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MODELLING TRAFFIC ON MOTORWAYS:
STATE-OF-THE-ART,

NUMERICAL DATA ANALYSIS,
AND DYNAMIC TRAFFIC ASSIGNMENT

KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK ESAT-SCD (SISTA)
Kasteelpark Arenberg 10, B-3001 Leuven (Heverlee)



i

i

i

i

i

i

i

i

c© Katholieke Universiteit Leuven
Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Leuven (Heverlee, België)
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“Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.”

— Douglas A. Hofstadter
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Dankwoord

“Piled Higher and Deeper” by Jorge Cham1

Het is een vermaard gegeven, het dankwoord is absoluut en onafstrijdbaar het meest
gelezen deel van een doctoraat. Naast de begeleidingscommissie die er haar oordeel
over velt, en die vier mensen in de wereld die het ter hand nemen en ook daadwerkelijk
gebruiken, bestaat het overgrote deel van het lezerspubliek uit zij die dit schrijfsel via
het Internet downloaden of die het op de dag van de verdediging in fysieke vorm
openslagen. Daarbij geldt trouwens ook de universeel academische waarheid, dat van
alle stukken die er in een dergelijk boekje worden neergeschreven, het dankwoord
ongetwijfeld tot het meest plezante wordt gerekend; hier vloeien de woorden pas echt
(voor zij die het wensen te weten, de meest afgrijselijke delen om te schrijven zijn de
Nederlandse samenvatting, de abstract, de vertaling van de abstract, de inleiding en de
conclusies, in die volgorde).

Goed, laat ons even terugkeren naar de essentie van het alles, namelijk het tot stand
komen van een dergelijk stukje tekst. Een typische platitude die menig auteur hier
pleegt te verkondigen, is het feit dat je een doctoraat niet alleen schrijft . . . Maar als
we eerlijk zijn, dan moeten we toch toegeven dat het, ondanks de netwerk-kwaliteiten
van menig assistent, vaak vele eenzame uren achter de computer zijn. Voor sommigen
is doctoreren een job die ze van negen tot vijf doen, echter voor mij is dat absoluut
niet het geval. Denk ik maar even terug aan de meest bizarre uren waarop ik soms het
toetsenbord beroerde, de rare manier van leven die zich uitte in een halve onregelmaat

1http://www.phdcomics.com
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qua eettijden, het concept ‘ochtend’ dat plots al zijn betekenis verliest, et cetera. Eraan
beginnen is niet het grote werk, maar het afwerken dat is vaak de karaktertest. Hierbij
valt me plots op dat ik zelf de niet-zo-fijne dingen vaak tot op het laatste moment uit-
stel. Misschien had ik toch maar beter Joan Bolker’s boek “Writing Your Dissertation
in Fifteen Minutes a Day” [Bol98] op voorhand eens gelezen. Nu ja, de afgelopen
jaren waren best een levendige periode, met de gekende toppen en dalen (de eerste
zitten vaak aan het begin en einde van een hoofdstuk, de laatste in de schrijfperiode
daartussen).

Ok, het is zover . . . tijd voor het echte werk.

El numero uno is de geprezen promotor Bart De Moor, of ‘den BDM’ zoals hij in
de wandelgangen en op die gele Post-it notes wordt genoemd. Qua dynamiek, flam-
boyantie en stijl steekt hij met kop en schouders boven iedereen uit. Onder de vaak
gehoorde kenmerken vallen zijn inspirerende kracht, zijn ambitieuze ideeën, zijn en-
thousiasme, . . . Mijn persoonlijke inbreng in deze laudatio is dat ik hem dank voor
de vrijheid van meningsuiting, wat soms resulteerde in nogal harde en luide discus-
sies die we hielden over de zin en onzin van doctoreren, de doctoraatsopleiding, de
administratie, . . . Ik diende me hierbij nooit een blad voor de mond te nemen, en als
ik al eens te ver ging met de scherpe speerpunt die ik vooral in het begin was, dan gaf
hij wel gepaste repliek waardoor ik de volgende keer twee keer nadacht. Gezien zijn
drukke agenda verliep onze communicatie bijna uitsluitend over e-mail, en nu ik er bij
stilsta, geschiedde dit ook meestal ’s nachts. Dank ook voor de talrijke gastlezingen
die ik voor je mocht geven, ze zorgden ervoor dat ik mijn boekenplank degelijk heb
kunnen spijzen. Ook bedankt om me onder je vleugels in SISTA te nemen, en me de
kans te geven mijn doctoraat verder af te kunnen werken in de periode dat het plots
veel langer duurde dan ik aanvankelijk had gedacht (tiens, ik hoor hier Hofstadter
klinken).

Speciale dank gaat uit naar mijn co-promotor professor Ben Immers, de man die me
bruisend van energie vaak de zonnige zijde van een doctoraat liet zien. Discussies
met hem waren steeds inspirerend, en vaak zat ik gretig te luisteren naar zijn relaas
over de projecten die hij met TNO in Nederland uitvoerde. En of je nu bij hem in
zijn bureau zit, met hem tafelt in een restaurant, of een glas nuttigt op een terras, zijn
enthousiasme zal altijd even aanstekelijk werken.

Ik bedank ook de andere leden van de jury voor hun bereidheid om mijn proefschrift te
lezen en beoordelen, meerbepaald professor Paul Van Houtte als voorzitter, professor
Joos Vandewalle waarmee het altijd fijne momenten waren tijdens het mondelinge
examen van HK05, professor Guy Campion om deel van de begeleidingscommissie
en jury te willen uitmaken, professor André Barbé om op de valreep nog in mijn jury te
willen zetelen en op heel korte tijd de grote brok tekst door te lezen, Bart De Schutter
voor de vele waardevolle opmerkingen en suggesties (hij liet me de puntjes op de ‘i’
zetten); I also like to thank Andreas Schadschneider for agreeing to participate in my
PhD jury.
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SISTA is een dynamisch clubje mensen, individuen die niet schrikken van woorden
zoals systeem, chaos, regeling, verkeer, quantum, genoom, tensor, classificatie, LS-
SVMs, spraak, cryptografie, document, bier, warme hapjes en recepties. Onder de vele
collega’s vermeld ik in het bijzonder mijn bureaugenoten, namelijk Tom Bellemans
waarmee ik gedurende twee jaar de onderafdeling ‘Verkeer@SISTA’ vormde; Steven
Bex die ik vaak tegenkwam op recepties, ofwel tijdens een meestal-lang-uitgelopen
babbel telkens ik naar het tweede afzakte; Maarten Van den Nest met zijn immer
cryptische formules waar ik nog altijd totaal geen snars van begrijp (die QIT’ers zijn
een raar ras); Dries Van Dromme die me een glimp van de evil-world der table-top
gamers liet opvangen (“The invasion shall take place, burning the sky, cleansing the
earth, no one can escape the Zerg”). Een speciaal woord van dank gaat ook uit naar
zij die de administratieve ruggengraat van SISTA vormen, namelijk Ida Tassens, Ilse
Pardon, Veerle Duchateau, Péla Noé en Bart Motmans.

Ook de collega’s Isaak Yperman, Chris Tampère en Jim Stada van de vakgroep Ver-
keer en Infrastructuur wens ik te bedanken voor de verkeerskundige babbels. In het
bijzonder vermeld ik hier Steven Logghe, zonder wie ik waarschijnlijk nooit in Leu-
ven was terecht gekomen, ware het niet dat hij op een dag tijdens het Googlen mijn
digitale persoonlijkheid tegenkwam. Ik dank hem ook voor de vele fijne en punti-
ge wetenschappelijke debatten die soms zo passioneel gevoerd werden dat een luide
stemverheffing geen uitzondering was, alsmede voor het nalezen van mijn tekst en het
geven van constructieve opmerkingen.

Ik dank het Federaal Wetenschapsbeleid (wat ooit de afkorting DWTC droeg) voor de
financiering van mijn onderzoek. Ook Stefaan Hoornaert van het departement Mobi-
liteit en Openbare Werken van het Verkeerscentrum Vlaanderen wens ik te bedanken
voor de massa’s verkeersmetingen (tellingen) die ik voor mijn onderzoek toegestuurd
kreeg.

Tot slot dank ik mijn vrienden van de jeugdbeweging K.S.A. ‘Vlaamse Kerels’ Zwijn-
drecht; op de weinige momenten die me nog resteerden kon ik me bij hen uitleven
zonder me zorgen te maken. Ook mijn familie en in het bijzonder mijn ouders verdie-
nen een woord van dank voor de mentale steun en blijvende motivatie; het zijn twee
zeer fijne mensen die altijd in mij geloofden.

En dan is er Sanne; jij bracht de andere helft van regelmaat in mijn leven. Zonder jou
zat ik nu waarschijnlijk aan hoofdstuk 327 te schrijven en raakte dit doctoraat nooit af.
Ik dank jou voor je lieve woorden, je warme glimlach, de momenten dat je er gewoon
was en geen vragen stelde, de andere momenten waarop je de ene na de andere vraag
afvuurde en terecht achter mijn veren zat, de spiegel die je vaak voor me was telkens
je me confronteerde met mijn eigen manier van doen, en hoe je me recht trok als ik te
zeer van het pad afweek en dreigde verloren te lopen. Sanne, een kus want je bent de
ene uit de 6.6 miljard !

Sven Maerivoet
Leuven, 27 juni 2006
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Abstract

With the levels of congestion in cities and countries showing an ever-increasing trend,
the modelling of road traffic continues to be a highly active field. Whereas numerous
efforts have been undertaken towards the local and global control of traffic flows, our
research is aimed at the modelling part of road traffic, more specifically traffic on
motorways.

The goal of this dissertation is three-fold; for starters, we provide a complete nomen-
clature convention within traffic flow theory, built upon a consistent set of notations.
In continuation, we give an in-depth literature survey on the mathematical models
used for describing road traffic flows, both from a transportation planning and a flow
propagation point of view. Special attention is given to the class of cellular automata
models of road traffic. Secondly, we perform an exploratory data analysis of raw
traffic flow measurements, discussing the operational characteristics of single-loop
detectors. This analysis also provides researchers with tools to track statistical out-
liers, to quickly assess structural and incidental detector failures, to estimate travel
times in an off-line fashion based on raw cumulative counts, and to obtain a visual
representation of traffic flow dynamics in time and space. Finally, we provide, within
the context of simulation-based dynamic traffic assignment, a straightforward method
to tackle both departure time choice and dynamic route choice problems in a sequen-
tial manner, built around a traffic flow model that is represented as a computationally
efficient cellular automaton.

Our contributions to the field of literature are distinct, in that such comprehensive
overviews hitherto only existed in scattered form, whereas we provide a synthesis of
the approaches concerning the description of road traffic flows. Furthermore, in con-
trast to most research on the numerical analysis of traffic flow measurements, we offer
methods that are capable of dealing with large-scale data sets in order to get a global
picture regarding the quality of the measurements. Finally, as opposed to many ap-
proaches towards the paradigm of simulation-based dynamic traffic assignment, we
propose a methodology that sequentially integrates departure time choice with route
choice within a simulation framework.
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Korte samenvatting

Terwijl de filevorming in steden en landen een immer-toenemende trend vertoont,
wordt het modelleren van wegverkeer een steeds maar actiever vakgebied. Daar waar
reeds vele inspanningen werden gedaan met betrekking tot de lokale en globale rege-
ling van verkeersstromen, is ons onderzoek gericht op het modelleren van wegverkeer
op autosnelwegen.

Het doel van ons onderzoek is drievoudig; eerst geven we een volledige standaard
omtrent nomenclatuur binnen het gebied van de verkeerskunde, gebaseerd op een
consistente verzameling notaties. Dit wordt gevolgd door een gedetailleerd litera-
tuuroverzicht omtrent de wiskundige modellen die gebruikt worden om het verkeer
op wegen te beschrijven, dit vanuit zowel het standpunt van transportplanning als
stromingsmodellen. Speciale aandacht gaat uit naar de klasse van cellulaire auto-
maatmodellen van wegverkeer. Ten tweede voeren we een verkennende data analyse
van ruwe verkeersmetingen uit, waarbij we de operationele karakteristieken van en-
kelvoudige lusdetectoren bespreken. Verder reiken we onderzoekers middelen aan om
statistische uitschieters op te sporen, om op een snelle manier structurele en inciden-
tele storingen van detectors te beoordelen, om reistijden te schatten op een off-line
manier, gebaseerd op ruwe cumulatieve tellingen, en om een visuele voorstelling van
de dynamica van verkeersstromen in tijd en ruimte te verkrijgen. Tot slot, voorzien
we, binnen de context van simulatie-gebaseerde dynamische verkeerstoedeling, een
duidelijke methode om zowel de problemen van de keuzes van vertrektijdstip en route
op sequentiële wijze te combineren, dit gebouwd rond een verkeersstroommodel dat
uitgewerkt wordt als een computationeel efficiënte cellulaire automaat.

Met betrekking tot de literatuur onderscheiden onze bijdragen zich doordat ze een
synthese vormen van de benaderingen voor het beschrijven van wegverkeer, terwijl
dergelijke samenvattingen tot op heden enkel verspreid bestonden. Om een globaal
beeld te krijgen met betrekking tot de kwaliteit van verkeersmetingen, bieden wij daar-
naast methodes aan die kunnen omgaan met grootschalige data, dit in tegenstelling
tot het meeste onderzoek naar de numerieke analyse van verkeersmetingen wat vaak
slechts op beperkte data wordt uitgevoerd. Tenslotte met betrekking tot de vele bena-
deringen van het paradigma van simulatie-gebaseerde dynamische verkeerstoedeling,
stellen wij een methodologie voor die de keuze van het vertrektijdstip sequentieel met
de routekeuze integreert.

vii
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Chapter 1

Introduction

Considering the current road traffic problems in cities and countries, it is becoming
more apparent each day that we can not completely solve congestion. But all is not
lost, as we can try to alleviate it in some way, by making the journeys as comfortable as
possible, perhaps even diminishing the delays (which is an entirely different thing than
eliminating them). It still remains a conundrum to tackle road traffic congestion on
a global scale, requiring an integrated approach that combines several control tech-
niques, e.g., the advanced traffic management systems (ATMS) such as dynamic route
guidance, ramp metering, speed harmonisation, tidal flows, . . . , and policy meas-
ures decided upon by (local) governments. These latter are finding root in methods
such as congestion pricing which is gaining appreciation, better and cheaper public
transportation, . . . to even some of the most bizarre proposals encountered, e.g., our
own liberal senator Jean-Marie De Decker who boldly put forward the concept of
‘double-deck motorways’ as a method to expand capacity, thereby reducing conges-
tion. In contrast to some of the jump-the-gun measures, smoother traffic operations
should be accomplished by using the existing road network, without the need for new
infrastructure (note however that local adaptations of the current infrastructure are
still allowed). The aim of our dissertation is to provide road traffic engineers with
a solid background in road transportation modelling, whereby we spend attention on
the literature part, as well as the analysis of numerical data, and the development of
a framework for performing integrated dynamic traffic assignment.

In the introduction of this dissertation, we briefly depict the background on which our
research was conducted, as well as the goals that were set. The subsequent section
then provides a road map of the structure of the dissertation, after which the final
section gives a chapter-by-chapter overview and highlights our own contributions.

1
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2 Chapter 1 – Introduction

1.1 Background and research goals

Over the course of the last ten to fifteen years, we have noticed how other scientific
fields besides the traditional mathematical, physics, and engineering disciplines have
entered the field of transportation research. Recognising the fact that individual drivers
are human beings that perform simultaneous and complex operations, increases the
push towards more psychologically-oriented domains (e.g., to investigate the reasons
why collisions occur, why a driver’s attention fails, . . . ). At an even higher level, we
see how collective dynamics, i.e., the socio-economic behaviour of large groups of
travellers, has entered the field.

We have also seen an evolution towards more autonomy in vehicles, with older tech-
nological examples such as anti-locking brake system (ABS), electronic power steer-
ing (EPS), electronic stability programme (ESP), traction control system (TCS), . . .
More recently, we notice an increased degree of advanced technologies such as lane
guidance systems, e.g., Volvo’s emergency lane assist (ELA), adaptive cruise con-
trol (ACC), collision avoidance systems, . . . One of the most culminating highlights
in this area, is undoubtedly the 2005 Grand Challenge1 of the USA Department of
Defense’s (DoD) Defense Advanced Research Projects Agency (DARPA); unmanned
vehicles were required to drive autonomously over a course of some 200 kilometres
in the Mojave Desert.

As technological progress is more than ever present, this leads to the application of
theories to the real world, e.g., the implementation of traffic control measures). And
even though the modelling aspect remains important, the time has come to look at
what is practically possible with respect to concrete applications and implementations.
Today, powerful mathematical models can be put in computer, allowing them to be
used, e.g., for predictions in an on-line control setting. Whether or not simple or
complex models are used, it is the application that has become important, i.e., it is
actually time to do something with all our knowledge. Note that although most of the
discussed methods are also applicable to city traffic, the work in this dissertation is
primarily aimed towards motorways.

From this perspective, the first goal of this dissertation is to provide practitioners in
the field with a solid background in the modelling of road transportation. We still
encounter a frequent confusion among traffic engineers and policy makers when it
comes to transportation planning models and the role that traffic flow models play
therein. The literature survey given in this dissertation, is unique in that it provides a
rather complete overview, thereby eliminating the need to look for answers in the zoo
of papers and notations that currently exists.

A second goal of this dissertation is aimed at the numerical data analysis of raw traffic
flow measurements. Due to the advent of powerful, yet affordable, desktop com-
puters, it has now become possible to perform large-scale data analyses. We therefore
provide researchers with tools to track outliers, quickly assess structural and incidental

1http://www.darpa.mil/grandchallenge05/index.html

http://www.darpa.mil/grandchallenge05/index.html
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1.2 Structure of the dissertation 3

detector failures, a method for off-line travel time estimation, and reliability indicators
based on tempo-spatial maps.

The third and final goal of this dissertation, finds its roots in the concept of dynamic
traffic assignment. The current evolution in the scientific field is to endogeneously
include both departure time choice (i.e., when will a commuter depart for his/her jour-
ney ?) and dynamic route choice (i.e., which route will the commuter be taking ?). We
provide a straightforward method to tackle both problems in a sequential manner, built
around a traffic flow model that is represented as a computationally efficient cellular
automaton. The efficiency is furthermore enhanced with the concept of parallellisation
through distributed computing.

1.2 Structure of the dissertation

The dissertation is divided into four large parts, centred around (i) the physics of road
traffic and transportation (Chapters 2 and 3), (ii) cellular automata models of road
traffic (Chapters 4 and 5), (iii) numerical analysis of traffic data (Chapter 6), and (iv)
integrated dynamic traffic assignment (Chapter 7). The dissertation also contains a
part with conclusions and perspectives (Chapter 8), and four appendices.

In Figure 1.1 we provide a road map that depicts the logical structure and coherence
between the chapters: starting from Chapter 2 “Traffic flow theory”, the reader can
move on to Chapter 3 “Transportation planning and traffic flow models”. From then
on, the trajectory splits: on the one hand we have Chapter 6 “Data quality, travel
time estimation, and reliability” which is rather self-contained, on the other hand we
have Chapter 4 “Traffic cellular automata”. This latter Chapter finds continuation in
Chapter 5 “Relating the dynamics of the STCA to the LWR model”, and draws upon
the (didactical) software described in Appendix B “TCA+ JavaTM software”. Finally,
Chapter 7 deals with “Dynamic traffic assignment based on cellular automata”.

At the end of the dissertation, Appendix A provides the reader with a comprehensive
glossary of terms, divided into a list with acronyms and abbreviations, and a list of
symbols for each chapter separately. Appendix C talks about some thoughts related to
the steps towards obtaining a PhD degree, and the final Appendix D provides a Dutch
summary. The last three parts of the dissertation give an extensive list of literature
references, and lists of the author’s publications and presentations.
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PSfrag replacements

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix B

Traffic Flow Theory

Transportation Planning
and Traffic Flow Models

Traffic Cellular Automata
Data Quality,

Travel Time Estimation,
and Reliability

Dynamic Traffic Assignment
based on Cellular Automata

Relating the Dynamics
of the STCA

to the LWR Model

TCA+ Java Software

Figure 1.1: A road map depicting the logical structure and coherence between the chapters in
this dissertation.

1.3 Overview and contributions to the state-of-the-art

Chapter 2 – “Traffic flow theory”, provides a complete nomenclature convention, built
upon a consistent set of notations. These encompass the classical traffic flow variables,
some performance indicators, and a description of the different traffic flow regimes
and the correlations between the traffic flow characteristics. Finally, we also discuss
some of the different points of view with respect to the causes of congestion, as adop-
ted by the traffic engineering community.

Chapter 3 – “Transportation planning and traffic flow models”, gives a comprehens-
ive overview of transportation planning models, operating on a high level, and traffic
flow models that explicitly describe the physical propagation of traffic flows, typic-
ally on a lower level. We first focus on land-use models, both for the classical and
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modern approach, after which we highlight the traditional trip-based transportation
models, followed by an elaboration of the activity-based approach. Before moving
on to traffic flow propagation models, we give a brief account of the field of trans-
portation economics, concluding with a view on road pricing policies. From then on,
the chapter gives detailed information on the macroscopic, mesoscopic, and micro-
scopic traffic flow models. Our contribution to the state-of-the-art in the literature, is
an integrated survey that is able to help any researcher wishing to partake in the field,
thereby alleviating the need to dive into tons of course texts, papers, . . . most of the
time spread over different scientific areas. Note that our work excludes fields such as
traffic control theory and practice, as this is not the focus of our research.

Chapter 4 – “Traffic cellular automata”, details the field of traffic cellular automata
(TCA) models; they allow for computationally efficient, yet still detailed enough, cal-
culations of the propagation of traffic flows. Already, several reviews of TCA models
exist, but none of them considers all the models exclusively from the behavioural point
of view, as we do. As this kind of survey did not hitherto exist in the current scientific
field, our overview fills this void, caused by the need for researchers to have such a
comprehensive insight. In the chapter, we first recount the historical background of
cellular automata, after which we provide a mathematical description of them, includ-
ing methods for performing traffic flow measurements on their lattices when applied
to vehicular traffic. We then classify the existing TCA models in on the one hand
single-cell and on the other hand multi-cell models. The former include deterministic,
stochastic, and slow-to-start models. The overview of the latter first sheds some light
on an at-first-sight unexpected hysteresis phenomenon related to the use of a multi-
cell setup. The chapter ends with a focus on multi-lane traffic, city traffic, and results
obtained when converting these TCA models into an analytical form.

Chapter 5 – “Relating the dynamics of the STCA to the LWR model”, bridges a gap
between microscopic and macroscopic models, by explaining an alternate methodo-
logy that implicitly incorporates the STCA’s stochasticity into the macroscopic first-
order LWR model. The innovative aspect of our approach, is that we derive the LWR’s
fundamental diagram directly from the STCA’s rule set, by assuming a stationarity
condition that converts the STCA’s rules into a set of linear inequalities. These con-
straints define the shape of the fundamental diagram, which is then specified to the
LWR model. We apply the methodology to a small theoretical case study, leading to
the conclusion that, although for noise-free systems our method is exact, it becomes
very important to correctly capture the capacities in both the STCA and LWR models
in the presence of noise.

Chapter 6 – “Data quality, travel time estimation, and reliability”, gives a detailed
account of the procedures followed when aggregating traffic flow measurements by
means of single inductive loop detectors (SLDs) embedded in Flanders’ road network.
In a subsequent investigation, we uncover a significant discrepancy between the mean
speeds as estimated by the SLDs, and those explicitly calculated by the presumably
employed algorithm. We then implement a methodology that tracks outliers in traffic
flow data, from a statistical point of view. After providing several methods for deal-
ing with missing values, we develop a visual technique based on maps, allowing a
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6 Chapter 1 – Introduction

quick assessment of structural and incidental detector malfunctioning. Furthermore,
we provide a method for off-line travel time estimation based on raw traffic counts;
after constructing cumulative curves, the methodology performs synchronisation of
these curves, automatically taking into account systematic errors. From that point
on, it is possible to estimate the distributions of the travel time on a closed section.
The final part of the chapter gives a means for visualising reliability and robustness
properties of traffic flow dynamics, based on tempo-spatial maps that provide an extra
instrument for the analysis of recurrent congestion. Results are presented for applica-
tions to the E19 motorway and R0 ring road.

Chapter 7 – “Dynamic traffic assignment based on cellular automata”, elaborates
upon the development of a framework that allows us to perform dynamic traffic as-
signment (DTA). We first describe some previous approaches towards DTA, both from
an analytical and a simulation-based perspective. We then propose a methodology for
performing simulation-based integrated DTA, by which we mean the sequential in-
clusion of both departure time choice (DTC) and dynamic route choice (DRC). The
second part of the chapter elaborates upon the underlying dynamic network loading
(DNL) model, which is represented as a computationally efficient cellular automaton.
After providing a functional description and some code implementation details, we
explain a technique that further increases the efficiency by adopting the concept of
parallellisation through distributed computing, i.e., dividing the total work load over
several distinct central processing nodes.

Summarising, the main contributions of this dissertation are:

• Providing a logical and consistent terminology and notation for denoting traffic
flow variables (Chapter 2).

• Giving an overview of what is currently the state-of-the-art with respect to
traffic flow theory, more specifically centred around relations between traffic
flow characteristics, the causes of congestion, transportation planning models,
and traffic flow propagation models (Chapters 2 and 3).

• Detailing the field of traffic cellular automata models with a complete survey
and classification from the behavioural point of view. We focus on the histor-
ical background, a mathematical description, single- and multi-cell models (de-
terministic, stochastic, and slow-to-start), single-, multi-lane, and city traffic,
and analytical approximations (Chapter 4).

• Explaining a possible alternate methodology that incorporates the stochasticity
of a traffic cellular automaton model into a first-order deterministic macroscopic
model (Chapter 5).
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• Providing a method to track statistical outliers in traffic flow measurements
(giving pointers for dealing with missing values) and developing a visual tech-
nique for quick assessments of structural and incidental detector malfunctioning
(Chapter 6).

• Developing a methodology for deriving travel times on a closed section of the
road, based on raw cumulative counts, thereby estimating the distribution of the
travel time. Visualising traffic flow dynamics, based on tempo-spatial maps that
indicate recurrent congestion (Chapter 6).

• Proposing a framework for dynamic traffic assignment, in which departure time
choice and dynamic route choice (pre-route choice) are sequentially combined
with an efficient dynamic network loading model (Chapter 7).
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Chapter 2

Traffic flow theory

The scientific field of traffic engineering encompasses a rich set of mathematical
techniques, as well as researchers with entirely different backgrounds. This chapter
provides an overview of what is currently the state-of-the-art with respect to traffic
flow theory. Starting with a brief history, we introduce the microscopic and macro-
scopic characteristics of vehicular traffic flows. Moving on, we review some perform-
ance indicators that allow us to assess the quality of traffic operations. A final part of
this chapter discusses some of the relations between traffic flow characteristics, i.e.,
the fundamental diagrams, and sheds some light on the different points of view with
respect to the causes of congestion, as adopted by the traffic engineering community.

Because of the large diversity of the scientific field (engineers, physicists, mathem-
aticians, . . . all lack a unified standard or convention), one of the principal aims of
this chapter is to define both a logical and consistent terminology and notation. It is
our strong belief that such a consistent notation is a necessity when it comes to creat-
ing order in the ‘zoo of notations’ that in our opinion currently exists.

We stimulate practitioners from all trades to adopt these conventions; as such,
they have a common ground that disposes of the intrinsic hassles when reinter-
pretating another one’s thoughts. Take for example an engineer with a back-
ground in control theory, wishing to exchange ideas with an engineer having its
roots in, e.g., fluid dynamics. When talking about densities, the latter uses a letter
‘k’, whereas the former will frequently use the Greek letter ‘ρ’, because in his do-
main a ‘k’ typically means a discrete time step. This leads to possible ambiguous
interpretations, as the former uses the letter ‘ρ’ to denote occupancies. Adopting
a shared convention can therefore bridge both worlds and settle the confusion.
In this respect, we believe that practitioners writing for the international field of
traffic flow theory, should stick to our proposed standard, thereby putting the em-
phasis on the common part around traffic flow theory and not on their own specific
scientific field. In the previous example, this amounts to using, e.g., t ∈ N for the
time step.

11
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12 Chapter 2 – Traffic flow theory

For a concise but complete overview of all abbreviations and notations proposed and
adopted throughout this dissertation, we refer the reader to Appendix A.

2.1 A brief history of traffic flow theory

Historically, traffic engineering got its roots as a rather practical discipline, entailing
most of the time a common sense of its practitioners to solve particular traffic prob-
lems. However, all this changed at the dawn of the 1950s, when the scientific field
began to mature, attracting engineers from all sorts of trades. Most notably, John
Glen Wardrop instigated the evolving discipline now known as traffic flow theory, by
describing traffic flows using mathematical and statistical ideas [War52].

During this highly active period, mathematics established itself as a solid basis for
theoretical analyses, a phenomenon that was entirely new to the previous, more ‘rule-
of-thumb’ oriented, line of reasoning. Two examples of the progress during this dec-
ade, include the fluid-dynamic model of Michael James Lighthill, Gerald Beresford
Whitham, and Paul Richards (or the LWR model for short) for describing traffic flows
[Lig55; Ric56], and the car-following experiments and theories of the club of people
working at General Motors’ research laboratory [Cha58; Gaz59; Her59; Gaz61]. Sim-
ultaneous progress was also made on the front of economic theory applied to trans-
portation, most notably by the publication of the ‘BMW trio’, Martin Josef Beckmann,
Charles Bartlett McGuire, and Christopher Blake Winsten [Bec55].

From the 1960s on, the field evolved even further with the advent of the early personal
computers (although at that time, they could only be considered as mere computing
units). More control-oriented methods were pursued by engineers, as a means for al-
leviating congestion at tunnels and intersections, by, e.g., adaptively steering traffic
signal timings. Nowadays, the field has been kindly embraced by the industry, res-
ulting in what is called intelligent transportation systems (ITS), covering nearly all
aspects of the transportation community.

