterialToGold(void) const;
void setMaterialToPewter(void) const;
void setMaterialToSilver(void) const;
void setMaterialToPolishedSilver(void) const;
void setGlow(const Color& glowColor) const;
void dontGlow(void) const;
void setHardColor(const Coloré& color) const;
void setGlobalAmbientLight(const Color& ambientColor) const;
void enableExplicitViewpointCalculation(void) const;
void disableExplicitViewpointCalculation(void) const;

17

Note that the shi ni nessCoef f i ci ent -parameter must lie in the [0, 128]-interval.

OpenGL computes specular reflection using the ‘halfway-vector’ h = s + v and assumes by
default that v is constant (namely (0, 0, 1), which results in faster rendering. In order to com-
pute the true value of v, use the enabl eExpl i ci t Vi ewpoi nt Cal cul at i on() -method.
Use the di sabl eExpl i cit Vi ewpoi nt Cal cul ati on() -method to disable this explicit
computation.

2.3.2 Fog

Fog is merely the blending of objects in the distance with a uniform “space-filling’ color. Typi-
cally, the fog is made out of a dark shade of gray. Two types of fog are supported : linear and
exponential. These types refer to the method used when blending the objects’ colors with the fog.
This blending is based on the distance of the object (or more specifically, a part of the object) to
the eyepoint. The following equation is used :

C = f Copject + (1 =) - Ctog: 2.1)

in which f specifies a value (between 0 and 1) that is based on the distance-measure to use,
Cobject specifies the object’s part’s color and Cfog specifies the color of the fog.

void enableLinearFog(const Color& fogColor,
double start, double end) const;
void enableExponentialFog(const Coloré& fogColor,
double density) const;
void disableFog(void) const;

If linear fog is enabled, the following equation is used for calculating the fraction f :

f==

€— S

(with s # e), (2.2)

in which s and e specify two planes on the Z-axis that determine the fog-start en fog-end. If
however, exponential fog is enabled, the equation for calculating the fraction f becomes :

f=e"@ (withd > 0), (2.3)

in which d now specifies the fog’s density.
In both equations, z is the eye-coordinate distance from the eye to the object’s part.

18

2.3.3 Lighting

Lighting in OpenGL must be explicitly enabled (i.e., switched on) in order to properly render
objects according to their specified materials. It is also necessary that a number of lights is acti-
vated, which is done using the swi t chLi ght On() -method. The different possible lights are :
kLi ght 1,kLi ght 2,kLi ght 3,kLi ght 4,kLi ght 5,kLi ght 6, kLi ght 7andkLi ght 8.

void switchLightingOn(void) const;
void switchLightingOff(void) const;
void switchLightOn(int light) const;
void switchLightOFf(int light) const;
void setLightPosition(int light, const Point3D& position) const;
void setLightDirection(int light, const Vector3D& direction) const;
void setLightProperties(int light,
const Color& ambientColor,
const Coloré& diffuseColor,
const Coloré& specularColor) const;
void makeSpotLight(int light,
const Vector3D& directionOfLightCone,
double cutOffAngle,
double exponent) const;
void enableLightAttenuation(int light,
double constantAttenuation,
double linearAttenuation,
double quadraticAttenuation) const;
void disableLightAttenuation(int light) const;

Each light can have specific ‘material’ characteristics which are used when modulating the spe-
cific components of an object’s color/material.

There are three types of lights : positional lights, directional lights and (positional) spotlights.
The first two are uniformly radiating point light-sources and they can be specified using the set -
Li ght Posi ti on()-andset Li ght Di r ecti on() -methods. Spotlights only radiate inside
a specified cone of light (controlled by the di r ect i onCF Li ght Cone-and cut O f Angl e-
parameters). The light-strength inside this cone can also be attenuated according to a cos™-term
where the n actually is the exponent -parameter.

For every light, it is possible to attenuate (diminish) its strength with the distance, according to
the following equation :

. 1
attenuation = 2.4
ke + kD + k,D?’ (2.4)

in which D is the distance of the object to the light-source. The k., k; and &, are specified by
theconst ant Att enuati on-,| i near At t enuati on-and quadr ati cAtt enuati on-
parameters.

19

2.3.4 Texture management

Applying textures to objects is relatively easy, correctly setting things up however requires
some more detail. An important feature of the TOpenGLApp-class is the get Uni queTex-
t ur el ') -method, which returns a unique number that OpenGL can use to identify a specific
texture.

int getUniqueTexturelD(void) const;

void enableGoodTexturelnterpolation(void);
void disableGoodTexturelnterpolation(void);
void enableGlowingTextures(void);

void disableGlowingTextures(void);

Currently, only texturing of quadrilaterals is supported (see section 2.4.3). When OpenGL is
computing a texture-lookup, it can do this very straightforward (and fast) by selecting the texel
whose coordinates are nearest to the center of the pixel under consideration. This may however
lead to aliasing effects, which can be corrected by using a linear interpolation (with the enabl e-
GoodText ur el nt er pol at i on() -method), which has the disadvantage that the rendering
speed will slow down.