In spite of the intense booming during the 1950s and 1960s, all progress seemingly
came to a sudden stop, as there were almost no significant results for the next two
decades (although there are some exceptions, such as the significant work of Ilya
Prigogine and Robert Herman, who developed a traffic flow model based on a gas-
kinetic analogy [Pri71]). One of the main reasons for this, stems from the fact that
many of the involved key players returned to their original scientific disciplines, after
exhausting the application of their techniques to the transportation problem [New02a].
Note that despite this calm period, the application of control theory to transportation
started finding new ways to alleviate local congestion problems.

At the beginning of the 1990s, researchers found a revived interest in the field of traffic
flow modelling. On the one hand, researchers’ interests got kindled again by the ap-
pealing simplicity of the LWR model, whereas on the other hand one of the main
boosts came from the world of statistical physics. In this latter framework, physicists
tried to model many particle systems using simple and elegant behavioural rules. As
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2.2 Microscopic traffic flow characteristics 13

an example, the now famous particle hopping (cellular automata) model of Kai Na-
gel and Michael Schreckenberg [Nag92b] still forms a widely-cited basis for current
research papers on the subject.

In parallel with this kind of modelling approach, many of the old ‘beliefs’ (e.g., the
fluid-dynamic approach to traffic flow modelling) started to get questioned. As a con-
sequence, a plethora of models quickly found its way to the transportation community,
whereby most of these models didn’t give a thought as to whether or not their associ-
ated phenomena corresponded to real-life traffic observations.

We note here that, whatever the modelling approach may be, researchers should
always compare their results to the reality of the physical world. Ignoring this ba-
sic step, reduces the research in our opinion to nothing more than a mathematical
exercise !

As the international research community began to spawn its traffic flow theories,
Robert Herman aspired to bring them all together in december 1959. This led to the
tri-annual organisation of the International Symposium on Transportation and Traffic
Theory (ISTTT), by some heralded as ‘the Olympics of traffic theory’ because the
symposium talks about the fundamentals underlying transportation and traffic phe-
nomena. Another example of the evolution of recent developments with respect to the
parallels between traffic flows and granular media, is the bi-annual organisation of the
workshop on Traffic and Granular Flow (TGF), a platform for exchanging ideas by
bringing together researchers from various scientific fields.

Nowadays, the research and application of traffic flow theory and intelligent trans-
portation systems continues. The scientific field has been largely diversified, encom-
passing a broad range of aspects related to sociology, psychology, the environment,
the economy, . . . The global avidity of the field can be witnessed by the exponentially
growing publication output. Keeping our previous comment in mind, researchers from
time to time just seem to ‘add to the noise’ (mainly due to the sheer diversity of the
literature body), although there occasionally exist exceptions such as the late Newell,
as subtly pointed out by Michael Cassidy in [Orr02].

As a final word, we refer the reader to two personalised views on the history of traffic
flow theory, namely the musings of the late Gordon Newell and Denos Gazis [New02a;
Gaz02]. We furthermore invite the reader to cast a glance at the ending pages of
Wardrop’s paper [War52], in which a rather colourful discussion on the introduction
of mathematics to traffic flow theory has been written down.

2.2 Microscopic traffic flow characteristics

Road traffic flows are composed of drivers associated with individual vehicles, each
of them having their own characteristics. These characteristics are called microscopic
when a traffic flow is considered as being composed of such a stream of vehicles.
The dynamical aspects of these traffic flows are formed by the underlying interactions
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14 Chapter 2 – Traffic flow theory

between the drivers of the vehicles. This is largely determined by the behaviour of
each driver, as well as the physical characteristics of the vehicles.

Because the process of participating in a traffic flow is heavily based on the beha-
vioural aspects associated with human drivers [Gar97], it would seem important to
include these human factors into the modelling equations. However, this leads to a
severe increase in complexity, which is not always a desired artifact [Mae01b]. How-
ever, in the remainder of this section, we always consider a vehicle-driver combination
as a single entity, taking only into account some vehicle related traffic flow character-
istics.

Note that despite our previous remarks, we do not debate the necessity of a psy-
chological treatment of traffic flow theory. As the research into driver behaviour
is gaining momentum, a lot of attention is gained by promising studies aimed to-
wards driver and pedestrian safety, average reaction times, the influence of stress
levels, aural and visual perceptions, ageing, medical conditions, fatigue, . . .

2.2.1 Vehicle related variables

Considering individual vehicles, we can say that at time t, each vehicle i in a lane of
a traffic stream has the following informational variables:

• a length, denoted by li,

• a longitudinal position, denoted by xi(t),

• a speed, denoted by vi(t) =
dxi(t)

dt
,

• and an acceleration, denoted by ai(t) =
dvi(t)

dt
=

d2xi(t)

dt2
.

Note that the position xi of a vehicle is typically taken to be the position of its rear
bumper. In this first approach, a vehicle’s other spatial characteristics (i.e., its width,
height, and lane number) are neglected. And in spite of our narrow focus on the
vehicle itself, the above list of variables is also complemented with a driver’s reaction
time, denoted by τi

1.

With respect to the acceleration characteristics, it should be noted that these are in fact
not only dependent on the vehicle’s engine, but also on, e.g., the road’s inclination,
being a non-negligible factor that plays an important role in the forming of congestion
at bridges and tunnels. We do not use the derivative of the acceleration, called jerk,
jolt, or surge (jerk is also used to represent the smoothness of the acceleration noise
[Mon64]).

1Note that in most cases, a driver’s reaction time is assumed to be constant (drawn from a distribution),
as opposed to the more general idea that it is traffic-state dependent (e.g., people are more alert when they
are following close to each other than when they are driving relaxed).
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2.2 Microscopic traffic flow characteristics 15

Except in the acceleration capabilities of a vehicle, we ignore the physical forces that
act on a vehicle, e.g., the earth’s gravitational pull, road and wind friction, centrifugal
forces, . . . A more elaborate explanation of these forces can be found in [Dag97b].

2.2.2 Traffic flow characteristics

Referring to Figure 2.1, we can consider two consecutive vehicles in the same lane in
a traffic stream: a follower i and its leader i + 1. From the figure, it can be seen that
vehicle i has a certain space headway hsi

to its predecessor (it is expressed in metres),
composed of the distance (called the space gap) gsi

to this leader and its own length
li:

hsi
(t) = gsi

(t) + li. (2.1)

By taking, as stated before, the rear bumper as a vehicle’s position, the space headway
hsi

(t) = xi+1(t) − xi(t). The space gap is thus measured from a vehicle’s front
bumper to its leader’s rear bumper.

PSfrag replacements

(i) (i + 1)

xi xi+1li gsi

hsi

Figure 2.1: Two consecutive vehicles (a follower i at position xi and a leader i + 1 at position
xi+1) in the same lane in a traffic stream. The follower has a certain space headway hsi to its
leader, equal to the sum of the vehicle’s space gap gsi and its length li.

Analogously to equation (2.1), each vehicle also has a time headway hti (expressed in
seconds), consisting of a time gap gti and an occupancy time ρi:

hti(t) = gti(t) + ρi(t). (2.2)

Both space and time headways can be visualised in a time-space diagram, such as
the one in Figure 2.2. Here, we have shown the two vehicles i and i + 1 as they are
driving. Their positions xi and xi+1 can be plotted with respect to time, tracing out
two vehicle trajectories. As the time direction is horizontal and the space direction
is vertical, the vehicles’ respective speeds can be derived by taking the tangents of
the trajectories (for simplicity, we have assumed that both vehicles travel at the same
constant speed, resulting in parallel linear trajectories). Accelerating vehicles have
steep inclining trajectories, whereas those of stopped vehicles are horizontal.
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16 Chapter 2 – Traffic flow theory

PSfrag replacements

time

space

(i)

(i + 1)

xi

xi+1

titi+1

hsi

gsi

li

hti

gti ρi

Figure 2.2: A time-space diagram showing two vehicle trajectories i and i + 1, as well as the
space and time headway hsi and hti of vehicle i. Both headways are composed of the space
gap gsi and the vehicle length li, and the time gap gti and the occupancy time ρi, respectively.
The time headway can be seen as the difference in time instants between the passing of both
vehicles, respectively at ti+1 and ti (diagram based on [Log03a]).

When the vehicle’s speed is constant, the time gap is the amount of time necessary to
reach the current position of the leader when travelling at the current speed (i.e., it is
the elapsed time an observer at a fixed location would measure between the passing
of two consecutive vehicles). Similarly, the occupancy time can be interpreted as the
time needed to traverse a distance equal to the vehicle’s own length at the current
speed, i.e., ρi(t) = li/vi(t); this corresponds to the time the vehicle needs to pass
the observer’s location. Both equations (2.1) and (2.2) are furthermore linked to the
vehicle’s speed vi as follows [Dag97b]:

hsi
(t)

hti(t)
=

gsi
(t)

gti(t)
=

li
ρi(t)

= vi(t). (2.3)

As the above definitions deal with what is called single-lane traffic, we can easily
extend them to multi-lane traffic. In this case, four extra space gaps — related to the
vehicles in the neighbouring lanes — are introduced, namely g l,f

si
at the left-front, gl,b

si
at

the left-back, gr,f
si

at the right-front, and gr,b
si

at the right-back. The four corresponding
space headways, hl,f

si
, hl,b

si
, hr,f

si
, and hr,b

si
, are introduced in a similar fashion. The extra

time gaps and headways are derived in complete analogy, leading to the four time gaps
gl,f

ti , gl,b
ti , gr,f

ti , and gr,b
ti , and the four corresponding time headways hl,f

ti , hl,b
ti , hr,f

ti , and
hr,b

ti .
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2.3 Macroscopic traffic flow characteristics 17

In single-lane traffic, vehicles always keep their relative order, a principle sometimes
called first-in, first-out (FIFO) [Dag95a]. For multi-lane traffic however, this principle
is no longer obeyed due to overtaking manoeuvres, resulting in vehicle trajectories
that cross each other. If the same time-space diagram were to be drawn for only one
lane (in multi-lane traffic), then some vehicles’ trajectories would suddenly appear or
vanish at the point where a lane change occurred.

In some traffic flow literature, other nomenclature is used: space for the space
headway, distance or clearance for the space gap, and headway for the time head-
way. Because this terminology is confusing, we propose to use the unambiguously
defined terms as described in this section.

2.3 Macroscopic traffic flow characteristics

When considering many vehicles simultaneously, the time-space diagram mentioned
in Section 2.2.2 can be used to faithfully represent all traffic. In Figure 2.3 we show
the evolution of the system, as we have traced the trajectories of all the individual
vehicles’ movements. This time-space diagram therefore provides a complete picture
of all traffic operations that are taking place (accelerations, decelerations, . . . ).

PSfrag replacements

time

space

t∗

x∗

Rt

Rs

Rt,s

Tmp

K

Figure 2.3: A time-space diagram showing several vehicle trajectories and three measurement
regions Rt, Rs, and Rt,s. These rectangular regions are bounded in time and space by a meas-
urement period Tmp and a road section of length K. The black dots represent the individual
measurements.

Instead of considering each vehicle in a traffic stream individually, we now ‘zoom
out’ to a more aggregate macroscopic level (e.g., traffic streams are regarded as a
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18 Chapter 2 – Traffic flow theory

fluid). In the remainder of this section, we will measure some macroscopic traffic
flow characteristics based on the shown time-space diagram. To this end, we define
three measurement regions:

• Rt corresponding to measurements at a single fixed location in space (x∗), dur-
ing a certain time period Tmp. An example of this is a single inductive loop
detector (SLD) embedded in the road’s concrete.

• Rs corresponding to measurements at a single instant in time (t∗), over a certain
road section of length K. An example of this is an aerial photograph.

• Rt,s corresponding to a general measurement region. Although it can have any
shape, in this case we restrict ourselves to a rectangular region in time and space.
An example of this is a continuous sequence of images made by a video camera
detector.

With respect to the size of these measurement regions, some caution is advised: a too
large measurement region can mask certain effects of traffic flows, possibly ignoring
some of the dynamic properties, whereas a too small measurement region may obstruct
a continuous treatment, as the discrete, microscopic nature of traffic flows becomes
apparent.

Using these different methods of observation, we now discuss the measurement of
four important macroscopic traffic flow characteristics: density, flow, occupancy, and
mean speed. We furthermore give a short discussion on the moving observer method
and the use of floating car data.

With respect to some naming conventions on roadways, two different ‘standards’
exist for some of the encountered terminology, namely the American and the Brit-
ish standard. Examples are: the classical multi-lane high-speed road with on- and
off-ramps, which is called a freeway or a super highway (American), or an arterial
or motorway (British). A main road with intersections is called an urban highway
(American) or a carriageway (British). In this dissertation, we have chosen to
adopt the British standard. Finally, in contrast to Great Britain and Australia, we
assume that for low-density traffic, everybody drives in the right instead of the left
lane.

2.3.1 Density

The macroscopic characteristic called density allows us to get an idea of how crowded
a certain section of a road is. It is typically expressed in number of vehicles per kilo-
metre (or mile). Note that the concept of density totally ignores the effects of traffic
composition and vehicle lengths, as it only considers the abstract quantity ‘number of
vehicles’.
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2.3 Macroscopic traffic flow characteristics 19

Because density can only be measured in a certain spatial region (e.g., Rs in Fig-
ure 2.3), it is computed for temporal regions such as region Rt in Figure 2.3. When
density can not be exactly measured or computed, or when density measurements are
faulty, it has to be estimated. To this end, several available techniques exist, e.g., based
on explicit simulation using a traffic flow propagation model [Muñ03b], based on a
vehicle reidentification system [Coi03a], based on a complete traffic state estimator
using an extended Kalman filter [Wan03], or based on a non-linear adaptive observer
[AI04], . . .

2.3.1.1 Mathematical formulation

Using the spatial region Rs, the density k for single-lane traffic is defined as:

k(t∗, x,Rs) =
N

K
, (2.4)

with N the number of vehicles present on the road segment. If we consider multi-lane
traffic, we have to sum the partial densities kl of each of the L lanes as follows:

k(t∗, x,Rs) =
L∑

l=1

kl =
1
K

L∑

l=1

Nl, (2.5)

in which Nl now denotes the number of vehicles present in lane l (equation (2.5) is
not the same as averaging over the partial densities of each lane)2.

In general, density can be defined as the total time spent by all the vehicles in the
measurement region, divided by the area of this region [Edi65; Dag97b]. This gener-
alisation allows us to compute the density at a point using the temporal measurement
region Rt; to this end, consider the finite spatial interval ∆X surrounding x∗:

k(t, x∗, Rt) =

N∑

i=1

∆Ti

Tmp ∆X
=

1
Tmp

N∑

i=1

∆Ti

∆X
, (2.6)

with ∆Ti the time taken by ith vehicle to travel the distance ∆X . After taking the
limit that reduces the interval ∆X to a single point alongside the road, we obtain the
following expression for the density:

k(t, x∗, Rt) =
1

Tmp
lim

∆X→0

N∑

i=1

∆Ti

∆X
=

1
Tmp

N∑

i=1

1
vi

, (2.7)

2Note that when calculating the total density using equation (2.5), the partial densities can also corres-
pond without loss of generality to different vehicle classes instead of just different lanes [War52; Dag97b].
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with vi the speed of the ith vehicle (with vi 6= 0). Extending the previous derivation
to multi-lane traffic is done straightforward using equation (2.5):

k(t, x∗, Rt) =
1

Tmp

L∑

l=1

Nl∑

i=1

1
vi,l

, (2.8)

with now vi,l denoting the speed of the ith vehicle in lane l.

As we now can obtain the density in both spatial and temporal regions, Rs and Rt

respectively, it would seem a logical extension to find the density in the region Rt,s.
In order to do this, however, we need to know the travel times Ti of the individual
vehicles, as can be seen in equation (2.7). Because this information is not always
available, and in most cases rather difficult to measure, we use a different approach,
corresponding to the temporal average of the density. Assuming that at each time step
t, during a certain time period Tmp, the density k(t) is known in consecutive regions
Rs, the generalised definition leads to the following formulation:

k(t, x,Rt,s) =





1
Tmp

∫ Tmp

t=0
k(t) dt (continuous),

1
Tmp

Tmp∑

t=1

k(t) (discrete),

(2.9)

with Tmp ∈ N0 and t ∈ {1, . . . , Tmp} in the discrete case. For multi-lane traffic,
combining equations (2.5) and (2.9) results in the following formula for computing
the density in region Rt,s using measurements in discrete time:

k(t, x,Rt,s) =
1

Tmp K

Tmp∑

t=1

L∑

l=1

Nl(t), (2.10)

where Nl(t) denotes the number of vehicles present in lane l at time t.

There exists a relation between the macroscopic traffic flow characteristics and those
microscopic characteristics defined in Section 2.2.2. For the density k, this relation is
based on the average space headway hs [War52; Dag97b]:

k =
N

K
=

N
N∑

i=1

hsi

=
1

1
N

N∑

i=1

hsi

=
1

hs
, (2.11)

with hs
−1

the reciprocal of the average space headway.
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2.3.1.2 Passenger car units

When considering heterogeneous traffic flows (i.e., traffic streams composed of dif-
ferent types of vehicles), operating agencies usually do not express the macroscopic
traffic flow characteristics using the raw number of vehicles, but rather employ the
notion of passenger car units (PCU). These PCUs, sometimes also called passenger
car equivalents (PCE), try to take into account the spatial differences between vehicle
types. For example, by denoting one average passenger car as 1 PCU, a truck in the
same traffic stream can be considered as 2 PCUs (or even higher and fractional values
for trailer trucks).

Let us finally note that, because density is essentially defined as a spatial measure-
ment, it is one of the most difficult quantities to obtain. It is interesting to notice
that at this moment, it is theoretically possible for video cameras to measure dens-
ity over a short spatial region. However, to our knowledge there currently exists
no commercial implementation.

2.3.2 Flow

Whereas density typically is a spatial measurement, flow can be considered as a tem-
poral measurement (i.e., region Rt). Flow, which we use as a shorthand for rate of
flow, is typically expressed as an hourly rate, i.e., in number of vehicles per hour.
Note that sometimes other synonyms such as intensity, flux, throughput, current, or
volume3 are used, typically depending on a person’s scientific background (e.g., en-
gineering, physics, . . . ).

2.3.2.1 Mathematical formulation

Measuring the flow q in region Rt for single-lane traffic, is done using the following
equation, which is based on raw vehicle counts:

q(t, x∗, Rt) =
N

Tmp
, (2.12)

with N the number of vehicles that has passed the detector’s site. For multi-lane
traffic, we sum the partial flows of each of the L lanes:

q(t, x∗, Rt) =
L∑

l=1

ql =
1

Tmp

L∑

l=1

Nl, (2.13)

3In most cases, volume denotes the number of vehicles counted during a certain time period, as opposed
to flow which is just the equivalent hourly rate.
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with now Nl denoting the number of vehicles that passed the detector’s site in lane
l. Note that we assume that each lane has its own detector, otherwise we would be
dealing with an average flow across all the lanes.

Generally speaking, flow can defined as the total distance travelled by all the vehicles
in the measurement region, divided by the area of this region [Edi65; Dag97b]. In
analogy with equation (2.7), this generalisation allows us to compute the flow at an
instant in time using the spatial measurement region Rs; to this end, consider the finite
temporal interval ∆T surrounding t∗:

q(t∗, x,Rs) =

N∑

i=1

∆Xi

K ∆T
=

1
K

N∑

i=1

∆Xi

∆T
, (2.14)

with ∆Xi the distance travelled by the ith vehicle during the time interval ∆T . After
taking the limit that reduces the interval ∆T to a single instant in time, we obtain the
following expression for the flow:

q(t∗, x,Rs) =
1
K

lim
∆T→0

N∑

i=1

∆Xi

∆T
=

1
K

N∑

i=1

vi, (2.15)

with vi the speed of the ith vehicle. The extension to multi-lane traffic is straightfor-
ward:

q(t∗, x,Rs) =
1
K

L∑

l=1

Nl∑

i=1

vi,l. (2.16)

Considering consecutive flow measurements in region Rt,s, we can derive a formu-
lation corresponding to the temporal average of the flow, similar to that of equation
(2.9). Assuming that at each time step t, during a certain time period Tmp, the flow q(t)
is known in consecutive regions Rs, the generalised definition leads to the following
equations:

q(t, x,Rt,s) =





1
Tmp

∫ Tmp

t=0
q(t) dt (continuous),

1
Tmp

Tmp∑

t=1

q(t) (discrete),

(2.17)

with Tmp ∈ N0 and t ∈ {1, . . . , Tmp} in the discrete case. For multi-lane traffic,
combining equations (2.16) and (2.17) results in the following formula for computing
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the flow in region Rt,s using measurements in discrete time:

q(t, x,Rt,s) =
1

Tmp K

Tmp∑

t=1

L∑

l=1

Nl(t)∑

i=1

vi,l(t), (2.18)

where vi,l(t) denotes the speed of the ith vehicle in lane l at time t.

In analogy with equation (2.11), there exists a relation between the flow q, and the
average time headway ht [War52; Dag97b]:

q =
N

Tmp
=

N
N∑

i=1

hti

=
1

1
N

N∑

i=1

hti

=
1

ht
, (2.19)

with ht
−1

the reciprocal of the average time headway.

2.3.2.2 Oblique cumulative plots

As stated before, flows are always expressed as a rate. In contrast to this, we can
also consider the raw vehicle counts at a certain location (i.e., measurement region
Rt). If we plot the cumulative number of passing vehicles (denoted by N ) with re-
spect to time for different regions (e.g., inductive loop detectors), we get a set of
curves such as the one in the left part of Figure 2.4. These curves are called cu-
mulative plots (or (t,N) diagrams), and although their origins date back as far as
1954 with the work of Karl Moskowitz [Mos54], it was Gordon Newell who ap-
plied them later on to their full potential (initially in the context of queueing theory)
[New82; New93a; New93b; New93c] (a similar method was applied by John Luke, in
the field of continuum mechanics [Luk72; Dag95b]). Interestingly, a short while later
Nam and Drew independently proposed a method to estimate the travel time based on
cumulative counts at neighbouring detector stations [Nam96].

The key benefit of these cumulative plots, comes when comparing observations stem-
ming from multiple detector stations at a closed section of the road that conserves
the number of vehicles (i.e., no on- or off-ramps), in which case we also speak of
input-output diagrams. If there are two detector stations, then the upstream and down-
stream stations measure the input, respectively output, of the section. Similarly like in
queueing theory, the upstream curve is sometimes called the arrival function, whereas
the downstream one is called the departure function [New82]. As the method is based
on counting the number of individual vehicles at each observation location (whereby
each vehicle is numbered with respect to a single reference vehicle), this results in a
monotonically increasing function N(t, x) (sometimes called the Moskowitz function,
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Figure 2.4: Left: a standard cumulative plot showing the number of passing vehicles at two
detector locations; due to the graph’s scale, both curves appear to lie on top of each other.
Right: the same data but displayed using an oblique coordinate system, thereby enhancing the
visibility (the dashed slanted lines have a slope corresponding to the subtracted background flow
qb ≈ 4100 vehicles per hour). We can see a queue (probably caused due to an incident) growing
at approximately 11:00, dissipating some time later at approximately 12:30. The shown detector
data was taken from single inductive loop detectors [VVC03], covering all three lanes of the
E40 motorway between Erpe-Mere and Wetteren, Belgium. The shown data was recorded at
Monday, April 4, 2003 (the detectors’ sampling interval was one minute, the distance between
the upstream and downstream detector stations was 8.1 kilometres).

after its ‘inventor’), which increases each time a vehicles passes by. At each time
instant t, the cumulative count is defined as:

N(t, x) =

t∑

t′=t0

q(t′, x) = N(t− 1, x) + q(t, x). (2.20)

The time needed to travel from one location to another can easily be measured as the
horizontal distance between the respective cumulative curves. Similarly, the vertical
distance between these curves allows us to derive the accumulation of vehicles on the
road section, which gives an excellent indication of growing and dissipating queues
(i.e., congestion). Furthermore, if we compute the slope of this function at each time
instant t, we obtain the flow q(t, x) = [N(t + ∆t, x)−N(t, x)]/∆t. Finally, because
N(t, x) essentially is a step function, we can define a smooth approximation which is
an everywhere differentiable function Ñ(t, x). As ∆t→ 0, this allows us to compute
instantaneous flows as q = ∂Ñ(t, x)/∂t. The same principle holds true for local
densities, where now k(t, x) = [N(t, x + ∆x) − N(t, x)]/∆x. As ∆x → 0, this
results in k = −∂Ñ(t, x)/∂x [Dag97b].

The main disadvantage of the method is the fact that these cumulative functions in-
crease very rapidly, thereby masking the subtle differences between different curves.
Cassidy and Windover therefore proposed to subtract a background flow qb from these
curves, resulting in functions N(t, x) − t qb [Cas95]. Based on this; Muñoz and
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Daganzo furthermore introduced enhanced clarity by overlaying this cumulative plot
with a set of oblique lines with slope −qb [Muñ02b]. Choosing an appropriate value
for qb, allows us to nicely enhance the characteristic undulations that are expressed by
the different oblique curves.

Note that before using these oblique plots, the cumulative plots from different
detectors stations need to be synchronised. To understand this, suppose a
reference vehicle passes an upstream detector station at a certain time instant tup;
after a certain time period, the vehicle reaches the downstream detector station at
a later time instant tdown. The amount tdown − tup is the time it takes to cross the
distance between both detector stations, allowing the synchronisation mechanism
to shift the respective cumulative curves over this time period (i.e., initialising
them with the passing of the reference vehicle).

One way to achieve this, is by looking at the respective shapes of both cumulat-
ive curves during light traffic conditions (e.g., the early morning period when
free-flow conditions are prevailing). The idea now is to shift one curve such
that the difference between the two curves’ shapes is minimal [Wes95; Muñ00b;
Muñ03a]. Note that other corrections may be necessary, as both detector stations
can count a different number of vehicles (i.e., a systematic bias).

An example of an oblique plot can be seen in the right part of Figure 2.4: the cu-
mulative count at each time instant can be read from an axis that is perpendicular to
the oblique (slanted) overlayed dashed lines (e.g., we can see a count of some 30000
vehicles at 14:00). Note that the accumulation can still be measured by the vertical
distance between two curves (i.e., at a specific time instant), but the travel time should
now be measured along one of the overlayed oblique lines. Such a pair of cumulative
curves can be thought of as a flexible plastic garden hose: whenever there is an ob-
struction on the road, the outflow of the section will be blocked, resulting in a local
thickening of this ‘hose’ (i.e., the accumulation of vehicles on the section).

Using these oblique cumulative plots, we can now inspect the traffic dynamics in much
more detail than was previously possible. For example, looking again at the right part
of Figure 2.4, we can see how the specific traffic stream characteristics propagate
from one detector station to another. Even more visible, is a queue that starts to grow
at approximately 11:00 (i.e., the time of the appearance of a ‘bulge’), dissipating at
approximately 12:30. As data curves from upstream detectors lie above data curves
from downstream detectors, we see a decrease in the road section’s output. Careful
investigation of the traffic data revealed that the detector stations recorded a rather
low flow (approximately 2500 vehicles per hour as opposed to a nominal flow of 4500
vehicles per hour), whereby all vehicles drove at a low speed (between 20 and 60 km/h
as opposed to 110 km/h). This gives sufficient evidence to conclude that an incident
probably occurred shortly after 11:00, consequently obstructing a part of the road and
leading to a build up of vehicles in the section.

Let us finally note that although oblique cumulative plots currently are not a main-
stream technique used by the traffic community, we predict their rising popularity:
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they are one of the most simple, yet powerful, techniques for studying local traffic
phenomena, giving traffic engineers practical insight into the formation of bottlenecks.
Some recent examples include the work of Muñoz and Daganzo [Muñ00a; Muñ00b;
Muñ02a; Muñ03a], Cassidy and Bertini [Cas99; Ber03], Cassidy and Mauch [Cas01],
Windover and Cassidy [Win01], Logghe [Log03a], Bertini et al. [Ber05], and Lind-
gren [Lin05].

2.3.3 Occupancy

Notwithstanding the importance of measuring traffic density, most of the existing de-
tector stations on the road are only capable of temporal measurements (i.e., region
Rt). If individual vehicle speeds can be measured, by double inductive loop detectors
(DLD) for example, then density should be computed using equation (2.7).

However, in many cases these vehicle speeds are not readily available, e.g., when using
single inductive loop detectors. The detector’s logic therefore resorts to a temporal
measurement called the occupancy ρ, which corresponds to the fraction of time the
measurement location was occupied by a vehicle:

ρ(t, x∗, Rt) =
1

Tmp

N∑

i=1

oti . (2.21)

In the previous equation, oti denotes the ith vehicle’s on-time, i.e., the time period
during which it is present above the detector (it corresponds to the shaded area swept
by a vehicle at a certain location xi in Figure 2.2). Note that this on-time actually
corresponds to the effective vehicle length as seen by the detector, divided by the
vehicle’s speed [Coi01]:

oti =
li + Kld

vi

, (2.22)

with li the vehicle’s true length and Kld > dx the finite, non-infinitesimal length of the
detection zone. If we define ot as the average on-time (based on the vehicles that have
passed the detector during the observation period), then we can establish a relation
between the occupancy and the flow [Dag97b] using equations (2.12) and (2.21):

ρ =

(
N

Tmp

) (
1
N

N∑

i=1

oti

)
= q ot. (2.23)

Furthermore, it is as before possible to define the occupancy for generalised meas-
urement regions, using the total space consumed by the shaded areas of vehicles
in a time-space diagram (e.g., Figure 2.2), divided by the area of the measurement
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region [Edi65; Dag97b; Cas98]. Continuing our discussion, we assume that indi-
vidual vehicle lengths and speeds are uncorrelated; it can then be shown that [Dag97b;
Coi01]:

ρ = l k =⇒ k =
ρ

l
, (2.24)

where we dropped the functional dependencies for visual clarity; in the above relation,
l is the average vehicle length (note that this can correspond to the concept of passen-
ger car units defined in Section 2.3.1). Multiplying equation (2.24) by 100, allows
us to express the occupancy as a percentage. For multi-lane traffic, the occupancy is
derived in analogy to equation (2.8):

ρ(t, x∗, Rt) =

L∑

i=1

ρl =
1

Tmp

L∑

l=1

Nl∑

i=1

oti,l
, (2.25)

with now oti,l
the on-time of the ith vehicle in lane l. Note that the total occupancy

derived in this way, can exceed 1 (but is bounded by L); if desired, it can be normalised
through a division by L to obtain the average occupancy.

Note that if we apply equation (2.24) to measurement region Rs based on the density
in equation (2.4), then the occupancy ρ can be written as:

ρ(t∗, x,Rs) =

(
1

��N

N∑

i=1

li

)
��N

K
=

1
K

N∑

i=1

li. (2.26)

So the occupancy now represents the ‘real density’ of the road, i.e., the physical space
that all vehicles occupy.

In the past, density was sometimes referred to as concentration. Nowadays how-
ever, concentration is used in a more broad context, encompassing both density
and occupancy whereby the former is meant to be a spatial measurement, as op-
posed to the latter which is considered to be a temporal measurement [Gar97].

2.3.4 Mean speed

The final macroscopic characteristic to be considered, is the mean speed of a traffic
stream; it is expressed in kilometres (or miles) per hour (the inverse of a vehicle’s
speed is called its pace). Note that speed is not to be confused with velocity; the latter
is actually a vector, implying a direction, whereas the former could be regarded as the
norm of this vector.
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2.3.4.1 Mathematical formulation

If we base our approach on direct measurements of the individual vehicles’ speeds, we
can generally obtain the mean speed as the total distance travelled by all the vehicles in
the measurement region, divided by the total time spent in this region [Edi65; Dag97b].
After taking the limit similar to equations (2.7) and (2.15), this process gives the fol-
lowing derivations for the spatial and temporal regions, Rs and Rt respectively (note
that in the remainder of this section we have dropped the dependencies on time and
space for the sake visual clarity):

vs =

N∑

i=1

∆Xi

N∑

i=1

∆Ti

=





N∑

i=1

∆Xi

N∆T
⇒ vs =

1
N

lim
∆T→0

N∑

i=1

∆Xi

∆T
=

1
N

N∑

i=1

vi (for Rs),

N∆X
N∑

i=1

∆Ti

⇒ vs =
1

1
N

lim
∆X→0

N∑

i=1

∆Ti

∆X

=
1

1
N

N∑

i=1

1
vi

(for Rt),

(2.27)

with now ∆Xi and ∆Ti the distance and time travelled by the ith vehicle during
the time period ∆T and over the distance ∆X , respectively. N is the number of
vehicles present during the measurement. The mean speed computed by the previous
equations, is called the average travel speed (the computation also includes stopped
vehicles), which is more commonly known as the space-mean speed (SMS); we de-
note it with vs (note that in some engineering disciplines, the sole letter u is used to
denote a mean speed, however, this is ambiguous in our opinion).

It is interesting to see that the spatial measurement is based on an arithmetic average
of the vehicles’ instantaneous speeds, whereas the temporal measurement is based on
the harmonic average of the vehicles’ spot speeds. If we instead were to take the
arithmetic average of the vehicles’ spot speeds in the temporal measurement region
Rt, this would lead to what is called the time-mean speed (TMS); we denote it by v t:

vt =
1
N

N∑

i=1

vi (region Rt). (2.28)

Similarly, we can compute the time-mean speed for measurement region Rs, by taking
the harmonic average of the vehicles’ instantaneous speeds. With respect to both
space- and time-mean speeds, Wardrop has shown that the following relation holds
[War52]:

vt = vs +
σ2

s

vs
, (2.29)
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with σ2
s the statistical sample variance defined as follows:

σ2
s =

1
N − 1

N∑

i=1

(vi − vs)
2, (2.30)

in which vi denotes the ith vehicle’s instantaneous speed. One of the main con-
sequences of equation (2.29), is that the time-mean speed always exceeds the space-
mean speed (except when all the vehicles’ speeds are the same, in which case the
sample variance is zero and, as a consequence, the time- and space-mean speeds are
equal). So a stationary observer will most likely see more faster than slower vehicles
passing by, as opposed to, e.g., an aerial photograph in which more slower than faster
vehicles will be seen [Dag97b]. Despite this mathematical quirk, the practical differ-
ence between SMS and TMS is often negligible for free-flow traffic (i.e., light traffic
conditions); however, under congested traffic conditions both mean speeds will behave
substantially differently (i.e., around 10%).

Using equation (2.29), we can also estimate the space-mean speed, based on the time-
mean speed and approximating the variance of the SMS with that of the TMS [Bov00;
Rak05]:

vs = vt −
σ2

s

vs
,

≈ vt −
σ2

t

vs
,

⇓

vs − vt ≈ −
σ2

t

vs
,

v2
s − vsvt ≈ −σ2

t ,

v2
s − 2 vs

vt

2
+

v2
t

4
≈

v2
t

4
− σ2

t ,

(
vs −

vt

2

)2

≈
v2

t

4
− σ2

t ,

⇓

vs ≈
vt

2
+

√
v2

t

4
− σ2

t ∀ vt ≥ 2 σt. (2.31)

In general, using the space-mean speed is preferred to the time-mean speed. However,
in most cases only this latter traffic flow characteristic is available, so care should be
taken when interpreting the results of a study (unless of course when SMS and TMS
are negligibly different).
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The extension of equation (2.27) to multi-lane is straightforward; for example, the
space-mean speed is computed as follows:

vs =





L∑

l=1

Nl∑

i=1

vi,l

/
L∑

l=1

Nl (region Rs),

1

1
L∑

l=1

Nl

L∑

l=1

Nl∑

i=1

1
vi,l

(region Rt), (2.32)

with now vi,l the instantaneous (or spot) speed of the ith vehicle in lane l.

2.3.4.2 Fundamental relation of traffic flow theory

There exists a unique relation between three of the previously discussed macroscopic
traffic flow characteristics density k, flow q, and space-mean speed vs [War52]:

q = k vs. (2.33)

This relation is also called the fundamental relation of traffic flow theory, as it provides
a close bond between the three quantities: knowing two of them allows us to calcu-
late the third one (note that the time-mean speed in equation (2.28) does not obey this
relation). In general however, there are two restrictions, i.e., the relation is only valid
for (1) continuous variables4, or smooth approximations of them, and (2) traffic com-
posed of substreams (e.g., slow and fast vehicles) which comply to the following two
assumptions:

Homogeneous traffic

There is a homogeneous composition of the traffic substream (i.e.,
the same type of vehicles).

Stationary traffic

When observing the traffic substream at different times and loca-
tions, it ‘looks the same’. Putting it a bit more quantitatively, all the
vehicles’ trajectories should be parallel and equidistant [Dag97b].
A stationary time period can be seen in a cumulative plot (e.g., Fig-
ure 2.4) where the curve corresponds to a linear function.

4Note that the hypothesis also assumes that the variables are spatially measured, e.g., space-mean speed.
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The latter of the above two conditions5, is also referred to as traffic operating in a
steady state or at equilibrium. Based on equations (2.5) and (2.13) using partial dens-
ities and flows for different substreams (e.g., vehicle classes with distinct travel speeds,
macroscopic characteristics of different lanes, . . . ), we can now calculate the space-
mean speed, using relation (2.33), in the following equivalent ways:

vs = q / k,

=

C∑

c=1

qc

/
C∑

c=1

kc, (2.34)

=
C∑

c=1

qc

/
C∑

c=1

qc

vsc

, (2.35)

=
C∑

c=1

kc vsc

/
C∑

c=1

kc, (2.36)

in which C denotes the number of substreams, qc, kc, and vsc
the flow, density, and

space-mean speed, respectively, of the cth substream. In the above derivations, equa-
tion (2.34) should be used when both the flows and densities are known, equation
(2.35) should be used when both the flows and space-mean speeds are known, and
equation (2.36) should be used when both the densities and space-mean speeds are
known.

As can be seen in equation (2.36), the space-mean speed is calculated by averaging the
substreams’ space-mean speeds using their densities as weighting factors. Similarly,
the time-mean speed can be derived by using the flows as weighting factors for the
substreams’ time-mean speeds vtc :

vt =
C∑

c=1

qc vtc

/
C∑

c=1

qc, (2.37)

Because density can not always be easily measured, we can compute it using the
fundamental relation (2.33). Density can then be directly derived from flow and space-
mean speed measurements, or if the latter are not available, they can be estimated from
occupancy measurements; in [Coi01; Coi03b; Coi03a], Coifman et al. provide a nice
set of techniques for dealing with these difficulties.

2.3.5 Moving observer method and floating car data

When measuring and/or computing the macroscopic traffic flow characteristics in the
previous sections, we always assumed a fixed measurement region. There exists how-

5A variable z is said to be homogeneous when z(t, x) = z(t), i.e., independent of space. Similarly, it
is said to be stationary when z(t, x) = z(x), i.e., independent of time.
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ever yet another method, based on what is called a moving observer [War54]. The
idea behind the technique is to have a vehicle drive in both directions of a traffic flow,
each time recording the number of oncoming vehicles and the net number of vehicles
it gets overtaken by, as well as the times necessary to complete the two trips. Note
that the assumption of stationary traffic still has to hold, i.e., the round trip should be
completed before traffic conditions change significantly.

Using this method, it is then possible to derive the flow and density of the traffic stream
in the direction of interest [Gar97; Dag97b]. However, the main disadvantage of this
method is that, in order to obtain an acceptable level of accuracy on a road with a low
flow, a very large number of trips are required [War54; Gar97; Mul02].

One of the techniques that has entered the picture during the last decade, is the use
of so-called floating cars or probe vehicles. They can be compared to the moving ob-
server method, but in this case, the vehicles are equipped with GPS and GSM(C)/GPRS
devices that determine their locations based on the USA’s NAVSTAR-GPS (or Europe’s
planned GNSS Galileo), and transmit this information to some operator. Initially, this
allows an agency, e.g., a parcel delivery service or a transportation firm, to track its
vehicles throughout a network, based on their locations. Nowadays, the technique has
evolved, resulting in several completed field tests of which the main goal was to es-
timate the traffic conditions based on a small number of probe vehicles. During field
measurements, floating cars can mimic several types of behaviour, most notably by
travelling at the traffic flows’ mean speed6, or by trying to travel at the road’s speed
limit, or even by chasing another randomly selected vehicle from the traffic stream.

Another technique is based on the information obtained by mobile devices such as
GSMs. The idea is that, when a driver with a cell phone has a conversation, his loc-
ation is continuously monitored by so-called base transceiver stations (BTS); these
latter are in fact modelled as a grid of hexagonal cells that are each centred around
an antenna post. As the cell phone moves from one cell to another, a handover is
executed. Based on two consecutive handovers, it is possible to determine the travel
time between these two zones. In a subsequent step, this travel time is accurately
matched onto a map containing the underlying road network. The upshot of this is
that we can now obtain cost-effective real-time traffic information on roads with a
low sensor coverage (e.g., in the absence of inductive loop detectors, cameras, . . . ).
Note that a crucial aspect here, is that due to the many delicate privacy concerns in-
volved with tracking individual people’s units, the mobile information should remain
anonymously. This implies that all personal information (i.e., identification of the
caller et cetera) gets stripped from the data.

Some examples of studies and experiments with floating car data7 (FCD) are given in
the following. Firstly, Fastenrath gives an overview of a telematic field trial (VEhicle
Relayed Dynamic Information, VERDI) that addresses issues such as economical,
political, and technical constraints [Fas]. Secondly, Westerman provides an overview

6This can be accomplished when the probe vehicle overtakes as many vehicles as are overtaking the
vehicle itself.

7Sometimes also described as floating vehicle data (FVD).
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of available techniques for obtaining real-time road traffic information, with the goal
of controlling the traffic flows through telematics [Wes95], and Wermuth et al. de-
scribe a ‘TeleTravel System’ used for surveying individual travel behaviour [Wer00].
Then, Taale et al. compare travel times from floating car data with measured travel
times (using a fleet of sixty equipped vehicles driving around in Rotterdam, The Neth-
erlands), concluding that they correspond reasonably well [Taa00]. Next, Michler
derives the minimum percentage of vehicles necessary, in order to estimate traffic
stream characteristics for certain traffic patterns (e.g., free-flow and congested traffic)
based on rigid statistical grounds [Mic01], and Linauer and Leihs measure the travel
time between points in a road network, based on a high number of users that submit
a low number of GSM hand-over messages [Lin03]. In addition, Demir et al. accur-
ately reconstruct link travel times during periods of traffic congestion, using only a
very limited number of FCD-messages with a small number of users [Dem03]. Fur-
thermore, Fontaine advanced the field of wireless location technology-based (WLT)
by enhancing map-matching algorithms and developing guidelines for system design
and application of WLT-based systems [Fon05].

In conclusion, we can state that the use of probe vehicles provides an effective way
to gather accurate current travel times in a road network, thereby allowing good up-
to-date estimations of traffic conditions. The technique will continue to grow and
evolve, already by introducing personalised traffic information to drivers, based on
their location and the surrounding traffic conditions. This development is furthermore
stimulated by the fact that GSM market penetration still rises above 70% [Lin03],
and it is our belief this will also be the case for personal GPS devices and in-vehicle
route planners. Already, many private companies are entering the market, with the
goal of providing real-time traffic information and route guidance in close cooperation
with the mobile operators. Recent examples include the company LogicaCMG, which
developed the Mobile Traffic Services (MTS), converting anonymous GSM-handover
data into travel times by means of a map-matching algorithm. A validation study was
performed for the cities of Breda and Tilburg in The Netherlands [Log05b; Log05c].
Another similar company is ITIS, which even patented its Cellular Floating Vehicle
Data (CFVD) technology [Sim02].

2.4 Performance indicators

After considering the previously mentioned macroscopic traffic flow characteristics,
we now take a look at some of the popular performance indicators used by traffic en-
gineers when assessing the quality of traffic operations. Such performance indicators
allow to compare the current progress with respect to some predefined goals, e.g.,
when assessing the impact of operational strategies. In general, they can be classified
as follows:

• quantitative indicators (e.g., volume counts, vehicle miles travelled (VMT), per-
son miles travelled (PMT), total time spent in the system, . . . ),
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• qualitative indicators (e.g., travel times and the associated delays as lost vehicle
hours, average travel speed, level of service (LOS), volume-over-capacity, . . . ),

• and other types of indicators (e.g., safety indicators, reliability, fuel consump-
tion, emissions and immissions8 of air pollutants and noise, socio-economic
costs, . . . ).

In the remainder of this section, we concisely discuss (i) the peak hour factor, (ii) the
level of service, (iii) the reliability of travel times, and (iv) a measure of efficiency of a
road. Of these four indicators, the first and second ones are still in common use today,
whereas the family embodied by the third one is steadily gaining appreciation and the
fourth one is of a qualitative nature but based on quantitative indicators. For a more
complete overview, we refer the reader to the synthesis report made by Shaw [Sha03].

2.4.1 Peak hour factor

During high flow periods in the peak hour, a possible indicator for traffic flow fluc-
tuations is the so-called peak hour factor (PHF). It is calculated for one day as the
average flow during the hour with the maximum flow, divided by the peak flow rate
during one quarter hour within this hour [May90]:

PHF =
q|60

q|15
. (2.38)

For example, suppose we measure flows on a main unidirectional road with three
lanes, during a morning peak: from 07:00 to 08:00 we measure consecutively 3500,
6600, 6200, and 4500 vehicles/hour during each quarter. The total average flow q|60
is 5200 vehicles/hour, with a peak 15 minute flow rate q|15 = 6600 vehicles/hour. The

PHF is therefore equal to 5200/6600 = 0.78.

Note that some manuals express the peak 15 minute flow rate as the number of vehicles
during that quarter hour, necessitating an extra multiplication by 4 in the denominator
of equation (2.38) to convert the flow rate to an hourly rate.

We can immediately see that the PHF is constrained to the interval [0.25,1.00]; the
higher the PHF, the flatter the peak period (i.e., a longer sustained state of high flow).
Typically, the PHF has values around 0.7 – 0.98. Note that two of the obvious prob-
lems with the PHF are, on the one hand, the question of when to pick the correct 15
minute interval, and on the other hand the fact that some peak periods may last longer
than one hour.

8The difference between emissions and immissions is that the former are defined and measured locally,
while the latter include dispersal effects within the environment.
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2.4.2 Level of service

Historically, one of the main performance indicators to assess the quality of traffic
operations, was the level of service (LOS), introduced in the 1960s. It is represented
as a grading system using one of six letters (A – F), whereby LOS A denotes the best
operating conditions and LOS F the worst. These LOS measures are based on road
characteristics such as speed, travel time, . . . , and drivers’ perceptions of comfort,
convenience, . . . [HCM00]. As is customary among traffic engineers, these represent-
ative statistics of these characteristics are collectively called measures of effectiveness
(MOE).

Levels A through D are representative for free-flow conditions whereby LOS A corres-
ponds to free flow, LOS B to reasonable free flow, LOS C to stable traffic operations,
and LOS D to bordering unstable traffic operations. LOS E is reminiscent of near-
capacity flow conditions that are extremely unstable, whereas LOS F corresponds
to congested flow conditions (caused by either structural or incidental congestion)
[May90].

As an example, we provide an overview of the different levels of service in Table 2.1
(based on [May90], in similar form originally published in the Highway Capacity
Manual (HCM) of 1985 as the Transportation Research Board’s (TRB)9 special report
#209.

LOS Density (veh/km) Occupancy (%) Speed (km/h)

A 0→ 7 0→ 5 ≥ 97
B 7→ 12 5→ 8 ≥ 92
C 12→ 19 8→ 12 ≥ 87
D 19→ 26 12→ 17 ≥ 74
E 26→ 42 17→ 28 ≥ 48
F 42→ 62 28→ 42 < 48

> 62 > 42

Table 2.1: Level of service (LOS) indicators for a motorway (adapted from [May90], in similar
form originally published in the 1985 HCM).

Calculating levels of service can be done using a multitude of methods; some ex-
amples include using the density (at motorways), using the space-mean speed (at
arterial streets), using the delay (at signallised and unsignallised intersections), . . .
[HCM00]. The distinction between different LOS is primarily based on the measured
average speed, and secondly on the density (or occupancy). Furthermore, as traditional
analyses only focus on a select number of hours, a new trend is to conduct whole year
analyses (WYA) based on aggregated measurements such as, e.g., the monthly aver-
age daily traffic (MADT) and the annual average daily traffic (AADT) [Bri00]. The
MADT is calculated as the average amount of traffic recorded during each day of the
week, averaged over all days within a month. Averaging the resulting twelve MADTs

9The TRB was formerly known as the Highway Research Board (HRB).
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gives the AADT.

Regarding the use of the LOS, we note that it is a rather old-fashioned method for
evaluating the quality of traffic operations. In general, it is difficult to calculate,
mainly because the defined standards at which the different levels are set, always
depend on the specific type of traffic situation that is studied (e.g., type of road,
. . . ). This makes the LOS more of an engineering tool, used when assessing and
planning operational analyses. Instead of using the LOS, we therefore propose
to adopt the more suited approach based on oblique cumulative plots (we refer
the reader to Section 2.3.2.2). These allow for example to assess the differences
between travel times under free-flow and congested conditions, thereby giving a
more meaningful and intuitive indication of the quality of traffic operations to the
drivers.

2.4.3 Travel times and their reliability

When travelling around, people like to know how long a specific journey will take
(e.g., by public transport, car, bicycle, . . . ). This notion of an expected travel time, is
one of the most tangible aspects of journeying as perceived by the travellers. When
people are travelling to their work, they are required to arrive on time at their destina-
tions. Based on this premise, we can naturally state that people reason with a built-in
safety margin: they consider the average time it takes to reach a destination, and use
this to decide about their departure time.

Aside from the above obvious human rationale, there is also an increased interest in
obtaining precise information with respect to travel times in the context of advanced
traveller information systems (ATIS). Here, an essential ingredient is the accurate pre-
diction of future travel times. Coupled with incident detection for example, drivers can
obtain correct travel time information, thereby staying informed of the actual traffic
conditions and possibly changing their journey. The requested information can reach
the driver by means of a cell-phone (e.g., as a feature offered by the mobile service
provider), it can be broadcasted over radio (e.g., the Traffic Message Channel – TMC),
or it can be displayed using variable message signs (VMS) above certain road sections
(e.g., dynamic route information panels – DRIPs), . . .

2.4.3.1 Travel time definitions

The travel time of a driver completing a journey, can be defined as ‘the time necessary
to traverse a route between any two points of interest’ [Tur98]. In this context, the
experienced dynamic travel time, starting at a certain time t0, over a road section of
length K is defined as follows [Bov00]:

T (t0) =

∫ K

0

1
v(t, x)

dx ∀ t ≥ t0, (2.39)
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for which it is assumed that all local instantaneous vehicle speeds v(t, x) are known at
all points along the route, and at all time instants (hence the term dynamic travel time).
In most cases however, we do not know all the v(t, x), but only a finite subset of them,
defined by the locations of the detector stations (demarcating section boundaries). The
travel time can then be approximated using the recorded speeds at the beginning and
end of a section (there is an underlying assumption here, namely that vehicles travel
at a more or less constant speed between detector locations). As stated earlier, the
experienced travel time requires the knowledge of local vehicle speeds at all time
instants after T0. Because this is not always possible, a simplification can be used,
resulting in the so-called experienced instantaneous travel time:

T̃ (t0) =

∫ K

0

1
v(t0, x)

dx, (2.40)

In general, we can derive the travel time using equation (2.27), i.e., the total distance
travelled by all the vehicles, divided by their space-mean speed:

T (t0) =
K

vs(t0)
, (2.41)

in which an accurate estimation of the space-mean speed vs(t0) at time t0 is necessary
(e.g., by taking the harmonic average of the recorded spot speeds).

2.4.3.2 Queueing delays

Traffic congestion nearly always leads to the build up of queues, introducing an in-
crease (i.e., the delay) in the experienced travel time. The congestion itself can have
originated due to traffic demand exceeding the capacity, or because an incident oc-
curred (e.g., road works, a traffic accident, . . . )10. This can create incidental (non-
recurrent) or structural (recurrent) congestion. Congestion can thus be seen as a loss
in travel time with respect to some base line reference. Two such commonly used
references are the travel time under free-flow conditions, and the travel time under
maximum (i.e., capacity) flow. The delay is typically expressed in vehicle hours. As
stated earlier, there are several ways to inform a driver of the current and predicted
travel time. Using DRIPs it is possible to advertise the extra travel time (the delay is
now typically expressed in vehicle minutes), as well as queue lengths. We note that in
our opinion it is more intuitive to advertise a temporal estimation (i.e., the travel time
or the delay), than a spatial estimation (e.g., the queue length on a motorway).

10Note that in a broader sense, queueing delays also encompass delays at signallised and unsignallised
intersections.
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2.4.3.3 An example of travel time estimation using cumulative plots

There exist several techniques for estimating the current travel time; one method for
directly ‘measuring’ the travel time, is by using a probe vehicle (we refer the reader to
Section 2.3.5 for more details). This way, it is possible to extract actual travel times
from a traffic stream. Note that as traffic conditions get more congested, more probe
vehicles are required in order to obtain an accurate estimation of the travel time.

Another method for measuring the travel time, is based on historical data, namely
cumulative plots (introduced in Section 2.3.2.2). As mentioned earlier, the travel time
can then be measured as the distance along the horizontal (or oblique) time axis; any
excess due to delays can then easily be spotted on a set of oblique cumulative plots.

Based on cumulative plots of consecutive detector stations, we can calculate the travel
time between the upstream and downstream end of a road section. To illustrate this,
let us reconsider the cumulative curves shown in Figure 2.4 of Section 2.3.2.2. The
evolution of the travel time during the day for these curves, is depicted in the top
part of Figure 2.5. The derived histogram (indicative of the underlying travel time
probability density function), in the bottom part of the figure, shows that the mean
travel time during the day is approximately 4 minutes.

We already mentioned the likely occurrence of an incident at 11:00, resulting in the
formation of a queue. During this period, the travel time shot up, reaching first 5, then
7 minutes. Looking at the top part of Figure 2.5, we furthermore notice a slight in-
crease in the travel time at approximately 18:45, for a short period of some 10 minutes.
Investigation of the detector data, revealed that the flow remained constant at about
4500 vehicles per hour, but the speed dropped to some 90 km/h (as opposed to 110
km/h); we can conclude that all vehicles were probably simultaneously slowing down
during this period (perhaps a rubbernecking effect). Another possibility is a platoon
of slower moving vehicles, but then it would seem to have dissipated rather quickly
after 10 minutes.

Using ample historical data, we can analyse the travel time over a period of many
weeks, months, or even years. This would allow us to make intuitive statements such
as:

“The typical travel time over this section of the road during a working
Monday, lies approximately between 4 and 6 minutes. There is however
an 8% probability that the travel time increases to some 22 minutes (e.g.,
due to an occurring incident).”

Finally note that, besides the two previously mentioned techniques for estimating
travel times, an extensive overview can be found in the Travel Time Data Collec-
tion Handbook [Tur98]. Another concise but more theoretically-oriented overview is
provided by Bovy and Thijs [Bov00].
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Figure 2.5: Top: The evolution of the travel time during one day, based on the cumulative
plots from Section 2.3.2.2. As can be seen, an incident likely occurred at 11:00, increasing the
travel time from 4 to 7 minutes. Furthermore, at approximately 18:45 in the evening, all traffic
seemed to simultaneously slow down for a period of some 10 minutes. Bottom: Based on the
calculated travel times during the day, we can derive a histogram that is an approximation of
the underlying travel time probability density function. The mean is located around 4 minutes.

2.4.3.4 Reliability and robustness properties

As mentioned in the introduction of this section, people reason about their expected
travel times based on a built-in safety margin. Central to this is the concept of the
average travel time. The reliability of such a travel time is then characterised by its
standard deviation. Drivers typically accept (and sometimes expect) a small delay in
their expected travel time. A traveller knows the expected travel time because of the
familiarity with the associated trip. To the traveller, this is personal historical inform-
ation, for instance obtained by learning the trip’s details (e.g., the traffic conditions
during a typical morning rush hour) [Bal04b].

Directly linked to the reliability of a certain expected travel time, is its variability.
They are said to be unreliable when both expected and experienced travel times differ
sufficiently. A typical characterisation of reliability involves the mean and standard
deviation (i.e., the variance, which is a measure of variability) of a travel time distri-
bution [Che02]. An example of such a travel time distribution for one day is shown in
the histogram in the bottom part of Figure 2.5.
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Both first- and second-order measures of a distribution are by themselves insufficient
to capture the complete picture. In order to grasp the notion of the previously men-
tioned safety margin, another typical statistical measure is considered, namely the
90th percentile. The rationale behind the use of this percentile is that travellers adopt a
certain ‘safe’ threshold with respect to their expected journey times. Considering the
90th percentile, this means that only one out of ten times the experienced travel time
will differ significantly from the expected travel time. Travel time reliability can thus
be viewed upon as a measure of service quality (similar to the concept of ‘quality of
service’ (QoS) in telecommunications).

There has been some research into the analytic form of travel time distributions (e.g.,
the work of Arroyo and Kornhauser, concluding that a lognormal distribution seems
the most appropriate [Arr05]). There exist however significant differences between
travel time distributions: in general, a smaller standard deviation indicates a better ser-
vice quality and reliability. In contrast to this, a large standard deviation is indicative
of chaotic behaviour of the traffic flow, the latter being totally unstable. Furthermore,
travel time distributions can have a long tail; this signifies seldom events (e.g., incid-
ents), that can have significant repercussions on the quality of traffic operations.

Let us finally note that there is an increased interest in the reliability of com-
plete transportation networks, and their robustness against incidents. To this end,
Immers et al. consider reliability as a user-oriented quality, whereas robustness
is more a property of the system itself [Imm04]. Among several characterising
factors for robustness of transportation systems, they also introduce the follow-
ing practical notions in this context: redundancy, denoting a spare capacity, and
resilience, which is the ability to repeatedly recover from a temporary overload.
Their conclusion is that the key element in securing transportation reliability lies
in a good network design.

2.4.4 Efficiency

In [Che01b], Chen et al. state that the main reason for congestion is not demand
exceeding capacity (i.e., the number of travellers who want to use a certain part of
the transportation network, exceeds the available infrastructure’s capacity), but is in
fact the inefficient operation of motorways during periods of high demand. In order to
quantify this efficiency, they first look at what the prevailing speed is when a motorway
is operating at its maximum efficiency, i.e., the highest flow (corresponding to the
effective capacity, which is different from the HCM’s capacity which is calculated
from the road’s physical characteristics). Based on the distribution of 5-minute data
samples from some 3300 detectors, they investigate the speed during periods of very
high flows. This leads them to a so-called sustained speed vsust = 60 miles per hour
(which corresponds to 60 mi/h× 1.609 ≈ 97 km/h).

The performance indicator they propose, is called the efficiency η and it based on the
ratio of the total vehicle miles travelled (VMT), divided by the total vehicle hours
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travelled (VHT). Note that as the units of VMT and vsust should correspond to each
other, we propose to use the terminology of total vehicle distance travelled (VDT)
instead of the VMT, in order to eliminate possible confusion. Both VDT and VHT are
defined as follows:

VDT = q K, (2.42)

VHT =
VDT
vs

, (2.43)

with, as before, q the flow, K the length of the road section, and vs the space-mean
speed. Using the above definitions, we can write the efficiency of a road section as:

η =
VDT/VHT

vsust
. (2.44)

The efficiency is expressed as a percentage, and it can rise above 100% when the
recorded average speeds surpass the sustained speed vsust. In general, the discussed
efficiency can also easily be calculated for a complete road network and an arbitrary
time period. It can furthermore be seen as the ratio of the actual productivity of a
road section (the output produced by this section during one hour), to its maximum
possible production (the input to the section) under high flow conditions.