Two modes for texturing are allowed : glowing and non-glowing textures. The first method is
also known as decal-mode, in which the texture is just painted on the surface and no light-
contributions are taken into account. The other mode, called modulate-mode, considers the ef-
fects the different specified lights can have. Switching between the two modes is done using the
enabl ed ow ngText ures()-and di sabl ed@ ow ngText ur es() -methods.

2.4 Graphicsroutines

The graphics routines come in a wide variety, suited for two- or three-dimensional drawing.
Scene-rendering is also supported (by using OpenGL’s Z-buffer algorithm or TOQpenGLApp’s
ray tracing engine.

2.4.1 2D-graphics routines

A number of methods are provided for drawing points (of a specified size), lines, regular poly-
gons and circles (which are regular polygons with a large number of edges).

void point(double x, double y) const;

void point(const Point2D& p) const;

void setPointSize(double pointSize) const;

void line(double x1, double yl1, double x2, double y2) const;
void line(const Point2D& p, const Point2D&) const;

void lineTo(double x, double y);

20

void lineTo(const Point2D& p);

void moveTo(double x, double y);

void moveTo(const Point2D& p);

void lineRel(double dx, double dy);

void moveRel (double dx, double dy);

void forward(double distance, bool isVisible);

void turnTo(double degrees);

void turn(double degrees);

void ngon(int n, double x, double y, double radius,
double startAnglelnDegrees);

void ngon(int n, const Point2D& center, double radius,
double startAnglelnDegrees);

void circle(double x, double y, double radius);

void circle(const Point2D& center, double radius);

void polyLineFromFile(string filename) const;

void drawString(int x, int y, string str, const Coloré& color);

Note that the concept of turtle-graphics is provided through the f or war d() -, t urn() - and
t ur nTo() -methods. An interesting idea is the pol yLi neFr onFi | e() -method, which can
read in a file (that contains a description of successive two-dimensional line-segments) and draw
it. The file-format is as follows : the first number specifies the total number of polylines in the
file. After this number, all the polylines are in turn successively stored as follows : first a number
is specified that indicates the total number of points in the polyline. After this number all the
two-dimensional X- and Y-coordinates of these points are specified. Examples can be found in
the ~/SvenGL/data/meshes/2d-directory.

Drawing flat text on an absolute position in the application’s window, is supported by the dr aw-
St ri ng() -method. Note that the current color- and material-definitions are overwritten by this
method (because it uses set Har dCol or () , which can be found in section 2.3.1).

2.4.2 3D-graphics routines

The three-dimensional counterparts of the routines in the previous section are roughly the same,
only they operate on Poi nt 3D-objects (or X-, Y- and Z-coordinates).

void point(double x, double y, double z) const;
void point(const Point3D& p) const;
void line(double x1, double y1, double z1,

double x2, double y2, double z2) const;
void line(const Point3D& p, const Point3D&) const;
void lineTo(double x, double y, double z);
void lineTo(const Point3D& p);
void moveTo(double x, double y, double z);
void moveTo(const Point3D& p);
void lineRel(double dx, double dy, double dz);
void moveRel (double dx, double dy, double dz);
void cone() const;

21

void cube() const;

void cylinder() const;

void dodecahedron() const;

void icosahedron() const;

void octahedron() const;

void sphere() const;

void taperedCylinder(double topRadius) const;

void teapot() const;

void tetrahedron() const;

void torus(double tubeRadius, double torusRadius) const;

Note that three-dimensional turtle-graphics and text are not supported for drawing. Refer to sec-
tion 3.3 for specific details on the scales and orientations of the cone, cube, (tapered) cylinder,
dodecahedron, icosahedron, octahedron, sphere, teapot, tetrahedron and torus.

2.4.3 Miscellaneous 3D-graphics routines

Texture management was already discussed in section 2.3.4. The actual texture-mapping how-
ever, is done using the t ext ur eQuad() -method. Several parameters are necessary, describing
which texel-coordinate to associate with each of the four three-dimensional points of the quadri-
lateral. An RGBApi xmap* must also be specified, and its size must either be 96x96, 128x128
or 256x256 pixels. Note that more detailed textures require more memory and slow down the
rendering process.