Note that as a solution to their original claim (“congestion arises due to inef-
ficient operation”), Chen et al. propose to increase the operational efficiency,
mainly through the technique of suitable ramp metering (using an idealised ramp
metering control practice that maintains the occupancy downstream of an on ramp
to its critical level). But in our opinion, they neglect to take into account the entire
situation, i.e., they fail to consider the extra effects induced by holding vehicles
back at some on ramps (e.g., the total time travelled by all the vehicles, including
delays), thus rendering their statement practically worthless by giving a feeble
argument. Careful examination of their reasoning, reveals that these extra effects
are dealt with by shifting demand during the peak periods, but this just confirms
our hypothesis that congestion occurs when demand exceeds capacity, even when
this capacity is for example controlled through ramp metering !

In contrast to the work of Chen et al., Brilon proposes another definition for the effi-
ciency (now denoted as E): it is expressed as the number of vehicle kilometres that
are produced by a motorway section per unit of time [Bri00]:

E = q vs Tmp, (2.45)

with now q the total flow recorded during the time interval Tmp. Brilon concludes that
in order for motorways to operate at maximum efficiency, their hourly flows typically
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have to remain below the capacity flow (e.g., at 90% of qcap). Brilon also proposes
to use this point of maximum efficiency as the threshold when going from LOS D to
LOS E.

2.5 Fundamental diagrams

Whereas the previous sections dealt with individual traffic flow characteristics, this
section discusses some of the relations between them. We first give some character-
isations of different traffic flow conditions and the rudimentary transitions between
them, followed by a discussion of the relations (which are expressed as fundamental
diagrams) between the traffic flow characteristics, giving special attention to the dif-
ferent points of view adopted by traffic engineers.

2.5.1 Traffic flow regimes

Considering a stream of traffic flow, we can distinguish different types of operational
characteristics, called regimes (two other commonly used terms are traffic flow phases
and states). As each of these regimes is characterised by a certain set of unique prop-
erties, classification of them is sometimes based on occupancy measurements (see for
example the discussion about levels of service in Section 2.4.2), or it is based on com-
binations of different macroscopic traffic flow characteristics (e.g., the work of Kerner
[Ker04]).

In the following sections, we discuss the regimes known as free-flow traffic, capacity-
flow traffic, congested, stop-and-go, and jammed traffic. Our discussion of these re-
gimes is in fact based on the commonly adopted way of looking at traffic flows, as op-
posed to for example Kerner’s three-phase traffic theory that includes a regime known
as synchronised traffic (we refer the reader to Section 2.5.4 for more details). We con-
clude the section with a note on the transitions that occur from one regime to another.

2.5.1.1 Free-flow traffic

Under light traffic conditions, vehicles are able to freely travel at their desired speed.
As they are largely unimpeded by other vehicles, drivers strive to attain their own com-
fortable travelling speed (we assume that in case a vehicle encounters a slower moving
vehicle ahead, it can easily change lanes in order to overtake the slower vehicle). Not-
withstanding this ability for unconstrained travelling, drivers have to take into account
the maximum allowed speed (denoted by vmax), as well as road-, engine-, and other
vehicle characteristics. Note that in some cases, depending on the country under scru-
tiny, drivers perform speeding.

In essence, the previous description of free-flow traffic considers a traffic flow to be
unrestricted, i.e., no significant delays are introduced due to possible overtaking man-
oeuvres. As a consequence, the free-flow speed (by some called the nominal speed)
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is the mean speed of all vehicles, travelling at their own pace (e.g., 100 km/h); it is
denoted by vff.

Free-flow traffic occurs exclusively at low densities, implying large average space
headways according to equation (2.11). As a result, small local disturbances in the
temporal and spatial patterns of the traffic stream have no significant effects, hence
traffic flow is stable in the free-flow regime.

2.5.1.2 Capacity-flow traffic

When the traffic density increases, vehicles are driving closer to each other. Consider-
ing the number of vehicles that pass a certain location alongside the road, an observer
will notice an increase in the flow. At a certain moment, the flow will reach a max-
imum value (which is determined by the mean speed of the traffic stream and the
current density). This maximum flow is called the capacity flow, denoted by qc, qcap,
or even qmax. A typical value for the capacity flow on a three-lane Belgian motorway
with vmax equal to 120 km/h, can reach a maximum of some 7000 vehicles [VVC03].
According to equation (2.19), the average time headway is minimal at capacity-flow
traffic, indicating the (local) formation of tightly packed clusters of vehicles (i.e., pla-
toons), which are moving at a certain capacity-flow speed vc (or vcap) which is nor-
mally a bit lower than the free-flow speed. Note that some of these fast platoons are
very unstable when they are composed of tail-gating vehicles: whenever in such a
string a vehicle slows down a little, it can have a cascading effect, leading to exag-
gerate braking of following vehicles. Hence, these latter manoeuvres can destroy the
local state of capacity-flow, and can in the worst case lead to multiple rear-end colli-
sions. At this point, traffic becomes unstable.

The calculation of the capacity flow is a daunting task, holding traffic engineers
occupied for the last six decades. The fact of the matter is that there exists no
rigourous definition for the concept of ‘capacity’. As a result, after many years
of research, this culminated in the publication of the fourth edition of the already
previously mentioned Highway Capacity Manual. It contains an impressive over-
view, spanning methodologies for assessing the capacity at specific types of road
infrastructures (motorway facilities, weaving sections, on- and off-ramps, signal-
lised and unsignallised urban intersections, . . . ) [HCM00]. Despite this impress-
ive amount of literature, the HCM’s approach remains firmly rooted in the level-
of-service concept, still adopting a static view on congestion. Only quite recently
(i.e., the 2000 version) have simulations entered the picture in order to account for
the temporal nature of the formation and dissolution of congestion at motorway
complexes.

2.5.1.3 Congested, stop-and-go, and jammed traffic

Considering the regime of capacity-flow traffic, it is reasonable to assume that drivers
are more mentally aware and alert in this regime, as they have to adapt their driving
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style to the smaller space and time headways under high speeds. However, when
more vehicles are present, the density is increased even further, allowing a sufficiently
large disturbance to take place. For example, a driver with too small space and time
headways, will have to brake in order to avoid a collision with the leader directly in
front; this can lead to a local chain of reactions that disrupts the traffic stream and
triggers a breakdown of the flow. The resulting state of saturated traffic conditions, is
called congested traffic. The moderately high density at which this breakdown occurs,
is called the critical density, and is denoted by kc or kcrit (for a typical motorway, its
value lies around 25 vehicles (PCUs) per kilometre per lane, [VVC03]). From this
knowledge, we can derive the optimal driving speed for single-lane traffic flows as
vs = qcap/kcrit = 7000

3 ÷ 25 ≈ 93 km/h.

Higher values for the density indicate almost always a worsening of the traffic condi-
tions; congested traffic can result in stop-and-go traffic, whereby vehicles encounter
so-called stop-and-go waves. These waves require them to slow down severely, or
even stop completely. When traffic becomes motionless, the space headway reaches a
minimum as all vehicles are standing bumper-to-bumper; this extreme state is called
jammed traffic. Clearly, there exists a maximum density at which the traffic seems to
turn into a ‘parking lot’, called the jam density and it is denoted by kj, kjam, or kmax.
For a typical motorway, its value lies around 140 vehicles (PCUs) per kilometre per
lane [VVC03].

Note that the jam density is typically expressed in vehicles per kilometre. As
already stated in the introduction of Section 2.3.1, density ignores the effects
of traffic composition and vehicle lengths. For a typical value of some 140
vehicles/km/lane for the jam density, this means that we express the density by
using passenger car units (see Section 2.3.1.2 for more details). Suppose now
for example that an average trailer truck equals 4.5 PCUs, then the jam density
would decrease to some 140 ÷ 4.5 ≈ 31 trucks for this class of vehicles. As a
consequence, the value of the jam density is different for each vehicle class.

2.5.1.4 A note on the transitions between different regimes

Streams of traffic flows can be regarded as many-particle systems (e.g., gasses, mag-
netic spin systems, . . . ); as they have a large number of degrees of freedom, it is often
intractable when it comes to solving them exactly. However, from a physical point of
view, these systems can be described in the framework of statistical physics, whereby
the collective behaviour of their constituents is approximately treated using statistical
techniques.

Within this context, the changeover from one traffic regime to another, can be looked
upon as a phase transition. Within thermodynamics and statistical physics, an order
parameter is often used to describe the phase transition: when the system shifts from
one phase to another (e.g., at a critical point for liquid-gas transitions), the order
parameter expresses a different qualitative behaviour. Two examples of such an order
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parameter that is applicable to traffic flows, can be found in Schadschneider et al.
who considered nearest neighbour correlations [Sch02a], and in Jost and Nagel who
devised a measure of inhomogeneity [Jos03a] (we refer the reader to our work in
[Mae04f] for an example in which they are used and compared when tracking phase
transitions).

There exists a difference in which a phase transition can express itself. This differ-
ence is designated by the order of the transition; generally speaking, the two most
common phase transitions are first-order and second-order transitions. According
to Ehrenfest’s classification11, first-order transitions have an abrupt, discontinuous
change in the order parameter that characterises the transition. In contrast to this, the
changeover to the new phase occurs smoothly for second-order transitions [Yan52;
Lee52]. Note that higher-order phase transitions also exist, e.g., in superconducting
materials [Cro01].

With respect to the description of regimes in traffic flows, it is commonly agreed that
there exists a first-order phase transition when going from the capacity-flow to the
congested regime. The point at which this transition occurs, is the critical density.
Studying the phase transitions encountered in fluid dynamics, there exists a transition
from the laminar flow (i.e., a fluid flowing in layers, each moving at a different velo-
city) to the turbulent flow (i.e., the disturbed random and unorganised state in which
vortices form). However, the transition here is triggered by an increase in the velocity
of the fluid, as opposed to the transition in traffic flows where a change in the density
can lead to a cascading instability. In this respect, the analogy for traffic flows holds
better when comparing them to gas-liquid transitions. Here free-flow traffic corres-
ponds to a gaseous phase, in which particles are evenly spread out in the system. At
the point of the phase transition, liquid droplets will form, coagulating together into
bigger droplets. This leads to a state where both gaseous and liquid phases coexist,
typically in the form of a big liquid droplet surrounded by gas particles. For even
higher densities, particles are so close to each other, and the only remaining state is
the liquid phase [Eis98; Kra99; Kay01; Jos02; Jos03a; Nag03a; Mah05].

In conclusion, we refer the reader to the work of Tampère, where an excellent overview
is given, detailing the different traffic flow regimes, their transitions, and mechanisms
with respect to jamming behaviour [Tam04a].

2.5.2 Correlations between traffic flow characteristics

Whereas the previous sections all treated the macroscopic traffic flow characteristics
on an individual basis, this section considers some of the relations between them. We
start our discussion with a look at the historic origin of fundamental diagrams, after
which we shed some light on the different classical approaches. The section concludes
with some considerations with respect to empirical measurements.

11Note that the modern approach to the classification of phase transitions, relates first-order transitions to
systems that have mixed phases, releasing and/or absorbing energy. In contrast to this behaviour, second-
order phase transitions, also called continuous phase transitions, have no associated latent heat.
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2.5.2.1 The historic origin of the fundamental diagram

As in many scientific disciplines, the resulting statements and theories are often pre-
ceded by an investigation of obtained experimental data, which serves as empirical
evidence for them. In this line of reasoning, Greenshields was among the first to
provide — as far back as 1935 — a basis for most of the classical work on, what are
called, empirical fundamental diagrams. In his seminal paper, he sketched a linear
relation between the density and the mean speed, based on empirically obtained data
[Gre35]:

v = vff

(
1−

k

kj

)
. (2.46)

As can be seen from Greenshields’ relation, when increasing the density from zero
to the jam density kj, the mean speed will monotonically decrease from the free-flow
speed vff to zero (note that we dropped the ‘s’ or ‘t’ subscript from the mean speed,
as it is not sure whether or not Greenshields used space- or time-mean speed, respect-
ively). The relation can be understood intuitively, by assuming that drivers will tend
to slow down in crowded traffic, because this naturally gives them more time to react
to changes (e.g., sudden braking of the lead vehicle). As it is reasonable to assume
that the mean speed remains unaffected for very low densities, Greenshields further-
more flattened the upper-left part of the regression line (corresponding to the free-flow
speed), although this effect is not incorporated in equation (2.46).
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Figure 2.6: Greenshields’ original lin-
ear relation between the density and the
mean speed. Note that the regression
line is based on only seven measurements
points, and that there is an artificial flat-
tening of its upper-left part (figure based
on [Lig55] and [Gar97]).

Although Greenshields’ derivation of the
linear relation between density and space-
mean speed appears elegant and simple, it
should nevertheless be taken with a grain
of salt. The fact of the matter is that his
hypothesis is, as can be seen in Figure 2.6,
based on only seven measurement points,
which comprise aerial observations taken
on September 3, (Monday, Labor Day), 1934
[May90]. One of the problems is that these
observations are not independent. An even
more serious problem is that six of these
observations were obtained for free-flow con-
ditions, whereas the one single point that
indicates congested conditions, was obtained
at an entirely different road, on a different
day [Gar97] !

Some twenty years later, Lighthill and Whitham developed a theory that describes
the traffic flows on long crowded roads using a first-order fluid-dynamic model (see
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also Section 3.2.1.2) [Lig55]. As one of the main ingredients in their theory, they
postulated the following fundamental hypothesis: “at any point of the road, the flow
q is a function of the density k”. They called this function the flow-concentration
curve (recall from Section 2.3.3 that density in the past got sometimes referred to as
concentration).

Continuing their reasoning, Lighthill and Whitham then referred to Greenshields’
earlier work, relating the space-mean speed to the density, and, by means of equa-
tion (2.33), thus relating the flow to the density. The existence of the concept of
the flow-concentration curve mentioned above, was justified on the grounds that it
describes traffic operating under steady-state conditions, i.e., homogeneous and sta-
tionary traffic as explained in Section 2.3.4.2. In this context, the flow-concentration
curve therefore describes the average characteristics of a traffic flow. So Greenshields
first fitted a regression line to scarce data, after which his functional form seemed to
be taken for granted for the following seventy years. The key aspect in Lighthill and
Whitham’s (and also Richards’ [Ric56]) approach, lay in the fact that they broadened
the flow-concentration curve’s validity, including also conditions of non-stationary
traffic. They also stated that, because of, e.g., changes in the traffic composition, the
curve can vary from day to day, or even within a day (e.g., rush hours, . . . ). The same
statement holds also true when considering the flow-concentration curves of different
vehicle classes (e.g., cars and trucks).

The term fundamental diagram itself, is historically based on Lighthill and Whitham’s
fundamental hypothesis of the existence of such a one-dimensional flow-concentration
curve. As traffic engineers grew accustomed to the graphical representation of this
curve, they started talking about the diagram that represents it, i.e., the ’fundamental
diagram’ [Hai63].

In its original form, the fundamental diagram represents an equilibrium relation
between flow and density, denoted by qe(k). But note that, because of the funda-
mental relation of traffic flow theory (see Section 2.3.4.2), is it equally justified to
talk about the vse(k) or the vse(q) fundamental diagrams. Due to this equilibrium
property, the traffic states (i.e., the density, flow, and space-mean speed) can be
thought of as ‘moving’ over the fundamental diagrams’ curves.

2.5.2.2 The general shape of a fundamental diagram

We now give an overview of some of the qualitative features of the different pos-
sible fundamental diagrams, representing the equilibrium relations between density,
space-mean speed, and average space headway, and flow. Note that in each example,
we consider a possible fundamental diagram, as they can take on many (functional)
shapes.

Space-mean speed versus density
We start our discussion based on the equilibrium relation between space-
mean speed and density, i.e., the vse(k) fundamental diagram. The main
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reason for starting here, is the fact that this diagram is the easiest to un-
derstand intuitively. Complementary to the example of Greenshields in
Figure 2.6, we give a small overview of its most prominent features:

• the density is restricted between 0 and the maximum density, i.e.,
the jam density kj,

• the space-mean speed is restricted between 0 and the maximum av-
erage speed, i.e., the free-flow speed vff,

• as density increases, the space-mean speed monotonically decreases,

• there exists a small range of low densities, in which the space-mean
speed remains unaffected and corresponds more or less to the free-
flow speed,

• and finally, the flow (equal to density times space-mean speed), can
be derived as the area demarcated by a rectangle who’s lower-left
and upper-right corners are the origin and a point on the funda-
mental diagram, respectively.

Space-mean speed versus average space headway
Microscopic and macroscopic traffic flow characteristics are related to
each other by means of equations (2.11) and (2.19). According to the
former, density k is inversely proportional to the average space headway
hs. We can therefore derive a fundamental diagram, similar to the previ-
ous one, by substituting the density with the average space headway. As
as result, the abscissa gets ‘inverted’, resulting in the fundamental dia-
gram as shown in Figure 2.7.
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Figure 2.7: A fundamental diagram relating the average space headway hs to
the space-mean speed vs. Note that the average space headway is proportional to
the inverse of the density, i.e., k−1.

The interesting features of this type of fundamental diagram, can be summed
as follows:

• the curve starts not in the origin, but at k−1
j , corresponding to the

average space headway when the jam density is reached (i.e., all
vehicles are standing nearly bumper to bumper),
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• as the average space headway increases, its inverse (the density)
decreases, and the space-mean speed increases,

• the space-mean speed continues to rise with an increasing average
space headway, until it reaches the maximum average speed, i.e., the
free-flow speed vff; this happens at the inverse of the critical density
k−1

c ,

• from then on, the space-mean speed remains constant with increas-
ing average space headway.

The above features can be understood intuitively: at large average space
headways, a driver experiences no influence from its direct frontal leader.
However, there exists a point at which the driver comes ‘close enough’ to
this leader (i.e., in crowded traffic), so that its speed will decrease. This
slowing down will continue to persist as traffic gets more dense (this the
same reasoning behind Greenshields’ derivation in Section 2.5.2.1).

Flow versus density
Probably the most encountered form of a fundamental diagram, is that of
flow versus density. Its origins date back to the seminal work of Light-
hill and Whitham who, as described earlier, referred to it as the flow-
concentration curve. An example of the qe(k) fundamental diagram is
depicted in Figure 2.8.
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Figure 2.8: A fundamental diagram relating the density k to the flow q. The
capacity flow qcap is reached at the critical density kc. The space-mean speed vs

for any point on the curve, is defined as the slope of the line through that point
and the origin. Taking the slope of the tangent to points on the curve, gives the
characteristic wave speed w.

Noteworthy features of this type of fundamental diagram are:
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• for moderately low densities (i.e., below the critical density kc),
the flow increases more or less linearly (this is called the free-flow
branch of the fundamental diagram),

• near the critical density kc, the fundamental diagram can bend slightly,
due to faster vehicles being obstructed by slower vehicles, thereby
lowering the free-flow speed [New93b],

• at the critical density kc, the flow reaches a maximum, called the
capacity flow12 qcap,

• in the congested regime (i.e., for densities higher than the critical
density), the flow starts to degrade with increasing density, until the
jam density kj is reached and traffic comes to a stand still, resulting
in a zero flow (this is called the congested branch of the fundamental
diagram),

• the space-mean speed vs for any point on the qe(k) fundamental
diagram, can be found as the slope of the line through that point and
the origin,

There is one more piece of information revealed by the qe(k) fundamental
diagram: When taking the slope of the tangent in any point of the dia-
gram, we obtain what is called the kinematic wave speed. These speeds
w correspond to shock waves encountered in traffic flows (e.g., the stop-
and-go waves). As can be seen from the figure, the shock waves travel
forwards, i.e., downstream, in free-flow traffic (w ≥ 0), but backwards,
i.e., upstream, in congested traffic (w ≤ 0).

The above shape of the qe(k) fundamental diagram is just one possib-
ility. There exist many different flavours, originally derived by traffic
engineers seeking a better fit of these curves to empirical data. After the
work of Greenshields, another functional form — based on a logarithm
— was proposed by Greenberg [Gre59]. Another possible form was in-
troduced by Underwood [Und61]. All of the previous diagrams are called
single-regime models, because they formulate only one relation between
the macroscopic traffic flow characteristics for the entire range of dens-
ities (i.e., traffic flow regimes) [May90]. In contrast to this, Edie started
developing multi-regime models, allowing for discontinuities and a better
fit to empirical data coming from different traffic flow regimes [Edi61].
We refer the reader to the work of Drake et al. [Dra67] and the book of
May [May90] for an extensive comparison and overview of these differ-
ent modelling approaches (note that Drake et al. used time-mean speed).

During the last two decades, other, sometimes more sophisticated, func-
tional relationships between density and flow have been proposed. Ex-
amples are the work of Smulders who created a non-differentiable point

12Note that this capacity flow is not an extreme value, i.e., it can be different from the maximum observed
flow. The reason is that, with respect to the nature of the fundamental diagram, the capacity flow is taken to
be an average value [Gre35; Lig55].
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at the critical density in a two-regime fundamental diagram [Smu89], the
METANET model of Messmer and Papageorgiou who’s single-regime
fundamental diagram contains an inflection point near the jam density
[Mes90], the work of De Romph who generalised Smulders’ functional
description of his two-regime fundamental diagram [Rom94], the typ-
ical triangular shape of the fundamental diagram introduced by Newell,
resulting in only two possible values for the kinematic wave speed w
[New93b], . . . As can be seen, these fundamental diagrams sometimes
take on non-concave forms, depending on the existence of inflection points
in the functional relation between flow and density. In general, they can
be convex, concave, (dis)continuous, piecewise-linear, everywhere differ-
entiable, have inflection points, . . . Variations in shape will continu to be
proposed, as it is for certain that there is no general consensus among
traffic engineers regarding the correct shape of this fundamental diagram.
To illustrate this, a more exotic approach is based on catastrophe theory,
which is, in a sense, a three-dimensional model that jointly treats density,
flow, and space-mean speed. Acha-Daza and Hall applied the technique,
resulting in a satisfactory fit with empirical data [AD94].

The most extreme argument with respect to the shape of the fundamental
diagram, came from Kerner who questioned its validity, and consequently
rejected it altogether by replacing it with his fundamental hypothesis of
three-phase traffic flow theory (refer to Section 2.5.4 for more details)
[Ker04].

Space-mean speed versus flow
An often spotted shape is that of the vse(q) fundamental diagram, depic-
ted in Figure 2.9. As opposed to the earlier discussed vse(k) fundamental
diagram, the space-mean speed versus flow curve no longer embodies a
function in the strict mathematical sense: for each value of the flow, there
exists two different mean speeds, namely one in the free-flow regime (up-
per branch) and one in the congested regime (lower branch).

Some people, e.g., economists who use the flow to represent traffic de-
mand as will be explained in Section 3.1.4.1, find this kind of fundamental
diagram easy to cope with. But in our opinion, we are convinced however,
that this diagram is rather difficult to understand at first sight. We believe
the vse(k) fundamental diagram is a much better candidate, because dens-
ity can intuitively be understood as a measure for how crowded traffic is,
as opposed to some flow giving rise to two different values for the space-
mean speed.

As a final comment, we would like to point out that the previously discussed bivari-
ate functional relationships between the traffic flow characteristics (e.g., density and
flow), are based on observations. More importantly, this means that there is no direct
causal relation assumed between any two variables. Fundamental diagrams sketch
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Figure 2.9: A fundamental diagram relating the flow q to the space-mean speed
vs. The capacity flow qcap is located at the right edge of the diagram, i.e., it is
defined as the maximum average flow. Note that there are two possible speeds
associated with each value of the flow.

only possible correlations, implying that the nature of the transitions between differ-
ent traffic regimes thus remains to be explored (see Section 2.5.1.4 for a discussion).

2.5.2.3 Empirical measurements

As mentioned earlier, the fundamental diagrams discussed in the previous section rep-
resent equilibrium relations between the macroscopic traffic flow characteristics of
Section 2.3. In sharp contrast to this, real empirical measurements from detector sta-
tions do not describe such nice one-dimensional curves corresponding to the func-
tional relationships.

As an illustrative example, we provide some scatter plots in Figure 2.10. The shown
data comprises detector measurements (the sampling interval was one minute) dur-
ing the entire year 2003; they were obtained by means of a video camera [VVC03]
located at the E17 three-lane motorway near Linkeroever13, Belgium. Because of the
nature of this data, we only obtained flows, occupancies, and time-mean speeds. After
calculating the average vehicle length, the occupancies were converted into densities
using equation (2.24). Using these recorded time series, we then constructed scatter
plots of the density, time-mean speed, flow, and average space headway. Note that no
substantial changes are introduced in these plots due to, e.g., our using of densities
calculated from occupancies, instead of using real measured densities.

As the dimension of time is removed in these scatter plots, Daganzo calls them time-
independent models [Dag97b]. It is important to understand that these scatter plots
are not fundamental diagrams, because the latter represent one-dimensional equilib-
rium curves. According to Helbing, a better designation would be regression models

13The detector station is called CLO3, which is an acronym for ‘Camera Linkeroever’.
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Figure 2.10: Illustrative scatter plots of the relations between traffic flow characteristics as
measured by video camera CLO3 located at the E17 three-lane motorway near Linkeroever,
Belgium. The measured occupancies were converted into densities, the time-mean speed re-
mained unchanged. Shown are scatter plots of a (k,v t) diagram (top-left), a (hs,vt) diagram
(top-right), a (k,q) diagram (bottom-left), and a (q,v t) diagram (bottom-right).

[Hel97]. In this dissertation, we introduce a terminology based on phase spaces (or
equivalently state spaces), resulting in, e.g., the (k,q) diagram (note that we dropped
the adjective ‘fundamental’).

In reality, traffic is not homogeneous, nor is it stationary, thus having the effect of
a large amount of scatter in the presented diagrams. In free-flow traffic, interactions
between vehicles are rare, and their small local disturbances have no significant effects
on the traffic stream. As a result, all points are somewhat densely concentrated along
a line — representing the free-flow speed — in all four diagrams. However, in the
congested regime, a wide range of scatter is visible due to the interactions between
vehicles. Furthermore, vehicle accelerations and decelerations lead to large fluctu-
ations in the traffic stream, as can be seen by the thin, but large, cloud of data points.
The effect is especially pronounced for intermediate densities, leading to large fluctu-
ations in the time-mean speed and flow.
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The occurrence of all this scatter in the data, leads some traffic engineers to ques-
tion the validity of the fundamental diagram. More specifically, the behaviour in
congested traffic seems ill-defined to some. As stated earlier, Kerner is the most
intense opponent in this debate, as he outright rejects Lighthill and Whitham’s hy-
pothesis that remained popular over the last fifty years. Despite this criticism, the
fundamental diagram remains, to the majority of the community, a fairly accurate
description of the average behaviour of a traffic stream. Cassidy and Coifman
even provided quantifiable evidence of the existence of well-defined bivariate re-
lations between traffic flow characteristics. The key here was to separate sta-
tionary periods from non-stationary ones in the detector data (i.e., stratifying it)
[Cas97; Dag97b; Cas98]. Prior work of Del Castillo and Benı́tez resulted in a
more mathematically justified method, for fitting empirical curves in data regions
of stationary traffic, after construction of a rigid set of properties that all funda-
mental diagrams should satisfy [Del95a; Del95b]. Finally, note that Nishinari et
al. and Treiber et al. attribute the scatter in the data to the acceleration beha-
viour of individual vehicles in a traffic stream, based on single-vehicle data of
time headways and local speed variances [Nis03c; Nis03b; Tre03; Tre05b].

As a final note, we remark that the distribution of the cloud-like data points of the
diagrams in Figure 2.10, is a result of various kinds of phenomena. First and fore-
most, there is the heterogeneity in the traffic composition (fast passenger cars, slow
trailer trucks, . . . ). Secondly, as already mentioned, the non-stationary behaviour of
traffic introduces a significant amount of scatter in the congested regime. Thirdly,
each scatter plot is dependent on the type of road, and the time of day at which the
measurements were collected. In this respect, the influence of (changing) weather
conditions is not to be underestimated (e.g., rain fall results in different diagrams). In
conclusion, it is clear that if we want these scatter plots to better fit the fundamental
diagrams, all data points should be collected under similar conditions. Even more
so, the relative location on the road at which the data points were recorded plays a
significant role: e.g., a jam that propagates upstream, passing an on-ramp will show
different effects, depending on where the observations were gathered (upstream, right
at, or downstream of the on-ramp) and on whether or not the particular bottleneck was
active [May90].

2.5.3 Capacity drop and the hysteresis phenomenon

In the early sixties, traffic engineers frequently observed a discontinuity in the meas-
urements near the capacity flow. To this end, Edie proposed a two-regime model that
included such a discontinuity at the critical density [Edi61]. Nowadays, this typical
form of the qe(k) fundamental diagram is known as a reversed lambda shape (the
name was originally suggested by Koshi et al. [Kos83]).

An example of such a reversed λ fundamental diagram, is shown in the left part of
Figure 2.11. Note however, that the depicted discontinuity apparently leads to over-
lapping branches of the free-flow and congested regimes, resulting in a multi-valued
fundamental diagram.
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Figure 2.11: Left: the typical inverted λ shape of the (k,q) fundamental diagram, showing a
capacity drop from qcap to below qout � qcap (i.e., the queue discharge flow). The hysteresis
effect occurs when going from the congested to the free-flow branch, as indicated by the three
arrows (1) – (3). Right: a (k,q) diagram based on empirical data of one day, obtained by video
camera CLO3, at the E17 three-lane motorway near Linkeroever, Belgium. The black dots
denote minute measurements, whereas the thick solid line represents the time-traced evolution
of traffic conditions. The observed hysteresis loop was based on consecutive 5-minute intervals
covering a period that encompasses the morning rush hour between 06:30 and 09:30.

Considering the left part of Figure 2.11, it appears the flow can take on two different
values (hence the name ‘two-regime, two-capacity’ model) depending on the traffic
conditions, i.e., whether traffic is moving from the free-flow to the congested regime
on the equilibrium curve or vice versa. In order to comprehensively understand this
hysteretic behaviour, we consider the following intuitive sequence of events:

(1) In the free-flow regime, the flow steadily rises with increasing dens-
ity, small perturbations in the traffic flow have no significant effects (see
Section 2.5.1.1).

(2) At the critical density kc, traffic is said to be metastable: for small
disturbances, traffic is stable, but when these disturbances are sufficiently
large, they can lead to a cascading effect (see Section 2.5.1.2), resulting
in a breakdown of traffic and kicking it onto the congested branch. The
state of capacity flow at qcap is destroyed, due to a sudden decrease of the
flow, called the capacity drop.

(3) In order to recover from the congested to the free-flow regime, the
traffic density has to be reduced substantially (in comparison with the
reverse transition), i.e., well below the critical density kc. After this re-
covery, the flow will not be equal to qcap, but to qout � qcap, which is
called the outflow from a jam or the queue discharge capacity.

The above sequence signifies a hysteresis loop in the flow versus density fundamental
diagram: going from the free-flow to the congested regime occurs via the capacity
flow, but the reverse transition proceeds via another way. The phenomenon was first
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observed by Treiterer and Meyers, who used aerial photography to calculate densities
and space-mean speeds, extracted from a platoon of moving vehicles [Tre74]. Hall et
al. later observed a similar phenomenon [Hal86].

The right part of Figure 2.11 shows a (k,q) diagram, obtained with empirical data
collected at Monday, September 10, 2001. The data was recorded by video cam-
era CLO3, at the E17 three-lane motorway near Linkeroever, Belgium. The small
dots represent minute-based measurements, whereas the thick solid line represents the
time-traced evolution of traffic conditions. The observed hysteresis loop was based on
consecutive 5-minute intervals covering a period that encompasses the morning rush
hour between 06:30 and 09:30.

Zhang is among the few who try to give a possible rigourous mathematical explan-
ation for the occurrence of this hysteresis phenomenon [Zha99]. His exposition is
based on the behaviour of individual drivers during car-following: central to his in-
terpretation is the existence of an asymmetry between accelerating and decelerating
vehicles (a related notion was already explored by Newell back in 1963 [New63b]).
The former are associated with larger space headways, whereas the latter typically
have smaller space headways. Both observations can be understood when consider-
ing the characteristic ‘harmonica’ effect of a string of consecutive vehicles: when the
next stop-and-go wave is encountered, a driver is more alert as he typically has to
brake rather hard in order to avoid a collision. But once this wave has passed, a driver
gets more relaxed, resulting in a larger response time when applying the gas pedal.
The deceleration reaction leads to a sudden decrease of the space headway, whereas
the acceleration reaction leads to a gradually developing larger space headway. To
this end, Zhang introduces three distinct traffic phases, respectively called the accel-
eration phase, the deceleration phase, and a strong equilibrium (indicating a constant
speed). Because the space headway is thus treated differently under these qualitatively
different circumstances, the result is that there are now different functional relations
for the vse(hs) fundamental diagram. As a consequence, a hysteresis loop can appear
in the (density,flow) state space. Note that Zhang’s work describes a continuous loop
in state space, whereas in most cases hysteresis is assumed to follow a discontinuous
fundamental diagram. Furthermore, as there are three different ways for vehicles to
reside in a traffic stream (i.e., Zhang’s traffic phases), there are now three different
capacities related to these conditions; it is the capacity under a stationary equilibrium
flow that should be considered as the ideal capacity of a roadway [Zha01b].

Note that depending on the location where the traffic stream measurements were per-
formed, the transition from the free-flow to the congested regime and vice versa does
not always have to pass via the capacity flow. Instead, observations can indicate that
the traffic state can jump abruptly from one branch to another in the diagram [Gar97].
A possible explanation is that upstream of a jam, vehicles arrive with high speeds,
resulting in strong decelerations; a detector station located at this point would observe
traffic jumping from the uncongested branch immediately to the congested branch,
without necessarily having to pass via the capacity [New82]. This has led Hall et al.
to believe the reversed lambda shape is more correctly replaced by a continuous but
non-differentiable inverted V shape [Hal86].
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Continuing this latter train of thought, Daganzo believes that many of these ‘extra-
vagant’ phenomena (e.g., a multi-valued fundamental diagram) are uncalled for. Ap-
plying the stratification methodology of Cassidy [Cas98], the scatter in the empirical
data may vanish, restoring a smooth continuous equilibrium relation between density
and flow. One way of explaining the high tip of the lambda, is to assume that it is
caused by statistical fluctuations that comprise platoons of densely packed vehicles
[Dag97b]. However, quite recently, Laval and Daganzo constructed a traffic flow
model that incorporates lane changes; they postulate that the lane-changing process
limits the vehicles’ accelerations, thereby inducing a capacity drop [Lav06].

During the last seventy years, there has been a continuing quest to find the
‘correct’ form of the fundamental diagrams. In this respect, we like to stress the
fact that ‘only looking at the measurements’ is not sufficient: traffic engineers
wanting to mine the gigabytes of empirical data, should always look at the
global picture. This means that the typical driving patterns, as well as the local
geometry/infrastructure, should also be taken into account, so that the local
measurements can be interpreted with respect to the traffic flow dynamics. If this
is neglected, the danger exists that traffic is only sampled at discrete locations,
giving a sort of ‘truncated’ view of the occurring dynamical processes.

Finally, we like to agree with Zhang’s comments: the root cause of most of the dif-
ferences in the construction of fundamental diagrams, is the erroneous treatment
of data (e.g., mixing data stemming from different traffic flow regimes) [Zha99].
Because fundamental diagrams imply the notion of an equilibrium, care should be
taken when using the data, i.e., only considering stationary periods after removing
the transients.

2.5.4 Kerner’s three-phase theory

In the mid-nineties, Kerner and other fellow researchers, studied various traffic flow
measurements stemming from detector stations along German motorways. Initially,
they agreed with the classical notion of Lighthill and Whitham’s fundamental hypo-
thesis of the existence of one-dimensional equilibrium relation between the macro-
scopic traffic flow characteristics (see Section 2.5.2.1 for more details). However,
upon discovery of a rich and complex set of empirical tempo-spatial patterns in con-
gested traffic flow, Kerner decided to abolish this hypothesis, as it could not adequately
capture all of these observed patterns. As a consequence, Kerner rejects all traffic
flow theories and models that are based on this one-dimensional equilibrium relation
[Ker04].

In the search for a more correct theory that could accurately describe empirical traffic
flow observations, Kerner developed what is known as the three-phase theory of traffic
flow.
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2.5.4.1 Free flow, synchronised flow, and wide-moving jam

In Section 2.5.1, we elaborated on a classical approach to traffic flow, general assum-
ing two qualitatively different regimes, namely free-flow and congested traffic. Based
on empirical findings, Kerner and Rehborn in 1996 proposed three different regimes,
separating the congested regime into two other regimes. This led them to the intro-
duction of the following regimes [Ker96b]:

• free flow,

• synchronised flow,

• and wide-moving jam.

The main difference between synchronised flow and the wide-moving jam, is that in the
former low speeds but high flows (comparable to free-flow traffic) can be observed,
whereas in the latter both low speeds and low flows are observed. The description
by the term ‘synchronised’ was based on the discovery that the time series of flows,
densities, and mean speeds exhibited large degrees of correlation among neighbouring
lanes. And although synchronised flow is treated as a form of congestion, it neverthe-
less is characterised by a high continuous flow. Furthermore, a typical tempo-spatial
region of synchronised flow has a fixed downstream front (that could be located at a
bottleneck’s position), whereas both the upstream and downstream fronts of a wide-
moving jam can propagate undisturbed in the upstream direction of a traffic stream
[Ker96a].

Kerner distinguishes several congestion patterns with respect to traffic flows. A first
typical pattern is a synchronised-flow pattern (SP), which can be further classified as
a moving SP (MSP), a widening SP (WSP), and a localised SP (LSP). An SP can only
contain synchronised flow; as we will shortly mention in Section 2.5.4.3, a moving
jam can only occur inside such an SP. When such a jam transforms into a wide-moving
jam, the resulting pattern is called a general pattern (GP); a GP therefore contains both
synchronised flow and wide-moving jams. Just as with the SP, there exist different
types of GP. These are a dissolving GP (DGP), a GP under weak congestion, and
a GP under strong congestion. A final often encountered pattern occurs when two
bottlenecks are spatially close to each other, resulting in what is called an expanded
congested pattern (EP).

Taking the above considerations into account, the discovery and distinction between
both types of congested traffic patterns should be made on the basis of tempo-spatial
plots of the speed, rather than the flow (because the flow in synchronised traffic is
difficult to differentiate from that of free-flow traffic) [Ker04]. To this end, Kerner et
al. developed two applications that are capable of accurately estimating, automatically
tracking, and reliably predicting the above mentioned congested traffic patterns. Their
models are the Forecasting of Traffic Objects (FOTO) and Automatische StauDynami-
kAnalyse (ASDA) [Ker01].
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2.5.4.2 Fundamental hypothesis of three-phase traffic theory

Central to Kerner’s theory, is the fundamental hypothesis of three-phase traffic theory,
which basically states that hypothetical steady states of synchronised flow, cover a
two-dimensional region in a flow versus density diagram (as opposed to the classical
notion of a one-dimensional equilibrium relation). An example of such a diagram can
be seen in Figure 2.12.
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Figure 2.12: The flow versus density relation according to Kerner’s three-phase traffic theory.
The curve of free flow (denoted by F ) is reminiscent of observations in the classical free-flow
regime. It levels of a bit towards the capacity flow qcap at the critical density kc. As a result of
Kerner’s fundamental hypothesis, the region of synchronised flow (denoted by S) covers a large
two-dimensional part of the density-flow phase space. It is intersected by the line J , denoting
the steady propagation of wide-moving jams. The line J also intersects the curve of free flow
in the outflow from a jam qout � qcap at the associated density kout.

In the flow versus density diagram in Figure 2.12, the three regimes are depicted: the
curve of free flow (denoted by F ), the region of synchronised flow (denoted by S)
and the wide-moving jam (denoted by the empirical line J). Just as in the classical
fundamental diagrams, the observations in free-flow traffic lie on a sharp line that
linearly increases the flow with higher densities (note the levelling of the curve near the
capacity flow qcap associated with the critical density kc). The region of synchronised
flow spans a large part of the density-flow phase space; an important remark here is
that consecutive measurement points are scattered within this region, meaning that an
increase in the flow can happen with both higher and lower densities (as opposed to
the free-flow regime) [Ker96b].

The characteristic line J denotes the steady, undisturbed propagation of wide-moving
jams. Its slope corresponds to the speed of a wide-moving jam’s downstream front,
which typically lies around w ≈ -15 km/h [Ker96a]. The upper-left point of the line
J is located at a density kout corresponding to the outflow qout � qcap from a wide-
moving jam. This is an illustration of the capacity drop phenomenon, elucidated in



i

i

i

i

i

i

i

i

60 Chapter 2 – Traffic flow theory

Section 2.5.3. The line J is defined as follows:

q(k) =
1
T

(
1−

k

kjam

)
, (2.47)

with T the time gap in congested traffic flows; it is used to tune the outflow from a jam.
Because wide-moving jams travel undisturbed, their outflow — caused by vehicles
that leave the downstream front — can be either free flow or synchronised flow. Typ-
ical values for this outflow range from 1500 to 2000 vehicles/hour/lane [Ker04]. The
average flow rate within such a wide-moving jam can be almost zero, meaning that
vehicles continuously encounter stop-and-go waves.

Related to the wild scatter in the (k,q) diagram of three-phase traffic theory, is the
microscopic behaviour of individual vehicles. The explanation given by Kerner and
Klenov, is that vehicles in synchronised flow do not assume a fixed preferred distance
to their direct frontal leader, but rather accept a certain range of distances. Within this
range, drivers have both the tendency to over-accelerate when they think there is the
ability to overtake, and the tendency for drivers to adjust their speed to that of their
leader, when this overtaking can not be fulfilled [Ker03; Ker04].

2.5.4.3 Transitions towards a wide-moving jam

The breakdown of traffic from the free-flow to the wide-moving jam state, is nearly
always characterised by two successive F → S and S → J transitions, between free
flow and synchronised flow, and synchronised flow and wide-moving jam respectively.
In the first stage, a state of free flow changes to synchronised flow by the F → S
transition. Central to the idea of this phase transition, is the fact that there is no
explicit need for an external disturbance for its occurrence. A sufficiently large (i.e.,
supercritical) internal disturbance inside the traffic stream (e.g., a lane change) causes
a nucleation effect that instigates the F → S transition. Once it has set in, the onset
of congestion is accompanied by a sharp drop in the mean vehicle speed. During the
second stage, a set of narrow-moving jams can grow inside the tempo-spatial region
of synchronised flow. A narrow-moving jam is different from a wide-moving jam, in
that vehicles typically do not on average come to a full stop inside the jam. But, due to
a compression of synchronised flow (an effect termed the pinch effect), these narrow-
moving jams can coalesce into a wide-moving jam, thereby completing the cascade of
the F → S → J transition, resulting in stop-and-go traffic [Ker98].

With respect to the flow versus density diagram in Figure 2.12, it can be seen that the
line J actually divides the region of synchronised flow in two parts. Points that lie
underneath this line, characterise stable traffic states where no S → J transition can
occur. Points above the line J however, characterise metastable traffic states, meaning
that sufficiently large disturbances can trigger a S → J transition [Kno02a; Ker04].

Note that the direct F → J transition between free flow and wide-moving jam can
also occur, but it has a very small probability, i.e., the critical perturbation needed, is
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much higher than that of the frequently occurring F → S transition between free flow
and synchronised flow. So in general, wide-moving jams do not emerge spontaneously
in free flow, but a situation where such a transition may occur, is when an off-ramp
gets filled with slow-moving vehicles. This results in a local obstruction at the motor-
way’s lane directly adjacent to the off-ramp, which can cause a local breakdown of the
upstream traffic, resulting in a wide-moving jam. Finally, it is important to distinguish
the nature of this transition from that of the F → S transition: the former is a trans-
ition induced by an external disturbance of the local traffic flow, whereas the latter is
considered as a spontaneous transition due to an internal disturbance within the local
traffic flow (e.g., a lane change) [Ker04].

2.5.4.4 From descriptions to simulations

As Kerner himself describes his three-phase theory, it is a qualitative theory. In es-
sence, it gives no explanation of why certain transitions occur, as it only describes
them [Ker04]. However, several exemplary microscopic traffic flow models have
already been developed (i.e., treating all vehicles and their interactions individually).
These models can reproduce the different empirical tempo-spatial patterns described
by Kerner’s theory. As examples, we mention two models based on cellular auto-
mata: a first attempt was made by Knospe et al., who developed a model that takes
into account a driver’s reaction to the brake-lights of his direct frontal leader [Kno00].
Kerner et al. refined this approach by extending it; their work resulted in a family of
models based on the notion of a synchronisation distance for individual vehicles; they
are commonly called the KKW-models (from its three authors, Kerner, Klenov, and
Wolf) [Ker02].

The theory can describe most of the encountered tempo-spatial features of congested
traffic. And at the moment, successful microscopic models have been developed, but
the work is not yet over: an important challenge that remains for theoreticians, is
the mathematical derivation of a consistent macroscopic theory (i.e., one that treats
traffic at a more aggregate level as a continuum) [Ker04]. In pursuit of such a model,
Kim incorporated Kerner’s traffic regimes into a broader framework, encompassing
six different possible states: the transitions between these states are tracked with a
modified macroscopic model that uses concepts from fuzzy logic theory [Kim02].

2.5.5 Theories of traffic breakdown

A central question that is often asked in the field of traffic flow theory, is the following:
“What causes congestion ?” Clearly, the answer to this question should be a bit more
detailed than the obvious “Because there are too many vehicles on the road !” With
respect to the phase transitions that signal a breakdown of the traffic flow, various —
seemingly contradicting — theories exist. Are they merely a matter of belief, or can
they be rigourously ‘proven’ ? Opinions are divided, but nowadays, two qualitatively
different mainstream theories exist, attributed to different schools of thought [Bud00;
Mae04c; Tam04a]:
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The European (German) school
In the early seventies, Treiterer and Meyers performed some aerial obser-
vations of a platoon of vehicles. As they constructed individual vehicle
trajectories, they could observe a growing instability in the stream of
vehicles, leading to an apparently emerging phantom jam (i.e., a jam ‘out
of nothing’) [Tre74].

Some twenty years later, in the mid-nineties, Kerner and Konhäuser made
detailed studies of traffic flow measurements, obtained at various detector
stations along German motorways. Their findings indicated that phantom
jams seemed to emerge in regions of unstable traffic flow [Ker94]. This
stimulated Kerner and Rehborn to further research efforts directed to-
wards the behaviour of propagating jams [Ker96a; Ker96b]. They pro-
posed a different set of traffic flow regimes, culminating in what is now
called three-phase traffic theory (see Section 2.5.4 for more details) [Ker97;
Ker98; Ker04]. The main idea supported by followers of this school
of researchers, is that traffic jams can spontaneously emerge, without
necessarily having an infrastructural reason (e.g., on-ramps, incidents,
. . . )14. In dense enough traffic, phase transitions from the free-flow to
the synchronised-flow regime can occur, after which a local instability
such as, e.g., a lane change can grow (the so-called pinch effect), trig-
gering a stable jam leading to stop-and-go behaviour [Ker98]. Kerner’s
three-phase theory stands out as an archetypical example of these mod-
ern views. But although his theory has, in our opinion, been worked out
well enough, he more than frequently encounters harsh criticisms when
conveying it to most audiences (perhaps the main cause for this human
behaviour is the fact that Kerner always mentions the same view, i.e.,
“all existing traffic flow theories are wrong”).

Inspired by Kerner’s work, Helbing et al. gave in 1999 an extended treat-
ise on the different types of congestion patterns that can be observed in the
vicinity of spatial inhomogeneities (e.g., on-ramps). Their work resulted
in a universal phase diagram, containing a whole plethora of patterns of
congested traffic states (called homogeneously congested traffic – HCT,
oscillatory congested traffic – OCT, triggered stop-and-go traffic – TSG,
pinned localised cluster – PLC, and moving localised cluster – MLC),
each one having unique characteristics [Hel99a]15. In that same year, Lee
et al. studied the patterns that emerge at on-ramps, thereby agreeing with
the findings of Helbing et al. [Lee99]. As the previous research into con-
gestion patterns was largely based on the use of analytical traffic flow
models and computer simulations, the need for validation with empirical
data grew. In 2000, the work of Treiber et al. among others, proved the

14But note that bottleneck-induced traffic flow breakdowns are not excluded by the theory of Kerner et
al.

15In addition, they also provided a link with Kerner’s three-phase theory, whereby synchronised flow can
correspond to HCT, OCT, or PLC, and moving jams can correspond to TSG or MLC states [Hel02b].
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existence of the previously mentioned congestion patterns [Tre00].

At this point, it is noteworthy to mention the seminal work of Nagel and
Schreckenberg [Nag92b], who in 1992 developed a model that describes
traffic flows in which local jams can form spontaneously. As many vari-
ations on this model have been proposed (see Chapter 4 for more details),
later work also focussed on the stability of traffic flows in these models,
e.g., the work of Jost and Nagel [Jos03a].

The Berkeley school
Including names such as the late Newell, Daganzo, Bertini, Cassidy, Mu-
ñoz, . . . , the ‘Berkeley school’ (University of California) supports the the-
ory that all congestion is strictly induced by bottlenecks. The hypothesis
holds for both recurrent and, in the case of an incident, non-recurrent
congestion.

The main starting point states that there is always a ‘geometrical’ explan-
ation for the breakdown. This explanation is based on the presence of
road inhomogeneities such as on- and off-ramps, tunnels, weaving areas,
lane drops, sharp bends, elevations, . . . Once a jam occurs due to such
a (temporary) bottleneck, it does not dissipate immediately; as a result,
drivers can wonder why they enter and exit a congestion wave, without
there being an apparent reason for its presence (since it happened earlier
and the cause, e.g., an incident, already got cleared). Daganzo uses this
line of reasoning as an explanation for the dismissal of phantom jams
[Dag02c].

The school uses a specific terminology with respect to bottlenecks (be-
ing road inhomogeneities). Two qualitatively different regimes exist: the
free-flow regime and the queued regime. The latter occurs when a bot-
tleneck becomes active, which will result in a queue growing upstream
of the bottleneck while a free-flow regime exists downstream. The bot-
tleneck capacity is then defined as the maximum sustainable flow down-
stream (which is different from the maximum flow that can be observed
prior to the bottleneck’s activation).

The location of these bottlenecks has some peculiarities involved: one of
them is the concept of a capacity funnel [Buc74]. It assumes that drivers
are at times more alert, e.g., when they are driving on a motorway and
nearing an on-ramp in rather dense traffic conditions [Zha01b]. This im-
pels them to accept shorter headways, so they are driving closely behind
each other at a relatively high speed. Once they have passed the on-ramp’s
location, they tend to relax, resulting in larger headways. The effect is that
the bottleneck’s actual position is located more downstream.
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Shortly after the publication of Kerner and Rehborn’s findings about the
peculiar phase transitions that seemed to occur on German motorways,
Daganzo et al. provided a swift response where they stated that the occur-
ring phase transitions could also be caused by bottlenecks in a predictable
way [Dag99c]. They implied that no spontaneously emerging traffic jams
are suggested, and that the observed traffic data from both German and
North American motorways did not contradict their own statements about
the cause of the phase transitions [Nag05]. Another study aimed at the
data stemming from the German motorways, was performed by Lindgren
who analysed bottleneck activation, discharge flows, . . . ; he concluded
that all features were reproducible from day to day [Lin05]. In short, the
subtle difference between their work and that of Kerner and Rehborn, is
that instabilities in the traffic stream are the result and not the cause of
the queues that emerge at active bottlenecks. With respect to a spontan-
eous breakdown of traffic flow at on- and off-ramps (i.e., bottlenecks),
Daganzo also states that this can be explained using a simple traffic flow
model operating under the assumption of a too high inflow from the on-
ramp or a caused by blocking of the off-ramp [Dag96].

The studies undertaken by this school, are heavily based on the research-
ers’ use of cumulative plots and elegantly simple traffic flow models (as
will be explained in Section 3.2.1.7), as opposed to the classical methodo-
logy that investigates time series of recorded counts and speeds. As stated
earlier (see Section 2.3.2.2), some recent examples include the work of
Muñoz and Daganzo [Muñ00a; Muñ00b; Muñ02a; Muñ03a] and Cassidy
and Bertini [Cas99; Ber03].

Recently, Tampère argued that both theories, as enunciated by the two schools, are not
entirely contradictory. His statement is based on the fact that the mechanisms behind
the bottleneck-induced breakdown and spontaneous breakdown are approximately the
same, only differing in the probability of such a breakdown (which is related to the
instability of a traffic flow) [Tam04a].
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In our view, both theories are sufficiently different, but compatible, in that the
first school elaborately describes traffic flow breakdown more or less as having
an inherently probabilistic nature, whereas the second school treats breakdown a
strictly deterministic process. The former introduces a complex variety of con-
gestion patterns, while the latter primarily focusses on an elegantly simple de-
scription of traffic flow breakdown. Even more characteristically, is the obser-
vation that most adepts of the European school, inherently need stochasticity in
the models in order to produce their sought phantom traffic jams (note that not-
withstanding the fact that stochastic models are in a strict sense also determin-
istic, we nevertheless adopt in this dissertation, the convention that deterministic
means ‘non-stochastic’). Our argument is in a way also supported by Nagel and
Nelson, who state that the purpose of the traffic flow model (e.g., the effect of
moving bottlenecks versus predicting mean traffic behaviour) decides whether or
not stochasticity in the model is required [Nag05]. Furthermore, there might be
some room for stochasticity in the Berkeley models after all, with the work of
Laval which suggests that (disruptive) lane changes form the main cause for in-
stabilities in a traffic stream [Lav04]. Deciding which school is right, is therefore
in our opinion a matter of personal taste, but in the end, we agree with Daganzo
when he states that research into bottleneck behaviour is the most important in the
context of traffic flow theory [Dag99b].

2.6 Conclusions

In this chapter, an extensive account was given, detailing several aspects related to
the description of traffic flows. Most importantly, we have introduced a nomenclature
convention, built upon a consistent set of notations. Our discussion of traffic flow char-
acteristics centred around the space and time headways as microscopic characteristics,
with densities and flows as their macroscopic counterparts. Several noteworthy high-
lights are the technique of oblique cumulative plots and the derivation of travel times
based on these plots. A finally large part of this chapter reviewed some of the relations
between traffic flow characteristics, i.e., the fundamental diagrams, and clarified some
of the different points of view adopted by the traffic engineering community.

Whereas this chapter described the properties of real-life traffic flows, the next chapter
will introduce some of the models that can be used to simulate the behaviour of traffic
flows.
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Chapter 3

Transportation planning and
traffic flow models

Whereas the previous chapter dealt with the notations and terminology that are as-
sociated with traffic flow characteristics, this chapter focusses on the different traffic
flow models that exist. Due to our frequently encountered confusion among traffic
engineers and policy makers, this chapter goes into more detail about transportation
planning models on the one hand, and traffic flow models on the other hand. The
former deal with households that make certain decisions which lead to transportation
and the use of infrastructure, as opposed to the latter which explicitly describe the
physical propagation of traffic flows in a road network.

Our goal is not to give a full account (as that would be a dissertation of its own,
given the broadness of the field), but rather to impose upon the reader a thorough
feeling for the differences between transportation planning and traffic flow models.
Because of the high course of progress over the last decade (or even during the last
five years), this chapter tries to chronicle both past models, as well as some of the
latest developments in this area.

3.1 Transportation planning models

Before going into detail about the possible mathematical models that describe the
physical propagation of traffic flows, it is worthwhile to cast a glance at a higher level,
where transportation planning models operate. The main rationale behind transporta-
tion planning systems, is that travellers within these systems are motivated by making
certain decisions about their wishes to participate in social, economical, and cultural
activities. The ensemble of these activities is called the activity system. Because these
activities are spatially separated (e.g., a person’s living versus work area), the need for

67
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68 Chapter 3 – Transportation planning and traffic flow models

transportation arises. In such a system, the so-called household activity patterns form
the main explanation for what is seen in the transportation network.

These models have as their primary intent the performing of impact and evaluation
studies, and conducting ‘before and after’ analyses. The fact that such transportation
studies are necessary, follows from a counter-intuitive example whereby improving the
transportation system (e.g., by making extra infrastructure available), can result in an
increase of the travel times. This phenomenon, i.e., allowing more flexible routing that
results in more congestion, is known as Braeß’ paradox, after Dietrich Braeß [Bra69].
The underlying reason for this counter-intuitive behaviour, is that people generally
only selfishly try to minimise their own travel times, instead of considering the effects
they have on other people’s travel times as well [Pas97].

As transportation is inherently a temporal and spatial phenomenon, we first take a
look at the concept of land-use models and their relation to the socio-economical be-
haviour of individual people. In the two subsequent sections, we consider two types
of transportation planning models, i.e., the classical trip-based models, and the class
of activity-based models, respectively. The section concludes with a brief reflection
on the economist’s view on transportation systems.

3.1.1 Land use and socio-economical behaviour

As already stated, transportation demand arises because of the desire to participate
in a set of activities (e.g., social, economical, cultural, . . . ). In order to deduce this
derived transportation demand, it is necessary to map the activity system and its spatial
separations. This process is commonly referred to as land use, mainly playing the role
of forging a relation between economical and geographical sciences. In general, land-
use models seek to explain the growth and layout of urban areas (which is not strictly
determined by economical activities alone, i.e., ethnic considerations et cetera can be
taken into account),

Because transportation has spatial interactions with land use and vice versa, it can lead
to a kind of chicken-and-egg problem [Rod05]. For example, building a new road will
attract some economical activity (e.g., shopping malls et cetera), which can lead to a
possible increase of the travel demand. This in turn, can lead to an increase of extra
economical activity (because of the well-suited location), and so on, resulting in a
local reorganisation of the spatial structure. Resolving this chicken-and-egg paradox,
is typically done by means of feedback and iterations between land-use and transport-
ation models, whereby the former provide the basic starting conditions for the latter
models (with sometimes a reversal of the models’ roles).

In the following two sections, we first shed some light on several of the archetypical
land-use models, after which we take a look at some of the more modern models for
land use in the context of geosimulation.
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3.1.1.1 Classical land-use models

The discussion given in this section, talks about several kinds of land-use models
that — at their time — were considered as landmark studies. That said, the models
presented here should be judged as being general in that they deal with (pre-)industrial
American societies in the first part of the 20th century. They are devised to gain in-
sight into the general patterns that govern the growth and evolution of a city. As
such, they almost never ‘fit’ perfectly, leading to the obvious criticism that they are
more applicable to American cities than elsewhere. Notwithstanding these objections,
the models remain very useful as explanations for the mechanisms underpinning the
socio-economical development of cities.

One of the oldest known models describing the relation between economic markets
and spatial distances, is that of Johann Heinrich von Thünen [Thü26]. As the model
was published in 1826, it presents a rather ‘pre-industrial’ approach: the main eco-
nomical ingredients are based on agricultural goods (e.g., tomatoes, apples, wheat,
. . . ), whereas the transportation system is composed of roads on which carts pulled
by horses, mules, or oxen ride. The spatial layout of the model, assumes an isolated
state (self-sustaining and free of external influences), in which a central city location
is surrounded by concentric regions of respectively farmers, wilderness, field crops,
and meadows for grazing animals. All farmers aim for maximum profits, with trans-
portation costs proportionally with distance, thus determining the land use around the
city centre.

Some 100 years later, inspired by von Thünen’s simple and elegant model, Ernest W.
Burgess developed what is known as the concentric zone model [Bur25]. It was based
on observations of the city of Chicago at the beginning of the 20th century. As can
be seen in the left part of Figure 3.1, Burgess considered the city as growing around
a central business district (CBD), with concentric zones of respectively the industrial
factories and the low-, middle-, and high-class residents. The outermost ring denotes
the commuter zone, connecting the CBD with other cities. As time progresses, the city
develops and the radii of these concentric zones would grow by processes of ‘invasion’
and ‘succession’: an inner ring will expand, invading an outer ring that in turn has to
grow, in order to make space.