void textureQuad(const RGBApixmap* const pixmap,
const Point2D& tUpperLeft,
const Point2D& tLowerlLeft,
const Point2D& tLowerRight,
const Point2D& tUpperRight,
const Point3D& pUpperLeft,
const Point3D& pLowerLeft,
const Point3D& pLowerRight,
const Point3D& pUpperRight) const;
void drawLandscape(const TerrainMap& terrainMap,
bool uselLandscapeMaterials,
bool smoothenVertexNormals,
bool applyTextureMapping) const;
void showAxes(double length, double thickness) const;

Drawing landscapes is done using the dr awLandscape() -method, which is based on the in-
formation stored in a Ter r ai nMap-object (see the file ~/SvenGL/opengl/terrainmap.h for
more details about its interface). If landscape-materials are being used (toggle this with the
kUseLandscapeMat eri al s-and kDont UseLandscapeMat er i al s-constants), each

polygon in the landscape is modeled with a global material, making correct OpenGL light-calcu-
lations possible. If the vertex-normals must be smoothed (toggle this with the k Smoot henVer -
t exNor mal s-and kDont Snoot henVer t exNor mal s-constants), the normals of a vertex’s

22

six surrounding triangles are averaged, which results in super-smooth color-transitions between
the landscape’s polygons. If texture-mapping needs to be applied (toggle this with the kAp-
pl yText ur eMappi ng- and kDont Appl yText ur eMappi ng-constants), the three differ-
ent types of textures (sea, mountain/land en snow) of the pixmap are used. Note that when using
textures, only quadrilaterals are supported, so every two triangles in the landscape are combined,
resulting in a slightly ‘checkered’ landscape. Refer to ~/SvenGL/landscape.cpp to develop a
more grasping intuition for working with landscapes).

A final miscellaneous method is provided for drawing the world’s axes (the showAxes() -
method). These axes are shown as small cylinders, ended with cones. The X-axis is colored red,
the Y-axis is colored green and the Z-axis is colored blue.

2.4.4 Scene-rendering (OpenGL and ray tracing)

Scene-rendering is based on the SDL-language (described in chapter 3). The rendering can be
done using OpenGL’s own internal Z-buffering algorithm, or using the high-end ray tracing en-
gine that the TOpenGLApp-class provides.

void loadScene(string filename);
void clearScene(void);
void setSceneViewSettings(void);
void enableSceneLighting(void) const;
void drawScene(void);
void rayTraceScene(int blockSize,
int nrOfConeSamples,
EShadowComputationMode shadowComputationMode,
double shadowFeelerJitterStrength,
EAntiAliasMode antiAliasMode,
bool useStochasticSampling,
double jitterStrength,
bool normalizeColors,
double normalizeBrightness,
bool findNormals,
double fFindNormalsProbability,
bool followRays,
double followRaysProbability);
long getNrOfRaysShot(void);

Historically, the Scene-class and the TOpenGLApp-class were constructed separately and an
interface between the two had to be set up. This resulted in some methods that give both classes
the ability to access each other’s initialization- and result-code. Loading a scene for example,
falls under initialization-code and is done using the | oadScene() -method (the same holds for
clearing a scene). To convey the new camera-settings (who can also be specified in SDL) and
lighting to OpenGL, the set SceneVi ewSet t i ngs() - and enabl eSceneLi ghti ng() -
methods are provided.

23

Drawing a scene can quickly be done by using the dr awScene() -method, which performs
OpenGL’s Z-buffering.

If however, higher quality is required, this can be done by ray tracing a scene. The downside
is the massive amounts of time and calculations that are spent rendering this scene, as opposed
to the very quick rendering-scheme used by OpenGL. The ray tracing engine built inside the
TOpenGLApp-class is fully explained in chapter 4. A rather large amount of parameters is pro-
vided to fine-tune the rendering of a scene. One of these parameters is the shadowConput a-
t i onMode, which can be either kNoShadows, kHar dShadows or kSof t Shadows. Anti-
aliasing can also be done (this is however fundamentally different from OpenGL’s averaging), it
is partially controlled by using the ant i Al i asMbde-parameter, which can be kUselSanpl e,
kUse5Sanpl es or kUse9Sanpl es. Note however, that enabling shadow computation and
anti-aliasing significantly slow down the rendering process.

It is possible to visualize the normals on the surfaces of the objects in a scene by setting the
f i ndNor mal s-parameter to t r ue and specifying a percentage of the normals that must be
shown (using the fi ndNor mal sPr obabi | i t y-parameter). In order to visualize the sec-
ondary rays themselves (these are the rays spawned after the primary (eye) rays), set the f ol -
| owRays-parameter to t r ue and specify a percentage of the rays that must be shown (using
the f ol | owRaysPr obabi | i t y-parameter).