Fifteen years after Burgess’ theory, Homer Hoyt introduced refinements, resulting
in the sector model [Hoy39]. One of the main incentives, was the observation that
low-income residents were typically located in the vicinity of railroads. His model
accommodates this kind of observation, in that it assumes that a city expands around
major transportation lines, resulting in wedge-shaped patterns (i.e., sectors), stretch-
ing outward from the CBD. A typical example of this development, can be seen in the
right part of Figure 3.1.

Halfway the previous century, Chauncy D. Harris and Edward L. Ullman were con-
vinced that the previous types of models did not correspond to many of the encountered
cities. The main reason for this discrepancy, was to be found in the stringent condition
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Figure 3.1: Typical examples of two models relaying the evolution of land use. Left: the
concentric zone model of Burgess. Right: the sector model of Hoyt. In both figures, CBD
corresponds to the central business district, I to the industrial factories, L, M, and H to the low-,
middle-, and high-class residents respectively. In the Burgess model at the left, C denotes the
commuter zone.

of a central area being surrounded by different zones. As a solution to this shortcom-
ing, Harris and Ullman presented their multiple nuclei model [Har45]. Their theory
assumed that in larger cities, small suburban areas could develop into fully fledged
business districts. And although Harris and Ullman did not dispose of the CBD as the
most important city centre, their smaller ‘nuclei’ would take on roles of being areas
for specialised socio-economical activities.

To end our discussion of classical land-use models, we highlight the work of Peter
Mann in 1965 [Man65], who considered a hybrid model for land-use representation.
He combined both Burgess’s and Hoyt’s models, when deriving a model that described
a typical British city. In his model that studied the cities of Huddersfield, Nottingham,
and Sheffield, the CBD still remained the central location, surrounded by zones of pre-
and post 1918 housing respectively. Dispersed around the outer concentric zone, the
low-, middle-, and high-class residents would live. A most notable feature of Mann’s
model, is the fact that he considered the industrial factories to be on one side of the
city, with the high-class residents diametrically opposed (the rationale being that high-
class residents would prefer to stay upwind of the factories’ smoke plumes).

3.1.1.2 The modern approach to land-use models

In the current time of living, most modern citizens have a different behaviour than their
former counterparts at the beginning of the 20th century. It seems there is an increased
trend towards expansion, as people are feeling more comfortable about covering larger
distances, e.g., working in a busy city centre or at a remote industrial facility, coupled
with living on the countryside). The activities related to working, living, and recre-
ation appear to occur at substantially different spatial locations. Furthermore, several
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urban regions are composed of unique ethnic concentrations, among other things lead-
ing to the conclusion that the emphasis on the geographical aspect of a city gets less
important during its evolution.

Recognising these radical changes in the development, modern land-use models ap-
proach the integration of an activity system from a completely different perspective.
The growth of a city is represented as the evolution of a multi-agent system, in which
a whole population of individual households is simulated. Due to the tremendous in-
crease in computational power over the last two decades, these large-scale simulations
are now possible. As an example, it is feasible to consider residential segregation in
urban environments: within these environments (e.g., the city and housing market), in-
dividual agents (i.e., households) interact locally in a well-defined manner, leading to
emergent structures, i.e., the evolving city. Besides data surveys that try to capture the
households’ behaviour, the basic landscape and mapping data is fed into geographical
information systems (GIS) that is coupled with a computer aided design (CAD) rep-
resentational model of the real world (although the difference between the traditional
GIS and CAD concepts is slowly fading away) [Wad04]. A recent example of such
an all-encompassing approach, is the work related to the UrbanSim project, where
researchers try to interface existing travel models with new land use forecasting and
analysis capabilities [Wad02]. It is being developed and improved by the Center for
Urban Simulation and Policy Analysis at the University of Washington.

To conclude this section, we refer to the work of Benenson and Torrens, who adopted
the terminology of geosimulation [Ben04]. Their methodology is based on what they
call the ‘collective dynamics of interacting objects’. As such, geosimulation hinges
on the representation of what we would call a socio-economy that is simulated, taking
into account hitherto neglected dynamic effects (e.g., demographic changes, shifts of
the economic activities, . . . ).

3.1.2 Trip-based transportation models

The relation between activity patterns and the transportation system has a long history,
starting around 1954 with the seminal work of Robert B. Mitchell and Chester Rapkin
[Mit54]. They provided the first integrated study, establishing a link that introduced
a framework for transportation analysis, primarily intended for studying large scale
infrastructure projects [McN00b]. Their methodology was based on four consecutive
steps (i.e., submodels), collectively called the four step model (4SM). In 1979, Man-
heim casted the model’s structure into a larger framework of transportation systems
analysis, encapsulating both activity and transportation systems [Man79]. Central to
this framework, was the notion of ‘demand and performance procedures’, which we
can validly call demand and supply procedures. In a typical setup, they respectively
represent the traffic that wants to use this infrastructure and the road infrastructure.
For a more historically tinted recollection of the trip-based approach, we refer the
reader to the outstanding overview of Boyce [Boy04a].
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With respect the 4SM’s history, a subtle — almost forgotten — fact is that the clas-
sical four step model was actually conceived independently from the integrated
network equilibrium model proposed by Beckmann, McGuire, and Winsten in the
mid-fifties; the 4SM can actually be perceived as a trimmed-down version of this
latter model [Boy04a]. Intriguingly, over the years, the work of the ‘BMW trio’
has had profound impacts on the mathematical aspects of determining network
equilibria, optimal toll policies, algorithms for variational inequalities, stability
analyses, supply chains, . . . [Alt03; Nag03b; Boy04a; Boy04b; Boy06].

In the next four sections, we consider the basic entities and assumptions of the four
step model, followed by a brief overview of the four individual submodels with some
more detail on the fourth step (traffic assignment), concluding with some remarks on
the criticisms often expressed against the four step model. For a more extensive survey
of the four step model, we refer the reader to the books of Sheffi [She85] and Ortuzar
and Willumsen [Ort01].

3.1.2.1 Basic entities and assumptions

The basic ingredients on which the four step model is rooted, are the trips. These
trips are typically considered at the household level, and relate to aggregate informa-
tion (individuals are no longer explicitly considered). This level of detail, essentially
collapses the whole tempo-spatial structure of transportation planning based on in-
dividual travellers into bundles of trips, going from one point in the transportation
network to another.

In the four step model, one of the most rigid assumptions is that all trips describe
departure and arrival within the planning period (e.g., the morning commute). Fur-
thermore, the usage of the model’s structure is intended for large-scale planning pur-
poses, excluding small infrastructural studies at, e.g., a single intersection of urban
roads. Another assumption is based on the fact that an entity within the four step
model has to make certain decisions, e.g., what is the departure time, which destina-
tion is picked, what kind of transportation (private or public) will be used, which route
will be followed, . . . In many cases, these decisions are considered concurrently, but
the four step model assumes they are made independently of each other. And finally,
as each submodel needs input, most of the data is aggregated into spatial zones (of-
ten presumed to be distinguished by socio-economic characteristics) in order to make
the model computationally feasible. These zones are typically represented by their
centrally located points, called centroids.

3.1.2.2 The four steps

Within the four step model, the first three steps (I) – (III) can collectively be seen as
a methodology for setting up the travel demand, based, e.g., on land use and other
socio-economical activities. This travel demand is expressed as origin-destination
(OD) pairs (by some respectively called ‘sources’ and ‘sinks’), reflecting the amount



i

i

i

i

i

i

i

i

3.1 Transportation planning models 73

of traffic that wants to travel from a certain origin to a certain destination (these are
typically the zones mentioned in the previous section). The last step (IV) then con-
sists of loading this travel demand onto the network, thereby assigning the routes that
correspond to the trips.

(I) Trip generation
In an essential first step, transportation engineers look at all the trips that on the one
hand originate in certain zones, and on the other hand arrive in these zones. As such,
the first step comprises what are called the productions and attractions. Central to the
notion of a trip, is the motive that instigated the trip. An example of such a motive
is a home-based work trip, i.e., a trip that originates in a household’s residential area,
and arrives in that household’s work area. Other examples include recreational and
social motives, shopping, . . . and the chaining of activities. Based on these intentions,
productions and attractions consist of absolute counts, denoting the number of trips
that depart from and arrive in each zone. Because of this, productions and attractions
are in fact trip ends. Both of them are derived using techniques based on regression
analysis, category analysis, or even logit models. As different models can be used for
the derivations of the number of productions and attractions, an a posteriori balancing
is performed that equalises both results. In the end, step (I) gives the magnitude of the
total travel demand on the network. Note that all activities (i.e., the original motives)
are at this point in effect transformed and aggregated into trips. More importantly,
these trips are only considered for a specific time period (e.g., the morning rush hour).

(II) Trip distribution
Once the total number of productions and attractions for all zones in the transportation
network is known, the next step then consists of deriving how many trips, originating
in a certain zone, arrive at another zone. In other words, step (II) connects trip origins
to their destinations by distributing the trips. The result of step (II) is then the con-
struction of a complete origin-destination table (OD table). In such an OD table (or
OD matrix as some people say), an element at a row i and a column j denotes the total
number of trips departing from origin zone Oi and arriving in destination zone Dj .
Diagonal elements denote intra-zonal trips. Note that step (II) does not state anything
about the different routes that can be taken between two such zones; this is something
that is derived in the final step (IV). Because of the implicit assumption in step (I),
namely that all trips are considered for a specific time period, the same premise holds
for all the derived OD tables. Consequently, the four step model is applied for differ-
ent time periods, e.g., during rush hours or off-peak periods. In this context, we advise
to use the nomenclature of time-dependent or dynamic OD tables, denoting OD tables
that are specified for a certain period, e.g., from 07:00 until 08:00 (or even tables given
for consecutive quarter-hours).

Considering the fact that an OD table contains a large amount of unknown variables
(i.e., generating them from known link flows entails a considerably under determined
system of equations, as there are more unknowns than constraints), several techniques
have been introduced to deal with this problem by introducing additional constraints.
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If an OD table for a previous period (called a base table) is known, then a new OD
table can be derived by using a so-called growth factor model. Another method is by
using gravity models (also known as entropy models, see, e.g., the discussion in by
Helbing and Nagel [Hel04]), which are based on travel impedance functions. These
functions reflect the relative attractiveness of a certain trip, e.g., based on information
retrieved from household travel surveys. In most cases, they are calibrated as power
or exponential functions. One of the harder problems that still remains to be solved,
is how to deal with so-called through trips, i.e., trips that originate or end outside
of the study area. Horowitz and Patel for example, directly incorporate rudimentary
geographical information and measured link flows into a model that allows to derive
through-trip tables, using a notion of external stations located in an external territ-
ory. Application of his methodology to regions in Wisonsin and Florida, result in
reasonable estimates of link flows that are comparable with empirically obtained data
[Hor99].

Besides using results from productions and attractions, gathering the necessary in-
formation for construction of OD tables can also be done using other techniques. An
equivalent methodology is based on the consideration of turning fractions at intersec-
tions. The process can be largely automated when using video cameras coupled with
image recognition software. Furthermore, there literally exist thousands of papers de-
voted to the estimation of origin-destination matrices, mostly applicable to small-scale
vehicular transportation networks and local road intersections. Some past methodo-
logies used are the work of Nihan and Davis who developed a recursive estimation
scheme [Nih87], the review Cascetta and Nguyen who casted most earlier methods
into a unified framework [Cas88], and Bell who estimated OD tables based on con-
strained generalised least squares [Bel91]. An example of a more recent technique is
the work of Li and De Moor who deal with incomplete observations [Li02].

(III) Mode choice / modal split
Once the origin-destination table for the given network and time period is available,
the next step deals with the different modes of transportation that people choose
between. Typical examples are the distinction between private and public transporta-
tion (both vehicular and railroad traffic). The ‘split’ in this step, refers to the fact that
the OD table obtained from step (II), is now divided over the supported transportation
modes. To this end, discrete choice theory is a popular tool that allows a disaggrega-
tion based on the choice of individual travellers, e.g., by using utility theory based on a
nested logit model [BA85]. A modern trend in this context is to work with fully multi-
modal transportation networks; these multi-layered networks provide access points
for changing from one layer (i.e., mode of transportation) to another [Nes02; Car05].

Historically, steps (I) — production and attraction — and (III) were executed simul-
taneously, but nowadays they are considered separate from step (I): the main reason
is the fact that the modal choice is not only dependent on, e.g., a household’s income,
but also on the type of trip to be undertaken, as well as the trip’s destination. As a
result, the modal split can be intertwined with step (II), trip distribution, or it can be
executed subsequently after step (II). In the former case, the same kind of travel im-
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pedance functions are used in combination with an adjusted gravity model, whereas
in the latter case, a hierarchic logit model can be used.

(IV) Traffic assignment
At this point in the four step model, the total amount of trips undertaken by the trav-
ellers is known. The fourth and final step then consists of finding out which routes
these travellers follow when going from their origins to their destinations, i.e., which
sequence of consecutive links they will follow ? In a more general setting, this process
is known as traffic assignment, because now the total travel demand (i.e., the trips) are
assigned to routes in the transportation network. Note that in some approaches, an
iteration is done between the four steps, e.g, using the traffic assignment procedure to
calculate link travel times that are fed back as input to steps (II) and (III).

It stands to reason that all travellers will endeavour to take the shortest route between
their respective origins and destinations. To this end, a suitable measure of distance
should be defined, after which a shortest path algorithm, e.g., Dijkstra’s algorithm
[Dij59], can calculate the possible routes. Such a notion of distance typically includes
both spatial and temporal components, e.g., the physical length of an individual link
and the travel time on this link, respectively. The use of the travel time is one of the
most essential and tangible components in travellers’ route choice behaviour. Note
that in a more general setting, the distance can be considered as a cost, whereby trav-
ellers then choose the cheapest route (i.e., the quickest route when time is interpreted
as a cost). Daganzo calls these formulations the forward shortest path problem, as
opposed to the backward shortest path problem that tries to find the cheapest route for
a given arrival time [Dag02d].

The basic principles that underlay route choice behaviour of individual travellers, were
developed by Wardrop in 1952, and are still used today. In his famous paper, relating
space- to time-mean speed, Wardrop also stated two possible criteria governing the
distribution of traffic over alternative routes [War52]:

User equilibrium (W1): “The journey times on all the routes actually
used are equal, and less than those which would be experienced by a
single vehicle on any unused route.”

System optimum (W2): “The average journey time is a minimum.”

The above two criteria are based on what is called the Nash equilibrium in game
theory [Nas51], albeit that now a very large number of individuals are considered1. In
the first criterion (W1), it is assumed that all individuals’ decisions have a negligible

1The difference between a Wardrop and a Nash equilibrium is a subtle but important one. In the Wardrop
case, an infinite number of individuals is considered, each seeking their own optimum. Note that the concept
‘infinite number of individuals’ can in practice be approximated by ‘a large amount of individuals’. The
Nash case also considers an infinite number of individuals, but they are now grouped into a finite number of
classes, with each class seeking its own optimum. If in this latter case the number of classes goes to infinity,
then the Nash equilibrium converges to a Wardrop equilibrium [Hau85].
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effect on the performance of others. Two, more important, fundamental principles
here are the fact that in the equilibrium situation, there is no cooperation between
individuals assumed, and that all individuals make their decisions in an egoistic and
rational way [Hag01]. In both cases, all individuals are on equal footing; an exception
to this is, e.g., the presence of a centralised authority that acts as a leading player,
resulting in a Stackelberg equilibrium in game theory. In real-life traffic, everybody
is expected to follow the first criterion (W1), such that the whole system can settle in
an equilibrium in which no one is better off by choosing an alternative route. In this
respect, the work of Roughgarden on selfish routing is interesting because it provides
a mathematical basis for the quantification of the worst loss of social welfare due
to the selfish behaviour of drivers when choosing routes2. In continuation of this,
Roughgarden also considered the design and management of networks that limit these
effects in order to obtain a socially desirable outcome [Rou02]. In contrast to this user
equilibrium situation, the second criterion (W2) is unlikely to occur spontaneously.
However, when the perceived cost of a route by a traveller is changed to a generalised
or marginal cost (i.e., including the costs of the effects brought on by adding an extra
vehicle to the travel demand), then a system optimum is achieved with respect to these
latter costs. In any case, as some people will be better off, others will be worse off,
but the transportation system as a whole will be best off.

The above two principles, are a bit idealistic, in the sense that there are many excep-
tions to these behavioural guidelines. For example, in urban city centres, a significant
part of the congestion can be brought on by vehicles looking for parking space. Fur-
thermore, many drivers just follow their usual route, because this is the route they
know best, and they know what to expect with respect to travel time. In a broader
setting, this make these ‘standard’ routes more appealing to road users than other un-
familiar alternative routes. In some cases however, travellers will opt for these less
known routes, thereby possibly entering the risk of experiencing a higher travel time
as has been concluded in the work of Chen and Recker [Che01a]. Another fact that
we expect to have a non-negligible effect on the distribution of traffic flows, is that
nowadays more and more people use intelligent route planners to reach their destin-
ations. These planners take into account congestion effects, as the trip gets planned
both spatially and temporally. This will result in a certain percentage of the popula-
tion that is informed either pre-route or en-route, and these people can consequently
change their departure time or actual route (e.g., through route guidance), respectively.
Another interesting research problem arises because transportation infrastructure man-
agers should then be able to adapt their policies to the changing travel patterns. For
example, how should a policy maker optimally control the traffic when only 20% of
the population will follow the proposed route guidance ?

Due to the importance of the subject, we have devoted two separate sections in this dis-
sertation to the concept of traffic assignment. In these sections, we discuss the traffic
assignment procedure in a bit more detail, considering two prominent methodologies
from a historic perspective, namely static versus dynamic traffic assignment.

2In his work, Roughgarden also introduced the price of anarchy, which is defined as the total travel time
at the user equilibrium divided by the total travel time at the system optimum [Rou03].
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3.1.2.3 Static traffic assignment

The classical approach for assigning traffic to a transportation network, assumes that
all traffic flows on the network are in equilibrium. In this context, the static traffic as-
signment (STA) procedure can be more correctly considered as dealing with stationary
of steady-state flows: the travel demand and road infrastructure (i.e., the supply) are
supposed to be time-independent, meaning that the calculated link flows are the result
of a constant demand. In a typical setup, this entails the assignment of an hourly (or
even daily) OD table to the network (e.g., during on- and off-peak periods), resulting
in average flows for the specified observation period. Because the STA methodology
neglects time varying congestion effects (it assumes constant link flows and travel
times), various important phenomena such as queue spill back effects are not taken
into account.

In general, several possible techniques exist for achieving an STA. The first one as-
sumes (i) that all drivers will choose the same cheapest route between a pair of origins
and destinations, (ii) that they all have the same perfect information about the links’
impedances, and (iii) that these impedances are considered to be constant, i.e., inde-
pendent of a link’s traffic load (so no congestion buildup is taken into account). As
the methodology implies, this is called an all-or-nothing assignment (AON). A second
technique refines this notion, whereby differences among drivers are introduced (i.e.,
giving rise to imperfect information), resulting in a stochastic assignment. In this
methodology, the link travel impedances are assumed to be probabilistically distrib-
uted: for each link in the network, an impedance is drawn from the distribution after
which an AON assignment is performed on the resulting network. This Monte Carlo
process is repeated until a certain termination criterion is met.

Both previous methods carry a significant drawback with respect to link capacities,
that is to say, no effects are taken into account due to the fact that an increased flow on
a link will generally result in an increase of the travel time (i.e., the link’s impedance).
To this end, a third method introduces capacity restraints such that an increase of
the travel demand on a link, will result in a higher cost (thereby possibly changing
the route with the cheapest cost). This method is called an equilibrium assignment,
and just like as in the second method, a stochastic equilibrium assignment version
can be derived, taking into account travellers’ imperfect knowledge. The underlying
assumption is that all travellers behave according to Wardrop’s user equilibrium (W1).
Furthermore, the capacity restraints are included in the travel impedance functions, as
they are now synonymously called travel time (loss) functions, congestion functions,
volume delay functions, link impedance functions, link cost functions, or even link
performance functions. A popular form of these functions that express the travel time
T in function of the flow q on a link, is the Bureau of Public Roads (BPR) power
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function3 [BPR64]:

T = Tff

(
1 + α

(
q

qpc

)β
)

. (3.1)

In this BPR relation, the coefficients α and β determine the shape of the function.
An example of such a function is depicted in Figure 3.2. For low flows, the BPR
function is rather flat and the travel time corresponds to the travel time Tff under free-
flow conditions. When higher flows occur on the link, the coefficient β determines
the threshold at which the BPR function rises significantly (in some formulations it
asymptotically approaches the capacity flow). The travel time will increase with the
ratio of the flow q and the so-called practical capacity qpc. This latter characteristic
is derived from the value of the travel time under congested conditions. As a result,
the practical capacity is different from the maximum capacity of a link as defined by a
fundamental diagram. Finally, note that a serious disadvantage associated with these
BPR functions in combination with static traffic assignment, is the fact that the travel
demand on the network at a certain time does not always correspond to the actual
physical flows that can be sustained. Under congested conditions, this implies that the
flows in the STA approach can be higher than the physically possible link capacities
(which are different from the previously mentioned practical capacities), leading to an
incorrect assignment with faulty oversaturated links.

PSfrag replacements

T

Tff

qqpc0

Figure 3.2: The Bureau of Public Roads (BPR) function, relating the travel time to the flow.
It is based on the travel time Tff under free-flow conditions and the practical capacity qpc of the
link under consideration.

Once the travel time of a link can be related to its current flow using, e.g., a BPR func-
tion, an iterative scheme is adopted to calculate the equilibrium traffic assignment.

3Other possible forms for the travel time function are a linear delay function [Fra99], a Kleinrock func-
tion which has a vertical asymptote [Kle72], a conical function which has, in contrast to the BPR function,
smaller travel times above the capacity flow [Spi90], and the Davidson’s function which has its roots in
queueing theory and is similar to the Kleinrock function [Dav66].
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Popular implementations are the Frank-Wolfe algorithm [Fra56] and the method of
successive averages (MSA) [Smo62]. The former method is based on principles of
optimisation theory, as demonstrated by Beckmann et al. [Bec55; Boy04b] who refor-
mulated the Wardrop equilibrium as a convex optimisation problem, consisting of a
single objective function with linear inequality constraints based on the Karush-Kuhn-
Tucker (KKT) conditions, thereby resulting in a global minimum. Because travellers
in general do not have perfect information, Daganzo and Sheffi formulated a variation
on Wardrop’s first criterion (W1), whereby all traffic distributes itself over the network
with respect to a perceived travel time of the individual drivers [Dag77]. The resulting
state of flows on the network is called a stochastic user equilibrium (SUE), as op-
posed to the deterministic user equilibrium (DUE)4. Note that a further discrimination
is also possible, as proposed by the work of Chen and Recker, who make a distinction
between travellers’ perception errors on the one hand, and network uncertainty (i.e.,
stochasticity of the travel times) on the other hand [Che01a]. For a thorough overview
of the STA approach, we refer the reader to the work of Patriksson [Pat94].

Although, as mentioned earlier, time varying congestion effects are not taken into ac-
count, the STA approach does fit nicely into the concept of long-term transportation
planning. For short-term analyses however, these effects can have a significant impact
on the end results, thus requiring a more detailed approach to traffic assignment.

3.1.2.4 Dynamic traffic assignment

As explained in the previous paragraphs, the static traffic assignment heavily relies
on simple travel time functions (e.g., BPR). An associated problem with these is the
difficulty in capturing the concept of ‘capacity of a road’. In reality, congestion is
a dynamic phenomenon, whereby its temporal character is not to be neglected. To
tackle these problems inherent to the STA approach, a more dynamic treatment of
traffic assignment is necessary [Mae04b]. A fundamentally important aspect in this
dynamic traffic assignment (DTA) procedure, is the fact that congestion has a temporal
character, meaning that its buildup and dissolution play an important role: the history
of the transportation system should be taken into account (e.g., congestion that occurs
due to queue spill back) [Dag95c]. Neglecting this time dependency by assuming that
the entry of a vehicle to a link instantaneously changes the flow on that link, results
in what is called Smeed’s paradox. This leads to incorrect behaviour as a result of a
violation of the FIFO property (see Section 2.2.2), because now a vehicle can leave
link earlier then a vehicle that enters it later (i.e., arriving earlier by departing later)
[Sme67]. The methodology of dynamic traffic assignment was now designed to deal
with all these particular aspects. The DTA technique is composed of two fundamental
components:

Route choice
Just as in the STA approach, each traveller in the transportation network

4Note that in some contexts, DUE is also used to denote a dynamic user equilibrium [Sze04; Han06].
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follows a certain route based on an instinctive criterion such as, e.g.,
Wardrop’s (W1). The associated component that takes care of travellers’
route choices, can be complemented to allow for imperfect information.
Another, more important, aspect related to the route choice, is a travel-
ler’s choice of departure time. An STA approach assumes that all traffic
of a given OD table is simultaneously assigned to the network, whereas
DTA coupled with departure time choice can spread the departures in time
(leading to, e.g., realistically spreading of the morning peak’s rush hour).

Dynamic network loading (DNL)
Instead of using simple travel time functions, a DTA approach typically
has a component that loads the traffic onto the network. In fact, this
step resembles the physical propagation of all traffic in the network. In
order to achieve reliable and credible results, a good description of the
network’s links is necessary, as well as the behaviour of traffic at the
nodes connecting the links within this network (i.e., this is a mandatory
requirement to achieve correct modelling of queue spill back). The DNL
component in the DTA approach has been an active field of research dur-
ing the last decade, and it still continues to improve the state-of-the-art.
Testimonies include the use of analytic models that give correct represent-
ations of queueing behaviour, as well as detailed simulations that describe
the propagation of individual vehicles in the transportation network. Note
that in the case of simulation-based (also called heuristic) traffic assign-
ment, the route choice and DNL components can be iteratively executed,
whereby the former establishes a set of routes to follow, and the latter step
feedbacks information to the route choice model until a certain termina-
tion criterion is met (e.g., a relaxation procedure). Furthermore, using
simulation-based traffic assignment with very large road networks is not
always computationally feasible to calculate all shortest paths. As a res-
ult, it might be beneficial to resort to simplifications of either the simula-
tion model (e.g., using faster queueing models), or the number of paths to
consider (e.g., based on the hierarchy inherently present in the road net-
work) [Ros01]. Finally, we mention the work of Astarita who provides an
interesting classification of DNL models, based on the discretisation with
respect to the spatial and temporal dimensions, as well as with respect to
the modelling of the traffic demand [Ast02].

Despite the appealing nature of simulation-based DTA, there is in con-
trast to the STA approach, no unified framework that deals with the con-
vergence and stability issues [Gaw98a; Gaw98b; Pee03].

Some examples of these DTA mechanisms are: Gawron who uses a queueing model to
develop a simulation-based assignment technique that is able to deal with large-scale
networks and is proven to be empirically stable [Gaw98b; Gaw98a], Bliemer who de-
veloped a macroscopic analytical DTA approach (with different user-classes) based
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on a variational inequality approach [Bli01], Bliemer’s work furthermore culminated
in the development of INteractive DYnamic traffic assignment (INDY) [Mal03; Bli04]
which — in combination with the OmniTRANS5 commercial transportation planning
software — can be used as a fully fledged DTA analysis tool [Ver03a], Lo and Szeto
who developed a DTA formulation based on a variational inequality approach lead-
ing to a dynamic user equilibrium [Lo02], the group of Mahmassani who is actively
engaged in the DTA scene with the development of the DYNASMART (DYnamic
Network Assignment-Simulation Model for Advanced Roadway Telematics) simula-
tion suite [DYN03], . . . An excellent comprehensive overview of several traditional
DTA techniques is given by Peeta and Ziliaskopoulos [Pee01].

Another important field of research, is how individual road travellers react to the route
guidance they are given. In his research, Bottom considered this type of dynamic
traffic management (DTM), providing route guidance to travellers whilst taking into
account their anticipated behaviour during, e.g., incidents [Bot00]. Taking this idea
one step further, it is possible to study the interactions between the behaviour of travel-
lers in a road network, and the management of all the traffic controls (e.g., traffic signal
lights) within this network. An example of such a dynamic traffic control (DTC) and
DTA framework, is the work of Chen who considers the management from a theor-
etic perspective based on a non-cooperative game between road users and the traffic
authority [Che98].

3.1.2.5 Critique on trip-based approaches

Considering its obvious track record of the past several decades, the conventional use
of the trip-based approach is — to our feeling — running on its last legs. By ‘conven-
tional’ we denote here the fact that the current state-of-the-practice is still firmly based
on the paradigm of static traffic assignment, despite the recent (academic) progress on
the front of dynamic traffic assignment techniques. The four step model still largely
dominates the commercial business of transportation planning, although its structure
remained largely unchanged since its original inception. As mentioned earlier, in the
case of STA, all trips are assumed to depart and arrive within the specified planning
period. This leads to an unnatural discrepancy between models and reality in conges-
ted areas during, e.g., a morning rush hour: some travellers want to make a trip and,
in the former case, are perfectly allowed to achieve this trip, whereas in the latter case
they are in fact physically unable to make the trip due to dynamical congestion effects.

In order to facilitate this disagreement between the balancing of travel demand versus
supply (i.e., the transportation infrastructure), the DTA approach is gaining import-
ance as more features are provided. An example of such a feature includes the frame-
work of congestion pricing, where we have an incorporation of departure time choice
models coupled with the derivation of optimal road tolls. Some noteworthy stud-
ies that have been carried out in this respect, are the work of de Palma and Marchal

5http://www.omnitrans-international.com

http://www.omnitrans-international.com
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who present the METROPOLIS toolbox, allowing the simulation6 of large-scale trans-
portation networks [Pal02; Mar03], the work of Lago and Daganzo who combined a
departure time equilibrium theory with a fluid-dynamic model in order to assess con-
gestion policy measures [Lag03b], the work of Szeto and Lo who coupled route choice
and departure time choice with the goal of numerically handling large-scale transport-
ation networks [Sze04; Lo04]. Closely related to Lago’s and Daganzo’s work is that
of Yperman et al., who determined an optimal pricing policy, describing the demand
side with a bottleneck model and an analytical fluid-dynamic model as the DNL com-
ponent [Ype05a].

At this point, we should mention some of the complications associated with the tra-
ditional method of modelling traffic flow propagation using queue-based analogies.
Historically, there have been two different queueing techniques with FIFO discipline
that describe this aspect in a trip-based assignment procedure:

• Point-queue models (PQM, also called vertical queues): this type of queue has
no spatial extent. Because vehicles can always enter the queue, and leave it after
a certain delay time, congestion is incorrectly modelled. A well-known example
of a model based on this queueing policy is Vickrey’s bottleneck model [Vic69].

• Spatial/physical-queue models (SQM, also called horizontal queues): a queue
of this type has an associated finite capacity, i.e., a buffer storage. Vehicles can
only enter the queue when there is enough space for them available.

The correct modelling of congestion effects such as queue spill back, is of fundamental
importance when assessing certain policy measures like, e.g., road pricing schemes.
To this end, the use of vertical queues should be abandoned, in favour of horizontal
queues. However, even horizontal queues have problems associated with them: the
buildup and dissolution of congestion in a transportation network are flawed, e.g.,
vehicles that are leaving the front of a queue instantly open up a space at the back
of this queue, thus allowing an upstream vehicle to enter. This leads to shorter queue
lengths, because the physical queueing effect of individual vehicles (i.e., the upstream
propagation of the empty spot) is absent [Gaw98a; Sim99; Cet03; Lag03b]. In or-
der to alleviate this latter issue, a more realistic wave velocity (see Section 2.5.4.2)
should be adopted, thus calling for more advanced modelling techniques that expli-
citly describe the propagation of traffic (e.g., fluid-dynamic approaches, models with
dynamical vehicle interactions, . . . ).

As often is the case, a model’s criticisms can be found in its underlying assumptions.
In the case of the four step approach, it is obvious that all information regarding in-
dividual households is lost because of its aggregation to a trip level. As was already
recognised from the start, the individual itself loses value during this conversion pro-
cess. This opened the door towards another approach to transportation planning, more
precisely activity-based modelling (ABM) which is discussed in the next section.

6Note that in the case of queue-based models, the simulations are typically implemented as efficient
event-based schemes.
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A final complaint that is more common around many of these grotesque models, is
their requirement of a vast amount of specific data. In many cases, a diverse range of
national studies are carried out, having the goal of gathering as much data as possible.
Regardless of this optimism, some of the key problems remain, e.g., it is still not
always straightforward to properly interpret and adapt this data so it can be used as
input to a transportation planning tool.

3.1.3 Activity-based transportation models

As it was widely accepted that the rationale for travel demand can be found in people’s
motives for participating in social, economical, and cultural activities, the classical
trip-based approach nevertheless kept a strong foothold in the transportation planning
community. Instead of focussing attention elsewhere, the typical institutional policy
was to ameliorate the existing four step models [McN00a]. However, some problems
persistently evaded a solution with the trip-based approach, e.g., shops that remain
open late, employers who introduce flexible working hours, the consideration of joint
activities by members of a household, . . .

In the next few sections, we illustrate how all this changed with the upcoming field
of activity-based transportation planning. We first describe its historic origins, after
which we move on to several of the approaches taken in activity-based modelling. The
concluding section gives a concise overview of some of the next-generation modelling
techniques, i.e., large-scale agent-based simulations.

3.1.3.1 Historic origins

The historic roots of the activity-based approach can probably be traced back to 1970,
with the querulous work of Torsten Hägerstrand [Häg70]. He asserted that researchers
in regional sciences should focus more on the intertwining of both disaggregate spatial
and temporal aspects of human activities, as opposed to the more aggregate models
in which the temporal dimension was neglected. This scientific field got commonly
termed as time geography; it encompasses all time scales (i.e., from daily operations
to lifetime goals), and focusses on the constraints that individuals face rather than
predicting their choices [Mil04].

Central to Hägerstrand’s work was the notion of so-called space-time paths of indi-
viduals’ activity and travel behaviour. In a three-dimensional space-time volume, two
spatial dimensions make up the physical world plane, with the temporal dimension
as the vertical axis. The journey of an individual is now the path traced out in this
space-time volume: consecutive visits to certain locations are joined by a curve, with
vertical segments denoting places where the individual remained stationary during a
certain time period. The complete chain of activities (called a tour) is thus joined by
individual trip legs. In this respect, the space-time path represents the revealed out-
come of an unrevealed behavioural process [McN00a]. An example of such a path can
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be seen in Figure 3.3: we can see a woman going from her home in Boulder (Col-
orado, USA), to the university’s campus, followed by a visit to the post office and
grocery store, and finally returning home [Det01]. Note that Hägerstrand extended
his notion in the space-time volume to include space-time prisms that encapsulate and
effectively constrain all of a person’s reachable points (i.e., all his/her possible space-
time paths), given a certain maximum travel speed as well as both starting and ending
points within the volume [Cor05]. This environment is sometimes also referred to as
a person’s action space, enveloping that person’s time budget.

Figure 3.3: An example of a space-time path showing an individuals’ activity and travel beha-
viour in the space-time volume: the two spatial dimensions make up the physical world plane,
with the vertical axis denoting the temporal dimension. In this case, we can see a woman going
from her home in Boulder (Colorado, USA), to the university’s campus, followed by a visit to
the post office and grocery store, and finally returning home (image reproduced after [Det01]).

Contrary to the belief that the field of activity-based transportation planning found its
crux with the dissatisfaction of trip-based modelling, it grew and emerged spontan-
eously as a separate research study into human behaviour [McN00a]. The underlying
idea however remained the same as in the trip-based approach, namely that travel de-
cisions arise from a need to participate in social, economical, and cultural activities.
But as opposed to the more aggregated trip-based view, the basic units here are indi-
vidual activity patterns, commonly referred to as household activity patterns. In this
context, the activity-based approach then studies the interactions between members of
a household, and the relation to their induced travel behaviour [Axh00].

3.1.3.2 Approaches to activity-based modelling

Departing from Hägerstrand’s initial comments, activity-based research progress has
been slowly but steadily. In contrast with the development of the trip-based approach
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that culminated in the four step model, there is no explicit general framework that
encapsulates the activity-based modelling scheme. There were however early com-
prehensive studies into human activities and their related travel behaviour, e.g., the
synopsis provided by Jones et al. [Jon83]. As the field began to mature, certain in-
gredients could be recognised, e.g. [Axh00]:

• the generation of activities, which can be regarded as the equivalent of the pro-
duction/attraction step in trip-based modelling,

• the modelling of household choices, i.e., with respect to their activity chains;
this includes choosing starting time and duration of the activity, its location as
well as a modal choice,

• the scheduling of activities, outlining how a household plans and executes the
tasks of its members for long-, middle-, and short-term activities, going from
year- and lifetime-long commitments, to daily operations.

During the last three decades, many research models that encompass activity schedul-
ing behaviour have been developed. An excellent overview is given by Timmermans,
who makes a distinction between simultaneous and sequential models [Tim01]. The
former class is based on full activity patterns (e.g., for one whole day), whereas the lat-
ter is based on an explicit modelling of the activity scheduling process. Simultaneous
models comprise utility-maximisation models and mathematical programming mod-
els (e.g., Recker’s household activity pattern problem – HAPP [Rec95] and Bowman
and Ben-Akiva’s discrete choice model [Bow95]). Sequential models are frequently
implemented as so-called computational process models (CPM), acknowledging the
belief that individuals do not arrive at optimal choices, but rather employ context-
dependent heuristics.

As an example of a CPM, we illustrate the seminal Simulation of Travel/Activity Re-
sponses to Complex Household Interactive Logistic Decisions (STARCHILD) model,
which was originally a simultaneous model based on the maximisation of individuals’
utilities. Based on Hägerstrand’s notion and derivatives thereof, i.e., the central idea
that an individual’s travel behaviour is constrained by its space-time prism, Recker
et al. developed the STARCHILD research tool addressing activity-based modelling
[Rec86a; Rec86b]. The model hinges on three interdependent consecutive steps: (i)
the generation of household activities, (ii) constructing choice sets for these activities,
as well as scheduling them, and (iii) constraining these choices within the boundaries
of the space-time prism [McN00a]. Another example of such a complete activity-
based system, is A Learning BAsed TRansportation Oriented Simulation System (AL-
BATROSS) of Arentze and Timmermans [Are00]. A fundamental assumption in their
work, is that activity participation is located at the level of a household, i.e., not at
the level of its individual members (although noting the fact that these latter form a
household’s basic needs).

Note that the principal critique on these models’ operations, was — and today still is
— their need for an extensive amount of specifically tailored data that encompasses
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Hägerstrand’s concepts. Just as with the four step model, these data are arduous to
come by. In short, most of the data are based on and transformed from, e.g., con-
ventional trip-based surveys, travel diaries (e.g., the MOBEL (Belgium) and MO-
BIDRIVE (Germany) surveys of Cirillo and Axhausen [Cir02]) and the like, although
more recently passive GPS-based information is collected [Axh00; McN00a; Mar02;
Mil04].

In the future, a complete integration of activity generation, scheduling, and route
choice (DTA) is expected to take place, on the condition that suitable empirical data
will become available. We must however be careful not to be too optimistic, e.g., as
Axhausen states that depending on the ‘research-political’ adoption of the activity-
based approach, “both a virtuous circle of progress or a vicious circle of stagna-
tion are a possibility for the future” [Axh00]. An even more harsh argumentation
was voiced by Timmermans, who looked back at the development of the integration
between land-use models and transportation planning [Tim03]. In his overview, he
identified three waves, i.e., (i) aggregate spatial interaction-based models, (ii) utility-
maximising multinomial logit-based models, and (iii) activity-based detailed microsim-
ulation models. His final conclusion states that, despite the advances in finer levels of
spatial detail, the scientific field has not undergone any significant theoretical pro-
gress. And although there exists a pronounced need for better behavioural models, the
critique remains that this implies a tremendous complexity, hence the insinuation that
many of the approaches are in fact based on black-box models.

3.1.3.3 Towards elaborate agent-based simulations

One of the most notable critiques often expressed against classical trip-based ap-
proaches such as the four step model, is the fact that all eye for detail at the level of the
individual traveller is lost in the trip aggregation process. Activity-based modelling
schemes try to circumvent this disadvantage by starting from a fundamentally differ-
ent basis, namely individual household activity patterns. To this end, it is necessary
to retain all information regarding these individual households during the planning
process.

As hinted at earlier, an upcoming technique that fits nicely in this concept, is the
methodology of multi-agent simulations. In such models, the individual households
are represented as agents; the models then allow these agents to make independent
decisions about their actions. These actions span from long-term lifetime residen-
tial housing decisions, the mid-term planning of daily activities, to even short-term
decisions about an individual’s driving behaviour in traffic. The following descrip-
tion of such a simulation system is based on the work of the group of Nagel et al.
[Nag02a; Bal04a; Bal04b; Bal04c; Nag04; Hel04]:

• As a first step, a synthetic population of agents is generated. There is a close re-
lation with the common land-use models, as these agents come from populations
that should be correctly seeded, i.e., they should entail a correct demographic
representation of the real world. Once the synthetic population is available to
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the model, the next step is to generate activity patterns (i.e., activity chains),
generate these activities’ locations, and finally the scheduling of the activities,
as described in the previous section. Finally, mode and route choice form the
bridge between the activity-based model and the transportation layer. As a con-
sequence, it is beneficial to deal with agents’ plans directly, rather than to rely
on the information contained in OD tables [Bal04a].

Note that the generation of activity patterns has attracted a lot of research in-
terest by itself, leading to quite sophisticated models. This should come as no
surprise, as it forms the corner stone of the activity-based approach. In this re-
spect, we note the work of Wang who devised a methodology for producing trips
(i.e., step (I) of the four step model as explained in Section 3.1.2.2) based on
the analyses of complete activity patterns [Wan97], the work of Kulkarni, who
linked the trip-based approach to the generation of activity patterns and sub-
sequently used Monte Carlo simulations of each household in the population
[Kul02]. Finally, also note the work of Venter who investigated the decision
on when people decide about their activities and the role this plays in regular
activities and activity disturbances [Ven98].

• The component that represents the physical propagation of agents throughout,
e.g., the road network, sits at the lowest level of the model. In this case, the ne-
cessary ingredients constitute the physical propagation of individual vehicles in
the traffic streams. Popular models are traffic cellular automata and/or queueing
models, allowing a fast and efficient simulation of individual agents in a net-
work. Higher level models such as, e.g., pure fluid-dynamic models are inher-
ently not suitable because they operate on a more aggregated basis and con-
sequently ignore the individuality of each agent in the system. Note that this
latter type of model can be deemed appropriate, on the condition that they can
incorporate the tracking of individual particles by, e.g., a smoothed particle hy-
drodynamics method [Bal04b].

• An important issue that revolves around the two previous aspects, is the clear
absence of a rigidly defined direction of causality, i.e., when exactly do people
choose their travel mode, is it before the planning of activities, or is it rather a
result from the planning process ? This problem can be dealt with in a broader
context, wherein agents make certain plans about their activities, and iterat-
ively learn by replanning and rescheduling (either on a day-to-day or within-day
basis). This process of systematic relaxation continues until, e.g., a Wardrop
equilibrium (W1) is reached (see step (IV) in Section 3.1.2.2 for more details).
However, note that the question of whether or not people in reality strive to reach
such an equilibrium, and whether or not such an equilibrium is even reached,
remains an open debate. At this stage in the model, we are clearly dealing with
aspects from evolutionary game theory, be it cooperative or non-cooperative.
In this context, the concept of within-day replanning by agents is getting more
attention, as it constitutes a necessary prerequisite for intelligent transportation
systems, i.e., when and how do travellers react (e.g., en-route choice) to changes
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(e.g., control signals, incidents, . . . ) in their environment [Bal04b] ?

The above description of a multi-agent activity-based simulation system may seem
straightforward, nevertheless, no complete practical implementation exists today. The
model suite that comes the closest to reaching the previously stated goals, is the
TRansportation ANalysis and SIMulation System (TRANSIMS7) project. This pro-
ject is one part of the multi-track Travel Model Improvement Program of the U.S.
Department of Transportation, the Environmental Protection Agency, and the Depart-
ment of Energy in the context of the Intermodal Surface Transportation Efficiency Act
and the Clean Air Act Amendments of 1990. Its original development started at Los
Alamos National Laboratory, but a commercial implementation was provided by IBM
Business Consulting.

Since its original inception, TRANSIMS has been applied to a various range of case
studies. One of the most notable examples, is the truly country-wide agent-based de-
tailed microsimulation of travel behaviour in Switzerland (see also Figure 3.4) [Voe01;
Ran03]. A similar study encompassing the iteration and feedback between a simula-
tion model and a route planner, was carried out for the region of Dallas [Nag98a;
Nag98b]. In the context of large-scale agent-based simulations, queueing models
were employed as a TRANSIMS component by the work of Simon et al. for the
city of Portland [Sim99], as well as the work of Gawron [Gaw98a; Gaw98b] and
Cetin et al. [Cet03]. Because of the computational complexity involved in deal-
ing with the enormous amount of agents in real-world scenarios, a popular approach
is the use of parallel computations, as described in the work of Nagel and Rickert
[Nag01]. Another example of this last type of simulations, is the work of Chopard and
Dupuis who applied the methodology of large-scale simulations to the city of Geneva
[Cho95; Cho97; Dup98].

As a final remark, we would like to draw attention to some more control-oriented
aspects of multi-agent simulations. In this respect, the transportation system is con-
sidered as a whole, whereby the agents are now the local controllers within the sys-
tem (e.g., traffic lights, variable message signs, . . . ), instead of individual households
as was previously assumed. Using a coordinated control approach, is it then pos-
sible to achieve a system optimum. An example of such a control system is the
Advanced Multi-agent Information and Control for Integrated multi-class traffic net-
works (AMICI8) project from The Netherlands. As one of its goals, it strives to
provide routing information to different classes of road users, as well as controlling
them by means of computer simulated agents who operate locally but can be steered
hierarchically. Related to this, is the work of van Katwijk et al., who developed a
test bed that allows to perform road traffic management by controlling a multi-agent
system using a rule-based decision model [Kat04].

7http://www.transims.net
8http://www.amici.tudelft.nl

http://www.transims.net
http://www.amici.tudelft.nl
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Figure 3.4: An example of a multi-agent simulation of the road network of Switzerland,
around 08:00 in the morning: each vehicle is indicated by a single grey pixel, with low-speed
vehicles coloured black. The image clearly reveals more vehicular activity (and congestion) in
the city centres than elsewhere in the country (image reproduced after [Voe01]).

3.1.4 Transportation economics

Most of the work related to traffic flow theory has been considered by researchers with
roots in engineering, physics, mathematics et cetera. With respect to transportation
planning, the scene has shifted somewhat during the last couple of decades towards
policy makers who test and implement certain strategies, based on, e.g., the four step
modelling approach. Around 1960 however, another branch of scientists entered the
field of transportation planning: economists developed standard models that viewed
transportation as a market exchange between demand and supply.

Generally stated, the economics of transportation does not exclusively focus on traffic
as a purely physical phenomenon (i.e., the theory of traffic flows as explained in the
previous chapter), but also takes into account the fact that transportation incurs certain
costs, both to the individual as well as to the society as a whole [Lin00].

In the following sections, we describe the setting in which economists view transport-
ation, after which we discuss the concept of road pricing.

3.1.4.1 The economical setting

In the context of economic theory, a transportation system can be seen as an interac-
tion between demand (profits) and supply (costs). In a static setting, both demand and
supply are frequently described by means of functions: they are expressed as the price



i

i

i

i

i

i

i

i

90 Chapter 3 – Transportation planning and traffic flow models

for a good associated with the quantity of that good. In transportation economics,
quantity is frequently identified as the number of trips made (e.g., by the macroscopic
characteristic of traffic flow q as defined in Section 2.3.2) [Bec55]. In the remainder
of this section, we use the term travel demand to denote the demand side, as opposed
to the supply side which is composed of the transportation infrastructure (including
changes due to incidents, . . . ). In a more broader context, travel demand is typically
described as the amount of traffic volume that wants to use a certain infrastructure
(i.e., the supply): when demand thus exceeds the infrastructure’s capacity under con-
gested conditions (implying queueing), this supply effectively acts as a constraint to
the present volume of traffic flow.

According to the aforementioned conventions, a demand side function is expressed as
a certain cost associated with a level of flow (i.e., number of trips). We call such a
curve a travel demand function (TDF), and it is typically decreasing with increasing
flow; an example of such a function can be seen as the dotted curve in Figure 3.5. Note
that, to be correct, the depicted curve actually represents a marginal travel demand:
it gives the additional profit that is received with the obtaining of one extra unit (the
total amount of profit is just the area under (i.e., the integral of) the demand curve).
Translated to a transportation system, this means that the benefits of a traveller tend to
decrease with increasing travel demand (i.e., congestion).

In similar spirit, we can consider a supply side curve, i.e., price (costs) versus quant-
ity (flow). One of the most used approaches for describing traffic flow operations at
the supply side from an economical point of view, is the use of an average cost func-
tion (ACF) [Ver98] as proposed by A.A. Walters in 1961 [Wal61]. The theory was
based on the description of traffic flow by means of fundamental diagrams (see Sec-
tion 2.5). Consider for example Greenshields’ simple linear relation between density
k and space-mean speed vs, as given by equation (2.46) on page 46. The correspond-
ing vse(q) fundamental diagram (e.g., Section 2.5.2.2), consists of a tilted parabola,
lying on its side. From equation (2.41) on page 37, it follows that the travel time T is
inversely proportional to the space-mean speed vs. Walters’ idea now was to assume
certain costs related to the travel demand. Some examples of these costs are those
associated with [Bor01; Hau05a; Hau05b]:

• (i) the construction of the transportation infrastructure,

• (ii) vehicle ownership and use,

• (iii) taxes,

• (iv) travel time, i.e., value of time (VOT),

• and (v) environmental and social costs.

Based on these costs, and using the relation between travel time and travel demand,
Walters derived a functional relationship for the economical cost C associated with
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the travel demand q. This relationship (i.e., the ACF) denotes the supply side of trans-
portation economics; an example is the thick solid curve in Figure 3.5.

Once both travel demand and average cost functions are known, they can be used
to determine the equilibrium points that occur at their intersection(s): given both
curves, the transportation system is assumed to settle itself at these equilibria,
with a certain travel cost associated with the equilibrium traffic demand. Note
that because of the nature of the analysis procedure, i.e., using static (stationary)
curves, the resulting travel costs are average costs, hence the name of the average
cost function.

PSfrag replacements

ACF

TDF

congested

hypercongested
C

qqcap0

Figure 3.5: A graphical illustration of the economics of transportation operations: the dotted
curve represents the demand side, i.e., the travel demand function (TDF), whereas the thick solid
curve represents the supply side, i.e., the average cost function (ACF). Both curves express the
cost C associated with the number of trips made (e.g., level of traffic flow q). The latter curve
is said to have two states, namely the congested and the hypercongested area (identified as the
backward-bending part of the curve). Points where both demand and supply curves intersect
each other denote equilibrium points: given both curves, the transportation system as assumed
to settle itself at their intersection(s), with a certain travel cost associated with the equilibrium
traffic demand.

There are some distinct features noticeable in the relation described by the average
cost function. For starters, the curve does not go through the origin, i.e., at low travel
demands there is already a fixed cost incurred. The depicted cost then typically in-
creases with increasing travel demand, mainly due to the contribution of the value of
time associated with the travel time. The most striking feature however, is the fact that
the curve contains a backward-bending upper branch [Els81]. This peculiar branch
has an asymptotic behaviour, i.e.,

lim
q→qcap→0

C(q) = +∞, (3.2)

where we have denoted the path taken by the limit, i.e., passing through the capacity
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flow qcap towards the upper branch, which in fact corresponds to an increase towards
the jam density kjam. Also note the presence of an inflection point (for concave qe(k)
fundamental diagrams), which can be located analytically by differentiating the func-
tional relation twice, and solving it with a right hand side equal to zero.

In contrast to the nomenclature adopted by the traffic engineering community and
in this dissertation, economists typically refer to the lower branch of Figure 3.5
as the congested state, and to the upper branch as the hypercongested state. Their
line of reasoning being the conviction that in a certain sense, congestion also
occurs when the speed drops below the free-flow speed on the free-flow branch
[Ver98; Lin00; Sma03].

With respect to the relevance of this hypercongested state, there has been some debate
in literature. Among most economists there seems to be a consensus, in the sense
that the hypercongested branch is actually a transient phenomenon [Yan98a; Lin00].
Walters thought of the branch as just a collection of inefficient equilibria, but it was
shown by Verhoef that all equilibria obtained on the hypercongested branch are inher-
ently unstable [Ver98; Sma03]. Another argument, that discards the use of the branch,
goes as explained by Yang and Huang [Yan98a]: many traditional economical mod-
els of transportation assume a static (stationary) model of congestion, similarly as in
classical static traffic assignment described in Section 3.1.2.3. Under this premise, the
relations as described by the fundamental diagrams, should be considered for com-
plete links, and not only — as is usual in traffic flow theory — at local points in space
and time. Therefore, a link may contain two different states: a free-flow state and a
congested state. Hence, the average cost function should only describe the properties
that are satisfied on the whole link, and as a result this excludes the global hypercon-
gested regime.

Several ad hoc solutions exist for dealing with this problem, which is a consequence of
using cost functions based on stationary equilibria: some of these solutions typically
entail the use of vertical segments near the capacity flow in Figure 3.5, resulting in
finite queueing delays on heavily congested links [Ver98; Yan98a; Sma03; Ver05b].
Another much used solution that ignores the backward-bending branch, is to directly
specify the average cost function based on a link’s observed capacity, instead of de-
riving it through the fundamental diagram of space-mean speed versus flow [Lin00].
Note that in most cases, the capacity considered here has a lower value as opposed to
its maximum value. A similar example that specifies the relation between travel de-
mand and travel time (e.g., VOT), is the BPR travel impedance function as described
in Section 3.1.2.3, in which there is also a difference between the practical capacity
and the maximum capacity of a link as defined by a fundamental diagram. Notwith-
standing these proposed specific solutions, the mainstream tendency nowadays seems
to imply the use of traffic flow models that explicitly describe the dynamics of con-
gestion, either by using queueing models, or more elaborate models based on fluid
dynamics or detailed simulations of individual vehicles [Yan98a].
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3.1.4.2 Towards road pricing policies

In an economical treatment of transportation, road users in general only take into
account their own private costs, such as (ii) vehicle ownership and use, (iii) taxes,
and (iv) costs related to the travel time. Note that because, as mentioned earlier, we
are working with marginal cost functions, the cost (i) related to the transportation
infrastructure is not taken into account (as this is only a one-time initial cost).

To this end, we consider the average cost function from two different points of view:
on the one hand, we have the private costs borne by an individual traveller, and on the
other hand, we have the external costs that the traveller bears to the rest of society.
In accordance with economic literature, we call the former associated cost function
the marginal private cost function (MPCF), and the latter the marginal social cost
function (MSCF). The extra costs to society brought on by individual travellers, are
called negative externalities.

In Figure 3.6, we have depicted the resulting equilibria that arise from the intersec-
tions of the travel demand function with both marginal private and social cost functions
(note that we disregard the upper backward-bending branch of the average cost func-
tion as was shown in Figure 3.5). In an unmanaged society, i.e., where no measures
are taken to change individual travellers’ behaviour, the resulting equilibrium will be
found at que, which is in fact a user equilibrium corresponding to a cost as dictated
by the marginal private cost function (MPCF) [Arn94b]. As travellers act selfishly,
not considering the costs inflicted upon other travellers (e.g., more road users imply
more congestion for everybody), this pricing method is termed average cost pricing.
At this equilibrium, the unpaid external cost to society equals the difference between
the MSCF and MPCF curves at a demand level of que [Rou06].

As early as in 1920, Arthur Cecil Pigou noted that road users do not take into account
the costs they inflict upon other travellers. In order to rectify this situation, he proposed
to levy governmental taxes on road use. Pigou actually discussed his idea in a broader
economic setting, by making a distinction between the private and the social costs.
Charging of a suitable governmental tax could change the balance so the negative
externalities would be included, resulting in a new equilibrium [Pig20]. This process
is called internalising the external costs.

Some years later in 1924, Frank Hyneman Knight further explored Pigou’s ideas9:
Knight fully acknowledged the fact that congestion justified the levying of taxes. In
contrast to Pigou however, Knight raised some criticism in the sense that not govern-
mental taxes were necessary, but instead private ownership of the roads would take
care of tax levying and consequently resulting in a reduction of congestion [Kni24;
Pah06].

In 1927, Frank Plumpton Ramsey cast this methodology — called marginal cost pri-
cing — in the light of social welfare economics. This latter type employs techniques

9Note that Knight apparently was clued in his research by an error made on Pigou’s behalf in his study of
a two-route road network [Boy04a]. Even more intriguing, is the fact that this type of problem was already
considered as far back as 1841, with the work of the German economist Johann Georg Kohl [Koh41].
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Figure 3.6: An economical equilibrium analysis based on a travel demand function (TDF)
represented by the dotted curve, and marginal private and social cost functions (MPCF and
MSCF) represented by the thick solid curves. The user equilibrium is located at a demand
of que, whereas the system optimum is located at a lower demand of qso. The welfare benefit
(indicated as the grey triangular region) can be gained by levying a congestion toll equal to the
difference between the marginal social and private cost function defined at the system optimum
demand level qso.

from a branch that is called micro-economics, which is an economical treatment of
society based on the behaviour of individual producers and consumers. Welfare eco-
nomics embraces two important concepts:

Efficiency: a measure for assessing how much benefit society gains from a certain
policy rule. It can be considered with the (strict) Pareto criterion (invented by
Vilfredo Pareto), which states that efficiency improves if a policy rule implies
an increase of welfare for at least one individual, but no other individual of
society is worse off. Nicholas Kaldor and John Hicks restated Pareto’s criterion,
but this time from the point of view of those who gain and those who lose,
respectively. Their Kaldor-Hicks criterion states that society gains welfare, but
not everybody receives personal gain, i.e., there will be winners and losers. The
crucial assumption on the Kaldor-Hicks criterion is that the winners could fully
compensate the losers, in theory; whether or not this happens at all, is not the
issue.

Equity: if society benefits from a certain policy rule, then its efficiency can be meas-
ured using, e.g., the Pareto criterion as stated earlier. However, nothing is said
about the size of the benefit each individuals of society receives. This is were
the concept of equity enters the picture: it refers to a fair distribution of the total
benefits over all individuals in society (note that in this case, there typically is a
strong correlation with the income distribution).

In this context, Ramsey thus stated a policy rule, implying a maximisation of the so-
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cial welfare [Ram27]. In the field of transportation, this can be done by marginal cost
pricing, also called road pricing, congestion tolls, . . . The nature of the measure is
that it signifies a demand-side strategy, with the goal of inducing a change in travel-
lers’ behaviour. Road pricing typically entails a shift from on-peak to off-peak peri-
ods, switching mode (e.g., from private to public transportation), car pooling, route
change, . . . Considering again Figure 3.6, we can see that if users were to consider
the marginal social cost function, instead of only their marginal private cost function,
this would shift the resulting equilibrium from que to qso, which is a social optimum.
As said at the beginning of this section, travellers do not take into account the negative
externalities they cause to the rest of society, and as such, they can be charged with an
optimal toll that is defined as the difference between both marginal social and private
cost functions. Levying the correct congestion toll, would remove the original market
failure, resulting in a net social welfare benefit that is visualised as the grey triangular
region in Figure 3.6. Note that in an ideal world, congestion tolls exactly match the
caused negative externalities. In practice however, this can not be accomplished, res-
ulting in so-called second-best pricing schemes. Practical real-life examples of this
are tolling the beltway around a city upon entering it (e.g., London’s recent conges-
tion charge), using step-tolls, tolling at fixed time periods instead of based on traffic
conditions, . . . [Lin01]

Reconsidering the work of Wardrop with respect to the criteria (W1) and (W2) high-
lighted in Section 3.1.2.2, Beckmann, McGuire, and Winsten found that the system
optimum qso can be reached if the standard cost (i.e., journey time) is replaced with
a generalised cost, which is just the marginal social cost function as described earlier
[Bec55]. Consequently, the total travel time in the system can be minimised (from an
engineering perspective), by levying a so-called efficiency toll, which corresponds to
Ramsey’s optimal toll.