2.45 2D- and 3D-transformations

Three kinds of affine transformations are supported (for both two- and three-dimensional ob-
jects). These transformations include rotations, translations and scalings.

void initCT(void) const;

void rotate2D(double degrees) const;

void rotate3D(double degrees, double x, double y, double z) const;
void translate2D(double dx, double dy) const;

void translate2D(const Point2D& p) const;

void translate3D(double dx, double dy, double dz) const;
void translate3D(const Point3D& p) const;

void scale2D(double sx, double sy) const;

void scale3D(double sx, double sy, double sz) const;
void pushCT(void) const;

void popCT(void) const;

OpenGL’s rendering-scheme uses a so-called model-view-matrix, which can be modified by using
the above methods. It is also possible to use a stack of these matrices, so transformations can be
nested in a way. These methods are called i ni t CT() , which initializes the current transforma-
tion (CT or model-view-matrix) with the identity matrix, pushCT() and popCT() which both
control the CT’s stack-behaviour.

24

Chapter 3

SDL

SDL is an acronym which stands for Scene Description Language. It is used as a file-format
for conveniently storing scenes composed of three-dimensional objects. The basic SDL-syntax,
as defined in [Hil01], is however extended to allow more freedom and a better usability. In this
chapter, the new SDL-syntax is explained.

3.1 General layout

SDL is parsed from top-to-bottom, constructing objects (shapes) in a scene by maintaining the
current-transformation (the CT from section 2.4.5) which is applied to every shape. This CT can
be changed (much in the same way as described in that section) by using affine transformations
which modify it to reflect their results.

The following two sections deal with the different SDL-keywords. In section 3.2 they are bundled
together in categories for easier reference, in section 3.3 the supported shapes are considered.
Note that SDL-keywords are case-insensitive and their parameters need not all reside on one
line.

3.2 Thedifferent categories

3.2.1 Comments

A comment starts with an exclamation-mark (!) and continues until the end of the line. Comments
can be placed after keywords as well.

25

3.2.2 Lights

Only two types are supported : positional point-lights and positional spotlights (thus no direc-
tional lights).

light <px> <py> <pz> <red> <green> <blue>
spotlight <px> <py> <pz> <red> <green> <blue>
<dx> <dy> <dz> <cut-off angle> <exponent>

The positions are specified using the px-, py- and pz-coordinates. The r ed-, gr een- and
bl ue-components refer to a light’s diffuse- and specular-components (no ambient-component
is used). Refer to section 2.3.3 for more details on the parameters for spotlights (note that the
cut - of f angl e is specified in degrees).

3.2.3 Transformations

Managing the current transformation (CT), in order to adjust the positions, orientations and scales
of the generic shapes, can be done using the following SDL-keywords :

identityAffine

rotate <angle> <ux> <uy> <uz>

translate <dx> <dy> <dz>

scale <sx> <sy> <sz>

transform <x1> <yl> <z1> <X2> <y2> <z2> <x3> <y3> <z3>
push

pop

Their working is the same as explained in section 2.4.5, only here they are meant for three-
dimensional transformations only. Note that an extra keyword is provided : t r ansf or m Using
this keyword, it is possible to specify a more general transformation (such as for example a
shear).

3.2.4 Boolean-objects

Boolean-objects are used in constructive solid geometry (CSG). They allow a rich set of com-
binations, based on simple shapes. The downside however is that they cannot be rendered using
OpenGL’s Z-buffer algorithm. They can be ray traced, but at a dramatic decrease in rendering
speed. Three sorts of combinations are allowed :

difference <left-child> <right-child>

intersection <left-child> <right-child>
union <left-child> <right-child>

Note that the children of each of these boolean-objects can contain other materials, affine trans-
formations, . . ., so they are typically enclosed in a (push,pop)-pair.

26

3.2.5 Material-properties

A full set of material-properties can be specified for each shape :

defaultmaterials

surfaceRoughness <value>

emissive <red> <green> <blue>
ambient <red> <green> <blue>
diffuse <red> <green> <blue>
specular <red> <green> <blue>
specularExponent <value>
lightBackFaces <value>

reflectivity <value>
glossStrength <value>

transparency <value>
translucencyStrength <value>

priority <value>

speedOfLight <value>
retainAmbientColor <value>
retainDiffuseColor <value>
retainSpecularReflection <value>
disableRefraction <value>

Perturbing a surface’s normal is done using the sur f aceRoughness-keyword. The value
given typically lies in [0, 1]. Coloring is controlled using the em ssi ve-, anbi ent -, di f -
f use-, specul ar-and specul ar Exponent -components, as described in section 2.3.1 (the
specul ar Exponent -componentis the same as the shi ni nessCoef f i ci ent -parameter).

When using boolean-objects, the new, visible ‘inside’” might not always be lit. To accomodate
this, set the value following | i ght BackFaces to 1 (use O to disable it, as is the default).

The values for refl ectivity and t ranspar ency lie in the interval [0,1]. oss and
t ransl ucency are based on jittering rays in a cone an