One of the most notable extensions in the economic treatment of transportation and
congestion tolls, is the seminal work of the late Nobel prize winner William Vickrey
[Vic69]. As already stated in Section 3.1.2.5, correct modelling of, e.g., queue spill
back, is of fundamental importance when assessing the effectiveness of road pricing
schemes for example. Vickrey’s bottleneck model is one step in this direction: it is
based on the behaviour of morning commuters, whereby the model takes into account
the departure times of all travellers. As everybody’s desire is to arrive at work at the
same time, some will arrive earlier, others later. Besides the traditional travel time
costs, travellers therefore also experience so-called schedule delay costs. Levying
suitable tolls that depend on the travellers’ arrival times, allows to reach a system
optimum [Arn98; Lin00]. It is important to realise here that the levied toll should vary
over time and space, in order to correspond to the governing traffic conditions.

To most people in society road pricing is a highly unpopular measure, as well as a con-
troversial political issue, whereby public acceptance is everything [Mar98; Hår01b;
Hau05a; Hau05b]. Alternatives to road pricing can include upgrading existing roads
and/or public transportation services, strict control-oriented regulation by means of
advanced traffic management systems (ATMS), issuing elaborate parking systems,
fuel taxes, et cetera [Arn94a]. In spirit of second-best pricing schemes, it was a wise
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thing in the UK to connect London’s congestion charge to the simultaneous improve-
ment of public transportation [Sma05]. Similarly, the cordon toll system in the city of
Oslo, Norway, quickly found acceptance among the population [Hår01b]. Neverthe-
less, road pricing is considered an unfair policy measure to most people: households
(and firms) with higher incomes, can more easily afford to pay the charge, hence they
will keep the luxury of travelling at their own discretion, whilst others might not be
able to pay the required toll. As a consequence, an inconsiderate internalisation of
the external costs, does not lead to an equitable Pareto optimal scenario. Despite this
resistance, there does seem to be a general consensus among members of society that
congestion caused by traffic induced by recreational activities, is not tolerated during
peak periods; congestion tolling for these travellers is deemed appropriate.

Despite the advances in the methodology underlying road pricing, there is still one ma-
jor gap that has yet to be filled in, i.e., the equity of the principle, or otherwise stated:
where do the gained social welfare benefits (i.e., tax revenues) go in the redistribution ?
As Small states, road pricing is more acceptable to the broad public, if it is presented
as a complete financial package [Sma92]. As welfare economists debate on whether or
not the revenues should go back to the transportation sector or rather elsewhere, Small
asserts that inclusion of the former is mandatory for achieving substantial support from
both the political side and the investors. Complementary, in order to satisfy the global
population, it is advisory to use the collected charges in order to diminish, e.g., labour
taxes, as they are perceived as being too high [Har01a; Gof04; Hau05a; Hau05b].
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In the end, we should note that both economists and traffic engineers are
essentially talking about the same subject, although by approaching it from
different angles. In the field of economics, road pricing policies are introduced
based on average cost functions, allowing an optimisation of the social welfare.
This effectively corresponds to the engineers’ idea of static traffic assignment,
based on a system optimum using travel impedance functions (see, e.g., Section
3.1.2.3). The validity of using these average cost functions (with or without
their backward-bending parts as explained in Section 3.1.4.1), has instigated
several debates in road pricing literature, most notably between Else and Nash
[Els82; Nas82], Evans and Hills [Eva92; Eva93; Hil93], and Ohta and Verhoef
[Oht01a; Oht01b; Ver01].

In continuation, the approach followed by Vickrey’s bottleneck model provides a
nice, first alternative, using schedule delay costs (see Sections 3.1.2.5 and 3.1.4.2).
Although Vickrey’s idea introduces a hitherto absent time dependence, it has the
disadvantage that spatial extents are neglected through the assumption of point-
queues (see Section 3.1.2.5). Lo and Szeto have rigourously shown that hyper-
congestion is essentially a spatial phenomenon, and that by neglecting this facet,
a road pricing policy might actually worsen traffic conditions [Lo05]. The correct
way out of this problem, is by explicitly taking the tempo-spatial characteristics
of traffic flows into account. As an engineering analogy, this can be accomplished
by introducing dynamic traffic assignment (see Section 3.1.2.4) which uses phys-
ical propagation models to describe the buildup and dissolution of congestion (see
also some of the models presented in Section 3.1.2.5, e.g., the work of Lago and
Daganzo [Lag03b]).

3.2 Traffic flow propagation models

In contrast to the previous section, which dealt with high level transportation planning
models, the current section considers traffic flow models that explicitly describe the
physical propagation of traffic flows. In a sense, these models can be seen as being
directly applicable for the physical description of traffic streams. There exist several
methods for discriminating between the families of models that describe traffic flow
propagation, i.e., based on whether they operate in continuous or discrete time (or even
event-based), whether they are purely deterministic or stochastic, or depending on the
level of detail (LOD) that is assumed, . . . More detailed explanations can found in
the overview of Hoogendoorn and Bovy [Hoo01]. In this dissertation, we present an
overview that is based on the latter method of discriminating between the level of de-
tail. We believe that this classification most satisfactorily describes the discrepancies
between the different traffic flow models. Thus, depending on the level of aggregation,
we can classify the propagation models into the following four categories:

• macroscopic (highest level of aggregation, lowest level of detail, based on con-
tinuum mechanics, typically entailing fluid-dynamic models),
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• mesoscopic (high level of aggregation, low level of detail, typically based on a
gas-kinetic analogy in which driver behaviour is explicitly considered),

• microscopic (low level of aggregation, high level of detail, typically based
on models that describe the detailed interactions between vehicles in a traffic
stream),

• and submicroscopic (lowest level of aggregation, highest level of detail, like
microscopic models but extended with detailed descriptions of a vehicles’ inner
workings).

Note that some people regard macroscopic models more from the angle of network
models. In this case, the focus lies on performance characteristics such as total
travel times (a measure for the quality of service), number of trips, . . . [Gar97] To
this end, several quantitative models were introduced, such as Zahavi’s so-called
α relation between traffic flow, road density, and space-mean speed [Zah72], and
Prigogine and Herman’s two-fluid theory of town traffic [Her79].

3.2.1 Macroscopic traffic flow models

In this section, we take a look at the class of traffic flow models that describe traffic
streams at an aggregated level. We first introduce the concept behind the models (i.e.,
the continuum approach), after which we discuss the classical first-order LWR model.
Because of its historical importance, we devote several sections to the model’s analyt-
ical and numerical solutions, as well as to some extensions that have been proposed
by researchers. We conclude our discussion of macroscopic models with a description
of several higher-order models, and shed some light on the problems associated with
both first-order and higher-order models.

3.2.1.1 The continuum approach

Among the physics disciplines, exists the field of continuum mechanics that is con-
cerned with the behaviour of solids and fluids (both liquids and gasses). Considering
the class of fluid dynamics, it has spawned a rich variety of branches such as aerody-
namics, hydrodynamics, hydraulics, . . .

Underlying these scientific fields, is the continuity assumption (also called the con-
tinuum hypothesis) that they all have in common. In a nutshell, this assumption states
that fluids are to be treated as continuous media (in contrast to, e.g., molecular gasses,
which consist of distinct particles). Stated more rigourously, the macroscopic spatial
(i.e., the length) and temporal scales are considerably larger than the largest molecular
corresponding scales [Cra04]. As a consequence, all quantities can be treated as being
continuous (in the infinitesimal limit). The decision to use either a liquid-like or a gas-
like treatment, is based on the Knudsen number of the fluid: a low value (i.e., smaller
than unity) indicates a fluid-dynamic treatment, whereas a high value is indicative of a
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more granular medium. In this section, we consider the former approach. In the latter
case, we enter the realm of statistical mechanics that deals with, e.g., kinetic gasses,
requiring the use of the Boltzmann equation (as will be explained in Section 3.2.2 on
mesoscopic traffic flow models).

Historically, the fluid-dynamic approach found its roots in the seminal work of Claude
Louis Navier (1822), Adhémar de Saint-Venant (1843), and George Gabriel Stokes
(1845) [Gir03]. This gave rise to what we know as the Navier-Stokes equations (NSE),
formulated as a set of non-linear partial differential equations (PDEs). For our over-
view, the most relevant equation is actually the local conservation law, stating that the
net flux is accompanied by an increase or decrease of material (i.e., fluid). In general,
we can discern two subtypes: compressible or incompressible fluids, and viscous or
inviscid fluids. Incompressibility assumes a constant density (and a high Mach num-
ber), whereas inviscid fluids have a zero viscosity (with a corresponding high Reynolds
number) and are typically represented as the Euler equations.

Note that the NSE are still not fully understood. The fact of the matter is that the Clay
Mathematics Institute has devised a list of Millennium Problems10, among which a
deeper fundamental understanding of the NSE holds a reward of one million dollar.
Because the original Navier-Stokes equations are too complex to solve, scientists de-
veloped solutions to specific subproblems, e.g., Euler’s version of inviscid fluids. As
an example, we give the Burgers equation, as derived by Johannes Martinus Burgers
[Bur48], for a one-dimensional fluid in the form of a hyperbolic conservation law:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3.3)

in which the u ∈ R typically represents the velocity, and ν is the viscosity coefficient.
For inviscid fluids, ν = 0, such that equation (3.3) corresponds to a first-order partial
differential equation. This type of hyperbolic PDE is very important, as its solution
can develop discontinuities, or more clearly stated, it can contain shock waves which
are of course directly relevant to the modelling of traffic flows. The inviscid Burgers
PDE can be solved using the standard method of characteristics, as will be explained
in further detail in the next three sections.

3.2.1.2 The first-order LWR model

Continuing the previous train of thought, we can consider traffic as an inviscid but
compressible fluid. From this assumption, it follows that densities, mean speeds, and
flows are defined as continuous variables, in each point in time and space, hence lead-
ing to the names of continuum models, fluid-dynamic models, or macroscopic models.

The first aspect of such a fluid-dynamic description of traffic flow, consists of a scalar
conservation law (‘scalar’ because it is a first-order PDE). A typical derivation can be
found in [Gar97] and [Jün02]: the derivation is based on considering a road segment

10http://www.claymath.org/millennium

http://www.claymath.org/millennium
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with a finite length on which no vehicles appear or disappear other than the ones that
enter and exit it. After taking the infinitesimal limit (i.e., the continuum hypothesis),
this will result in an equation that expresses the interplay between continuous densities
and flows on a local scale. Another way of deriving the conservation law, is based
on the use of a differentiable cumulative count function Ñ(t, x) of Section 2.3.2.2
[New93a]:

k(t, x) = −∂Ñ(t, x)/∂x and q(t, x) = ∂Ñ(t, x)/∂t,

⇓

∂k(t, x)

∂t
= −

∂2Ñ(t, x)

∂t ∂x
and

∂q(t, x)

∂x
=

∂2Ñ(t, x)

∂t ∂x
,

⇓

∂k(t, x)

∂t
+

∂q(t, x)

∂x
= 0, (3.4)

with the density k and flow q dynamically (i.e., time varying) defined over a single spa-
tial dimension. Lighthill and Whitham were among the first to develop such a traffic
flow model [Lig55] (note that in the same year, Newell had constructed a theory of
traffic flow at low densities [New96]). Crucial to their approach, was the fundamental
hypothesis as explained in Section 2.5.2.1, essentially stating that flow is a function
of density, i.e., the qe(k(t, x)) equilibrium relationship in Section 2.5.2.2. Essentially
to their theory, Lighthill and Whitham assumed that the fundamental hypothesis holds
at all traffic densities, not just for light-density traffic but also for congested traffic
conditions. Using this trick with the fundamental diagram, relates the two dependent
variables in equation (3.4) to each other, thereby making it possible to solve the partial
differential equation.

One year later, in 1956, Richards independently derived the same fluid-dynamic model
[Ric56], albeit in a slightly different form. The key difference, is that Richards fo-
cusses on the derivation of shock waves with respect to the density, whereas Light-
hill and Whitham consider this more from the perspective of disruptions of the flow
[Pip64]. Another difference between both derivations, is that Richards fixed the equi-
librium relation, whereas Lighthill and Whitham did not restrict themselves to an a
priori definition; in Richards’ paper, we can find the equation V = a(b − D), with
V the space-mean speed, D the density, and a and b fitting parameters [Ric56]. Note
that all three authors share the following same comment: because of the continuity as-
sumption, the theory only holds for a large number of vehicles, hence the description
of “long crowded roads” in Lighthill and Whitham’s original article.

Because of the nearly simultaneous and independent development of the theory,
the model has become known as the LWR model, after the initials of its inventors
who receive the credit. In some texts, the model is also referred to as the hydro-
dynamic model, or the kinematic wave model (KWM), attributed to the fact that
the model’s solution is based on characteristics, which are called kinematic waves
(e.g., shock waves).
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3.2.1.3 Analytical solutions of the LWR model

Reconsidering equation (3.4), taking into account the fundamental diagram, the con-
servation law is now expressed as:

kt + qe(k)x = 0, (3.5)

in which we introduced the standard differential calculus notation for PDEs11. Re-
cognising the fundamental relation of traffic flow theory (see Section 2.3.4.2 for more
details), equation (3.5) then becomes:

kt + (k vse(k))x = kt +

(
vse(k) + k

dvse(k)

dk

)
kx = 0. (3.6)

The above hyperbolic PDE, can be translated into the Burgers equation (3.3), using a
suitable transformation to a dimensionless form as explained in the rigourous math-
ematical treatment provided by Jüngel [Jün02]. The conservation law (3.5) can also
be cast in a non-linear wave equation, using the chain rule for differentiation [Gar97]:

kt +
dqe(k)

dk
kx = 0. (3.7)

Analytically solving the previous equation using the method of characteristics, results
in shock waves that travel with speeds equal to:

w =
dqe(k)

dk
, (3.8)

i.e., the tangent to the qe(k) fundamental diagram. This tangent corresponds to the
in Section 2.5.2.2 mentioned kinematic wave speed w. As a consequence, solutions,
being the characteristics, of equation (3.7) have the following form:

k(t, x) = k(x− wt), (3.9)

with the observation that the density is constant along such a characteristic. Note that
in order to obtain shock waves that are only decelerating, the used qe(k) fundamental
diagram should be concave (a property that is often neglected) [Del95a]:

d2qe(k)

dk2
≤ 0. (3.10)

11Note that we set the PDE’s right-hand side equal to zero. A non-zero term here can be considered as a
source term that models a local entry or exit such as an on- or off-ramp [Bag05].
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Starting from an initial condition, the problem of finding the solution to the conserva-
tion PDE, is also called an initial value problem (IVP), whereby the solution describes
how the density evolves with increasing time. The problem is called a generalised
Riemann problem (GRP) when we consider an infinitely long road with given con-
stant initial densities up- and downstream of a discontinuity.

Because the method of characteristics can result in non-unique solutions, a trick is
used to select the correct, i.e., physically relevant, one. Recall from equation (3.3)
that the right-hand side of the Burgers PDE contained a viscosity term ν. The general
principle that is adopted for selection of the correct solution, is based on the Oleinik
entropy condition, which regards the conservation law as a diffuse equation. In this
context, the viscosity coefficient is multiplied with a small diffusion constant ε. In the
vanishing viscosity limit ε → 0, the method returns a unique, smooth, and physically
relevant solution instead of infinitely many (weak) solutions [LeV92; Nag05]. For
more details with respect to the application of traffic flows, we refer to the excellent
treatment given by Jüngel [Jün02].

Ansorge, Bui et al., Velan and Florian later reinterpreted this entropy condition,
stating that it is equivalent to a driver’s ride impulse [Ans90; Bui92; Vel02].
Drivers going from free-flow to congested traffic encounter a sharp shock wave,
whereas drivers going in the reverse direction essentially pass through all inter-
mediate points on the fundamental diagrams, i.e., the solution generates a fan of
waves. It is for this latter case that the ‘ride impulse’ is relevant: it denotes the
fact that stopped drivers prefer to start riding again, resulting in a fan of waves.

A more intuitive explanation can also be given based on the anticipation that drivers
adopt when they approach a shock wave: their equilibrium speed vse(k) is also a
function of the change in density, e.g.:

vse(k)
.
= vse(k)−

ν

k

∂k

∂x
. (3.11)

Substituting this new equilibrium relation in equation (3.6), results in a right-hand side
equal to ν ∂2k

∂x2 . Applying the same methodology based on the vanishing viscosity limit
of the entropy solution, results in the same unique solution. Because the shock waves
are in fact mathematical discontinuities, and as such, infinitesimally small, they are
typically ‘smeared out’ by numerical schemes. In fact, this is just the equivalent of
introducing an artificial viscosity (as explained earlier), which allows diffusion (i.e.,
the combined effect of dissipation and dispersion) of the shock waves. Note that this
diffusion is a consequence of the numerical solution, and not necessarily correspond-
ing to the real diffusion processes in a viscous fluid. This numerical smoothing helps
to retain numerical stability of the final solution.

Whenever in the solution of the conservation equation, two of its characteristics inter-
sect, the density takes on two different values (each one belonging to a single char-
acteristic). As this mathematical quirk is physically impossible, the entropy solution
states that both characteristics terminate and breed a shock wave; as such, these shock
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waves form boundaries that discontinuously separate densities, flows, and space-mean
speeds [Gar97]. The speed of such a shock wave is related to the following ratio
[Pip64]:

wshock =
∆q

∆k
, (3.12)

with ∆q = qup− qdown and ∆k = kup− kdown the relative difference in flows, respect-
ively densities, up- and downstream of the shock wave.

Note that going from a low to a high density regime typically results in a shock wave,
whereas the reverse transition is accompanied by an emanation of a fan of characterist-
ics (also called expansion, acceleration, or rarefaction waves). In shock wave theory,
the densities on either side of a shock are well defined (i.e., unique solutions exist);
along the shock wave however, the density jumps discontinuously from one value to
another. In this latter respect, equation (3.12) is said to satisfy the Rankine-Hugoniot
jump condition.

The previous remarks with respect to the entropy condition, are closely related to
the concavity of the qe(k) fundamental diagram, as defined by equation (3.10): for
concave qe(k) fundamental diagrams, all shock waves are compression waves going
from lower to higher densities. However, for qe(k) fundamental diagrams that contain
convex regions, application of the entropy condition can return the wrong solution
[LeV01]. Although the mathematics of using these kinds of fundamental diagrams
has been worked out, see for example the work of Li [Li03], a unified physical inter-
pretation is still lacking [Mae04g; Nag05]: instead of only deceleration shock waves
and acceleration fans, we now also have acceleration shock waves and deceleration
fans. Finally, it is important to realise that for non-smooth qe(k) fundamental dia-
grams, the entropy condition is not applicable and no fans occur because the correct
unique solution is automatically obtained [Vel02].

In Figure 3.7, we have depicted a classic example that is often used when illustrating
the tempo-spatial evolution of a traffic flow at a traffic light (left part), based on the
LWR first-order macroscopic traffic flow model with a triangular qe(k) fundamental
diagram (right part). The application of the traffic flow model is visible in the time-
space diagram to the left. A traffic light is located at position xlight; it is initially
green, and at tred it turns red until tgreen when it switches back to green. The initial
conditions at the road segment are located at point 1© on the fundamental diagram.
Because all characteristics of the solution are tangential to the fundamental diagram,
the results can be elegantly visualised when using a triangular diagram: except for
the fan of rarefaction waves (we approximate the non-differentiable tip of the triangle
with a smooth one, such that we can show the fan 4© for all didactical intents and
purposes), only two kinematic wave speeds are possible. When the traffic light turns
red, a queue of stopped vehicles develops. Inside this queue, the jam density state kj

holds, corresponding to point 2© on the fundamental diagram. The upstream boundary
of the queue is demarcated by the shock wave 3© that is formed by the intersections of
the characteristics 1© and 2©. Downstream of the jam, there are no vehicles: because
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we are working with a triangular fundamental diagram, the characteristics are parallel
to the vehicle trajectories (their speeds are equal to the slopes of points on the free-
flow branch). The initial regime at state 1© and the ‘empty’ regime downstream of
the queue are separated from each other by a contact discontinuity or slip. When the
traffic light turns green again, the queue starts to dissipate, whereby the solution of
characteristics becomes a fan of rarefaction waves 4©, taking on all speeds between
states 2© and 1© on the fundamental diagram12. A final important aspect that can be
seen from Figure 3.7, is the fact that in the LWR model the outflow from a jam, i.e.,
going from a high to a low density regime, always proceeds via the capacity-flow
regime at qcap: so there is no capacity drop in the LWR model because the outflow is
always optimal.
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Figure 3.7: Example of an analytical solution based on the LWR first-order macroscopic traffic
flow model with a triangular qe(k) fundamental diagram. Left: a time-space diagram with a
traffic light located at position xlight. It is green, except during the period from tred until tgreen.
The solution is visually sketched by means of the characteristics that evolve during the tempo-
spatial evolution of the traffic flow. Right: a triangular fundamental diagram, with the initial
conditions at state 1©. When the traffic light is red, a queue develops in which the jam density
state at point 2© holds. Its upstream boundary is demarcated by the shock wave 3©. When the
queue starts to dissipate, the solution of characteristics generally becomes a fan of rarefaction
waves 4©.

To conclude our summary of analytical derivations, we point the reader to the signi-
ficant work of Newell, who in 1993 cast the LWR theory in an elegant form. The key
ideas he introduced were on the one hand the use of cumulative curves for deriving
the conservation law, and on the other hand the use of a triangular qe(k) fundamental
diagram [New93a]. Due to Newell’s work, traffic flow analysis in this respect gets
very simplified, as it is now possible to give an exact graphical solution to the LWR
model for both free-flow and congested conditions [New93b]. To complete his theory,
Newell also provided us with a means to include multi-destination flows, i.e., specific-
ations of which off-ramp vehicles will use to exit the motorway [New93c]. Note that

12Note that at non-differentiable points, e.g., (kc, qcap), the fundamental diagram should be made con-
tinuously differentiable, such that the derivative dqe(k)/dk can take on all possible values between the left
and right derivative.
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for the LWR model with a parabolic qe(k) fundamental diagram and piece-wise lin-
ear and piece-wise constant space and time boundaries, respectively, Wong and Wong
recently devised an exact analytical solution scheme. Their method is based on the ef-
ficient tracking and fitting of generated and dispersed shock waves within a time-space
diagram [Won02].

3.2.1.4 Numerical solutions of the LWR model

Besides the previous analytic derivation of a solution to the conservation law ex-
pressed as a PDE, it is also possible to treat the problem numerically. By trying to
find a numerical solution to the PDEs, we enter the field of computational fluid dy-
namics (CFD). In a typical setup, the ‘fluid domain’ is first discretised into adjacent
cells (called a one-dimensional mesh) of size ∆X (note that all cells need not to be
equal in size), after which an iterative scheme is used to update the cells’ states (e.g.,
the density k in each fluid cell) at discrete time steps m ∆T with m ∈ N0. Typ-
ically, this entails finite difference schemes (or in a broader context, finite element
methods or finite volume methods), which replace the continuous partial derivative
with a difference operator, thereby transforming the conservation equation into a fi-
nite difference equation (FDE). Examples of these difference operators are the for-
ward difference operator ∆f(x) = f(x + 1) − f(x) and the backward difference
operator ∇f(x) = f(x) − f(x − 1), which is not to be confused with the gradi-
ent vector of f(x). Examples of finite difference schemes are the central scheme,
the Lax-Friedrichs scheme, the downwind scheme, the upwind scheme, the MacCor-
mack scheme, the Lax-Wendroff scheme, the Steger-Warming Flux Splitter scheme, the
Rieman-based Harten-van Leer-Lax and Einfeldt scheme, . . . For a more complete
overview of these schemes, we refer the reader to the work of Helbing and Treiber
[Hel99d], Jüngel [Jün02], and Ngoduy et al. [Ngo03]. A practical software imple-
mentation of a moving-mesh finite-volume solver for the previously mentioned hyper-
bolic PDEs, can be found in van Dam’s TraFlowPACK software [Dam02]. LeVeque
also developed a numerical solver, called CLAWPACK, that is designed to compute
numerical solutions to hyperbolic partial differential equations using a wave propaga-
tion approach [LeV03]. A central precaution for all these schemes, is the so-called
Courant-Friedrichs-Lewy (CFL) condition which guarantees numerical stability of the
algorithms; for traffic flows, it has the physical interpretation that no vehicles are al-
lowed to ‘skip’ cells between consecutive time steps (i.e., all physical information that
has an influence on the system’s behaviour should be included):

∆T ≤
∆X

vff
. (3.13)

Just over a decade ago, Daganzo constructed a numerical scheme based on finite dif-
ference equations. It is known as the cell transmission model (CTM), which solves
the LWR model using a trapezoidal qe(k) fundamental diagram [Dag94]. At the heart
of his model lies a discretisation of the road into finite cells of width ∆X , each con-
taining a certain number of vehicles (i.e., an average cell density). When time ad-
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vances, these vehicles are transmitted from upstream to downstream cells, taking into
account the capacity constraints imposed by the downstream cells. The CTM con-
verges to the LWR model in the limit when ∆X → 0. In 1995, Daganzo extended
the model to include network traffic, i.e., two-way merges and diverges, thereby al-
lowing for the correct modelling of dynamic queue spill backs [Dag95a]. He also
cast the model in the context of Godunov FDE methods13, allowing for arbitrary qe(k)
fundamental diagrams. The exchange of vehicles between neighbouring cells is then
governed by so-called sending and receiving functions [Dag95b]. Lebacque derived
a similar numerical scheme that performed the same functions as Daganzo’s CTM, at
approximately the same time (the debate on whomever was first is still not resolved)
[Leb93; Leb96]. In his derivation, he employed the terms demand and supply func-
tions to denote the exchange of vehicles between cells. He also provided the means to
handle general (i.e., multi-way) merges and diverges. Both the original cell transmis-
sion model and an implementation of the Godunov scheme for the LWR model with
an arbitrary qe(k) fundamental diagram, were provided by Daganzo et al. in the form
of a software package called NETCELL [Cay97]. Note that, as mentioned earlier,
numerical methods tend to smear out the shock waves; this diffusion is therefore a
consequence of the solution methodology and not of the LWR model itself [Log03a].

Daganzo also developed another methodology for numerically solving the LWR equa-
tions, based on a variational formulation. Rather than extending the existing concept
of a conservation equation coupled with a vanishing viscosity limit, he derived a solu-
tion based on the principles behind cumulative curves. The initial value problem be-
comes well-posed, and the methodology is able to handle complex boundary condi-
tions. In short, the problem is transformed into finding shortest paths in a network of
arcs that comprise the kinematic waves; as a surplus, the method is computationally
more efficient than traditional solutions based on conservation laws [Dag03a; Dag05].

Traditional cell-based numerical methods are fairly computationally intensive, be-
cause they have to discretise the road entirely (even in regions where there is no
variation in density), resulting in a solution that is composed of linear shock waves
and continuous fans (i.e., the rarefaction waves). In order to derive a solution that is
computationally more efficient, Henn proposed to replace the continuous fans of rar-
efaction waves with a discrete set of angular sectors (i.e., the density now varies with
discrete steps). The efficiency now stems from the fact that, instead of a whole array
of cells, only list structures need to be maintained [Hen03].

Only recently, a combination of Daganzo’s CTM with a triangular qe(k) fundamental
diagram and Newell’s cumulative curves was constructed by Yperman et al., resulting
in the link transmission model (LTM). Because whole links can be treated at once,
the LTM’s computational efficiency is much higher than that of classical numerical
solution schemes for the LWR model, whilst retaining the same accuracy [Ype05b].

With respect to the applicability of the LWR model to real-life traffic flows, we refer
the reader to two studies: the first was done by Lin and Ahanotu in the course of the

13Sergei K. Godunov’s numerical solution of PDEs is considered as a breakthrough in computational
fluid dynamics: it provides a unique solution based on a stable Riemann problem [God59; Leb96; Dag99a].
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California Partners for Advanced Transit and Highways (PATH) programme (formerly
known as the Program on Advanced Technology for the Highway). In their work, they
performed a validation for the CTM with respect to the formation and dissipation
of queues, concluding that the most important first-order characteristics (correlations
in measurements of free-flow traffic at successive detector stations, and the speed of
the backward propagating wave under congested conditions) perform reasonable well
when comparing them to field data [Lin95].

A second, more thorough and critical study was done by Nagel and Nelson. In it,
they scrutinise the LWR model, both with concave qe(k) fundamental diagrams and
those with convex regions. Their main conclusion states that it remains difficult to
judge the model’s capabilities on a fair basis, largely due to the fact that there do not
exist many real-world data sets which also contain a geometrical description of the
local infrastructural road layout. This latter ingredient is a requirement for assessing
whether or not an observed traffic breakdown is either spontaneously induced or due
to the presence of an active bottleneck (because the LWR model constitutes a strictly
deterministic model) [Nag05].

3.2.1.5 Flavours of the LWR model

Considering this elegant first-order traffic flow model, its main advantages are that it
is simple, and in a sense reproduces the most important features of traffic flows (i.e.,
shock waves and rarefaction waves). However, because of its restriction to a first-
order partial differential equation, certain other effects, such as stop-and-go traffic
waves, capacity drop and hysteresis, traffic flow instabilities, finite acceleration cap-
abilities, . . . can not be represented [Lig55]. In many cases, these ‘deficiencies’ can
be tackled by switching to higher-order models, as will be elaborated upon in Section
3.2.1.6. Interestingly, in their original paper, Lighthill and Whitham recognised the
fact that drivers tend to anticipate on downstream conditions, changing their speed
gradually when crossing shock waves. This in fact necessitates a diffusion term in the
conservation equation that captures a density gradient.

Instead of using a higher-order model, traffic flow engineers can also resort to more
sophisticated approaches, such as extensions of the first-order model. To conclude this
section, let us give a concise overview of some of the model flavours that have been
proposed as straightforward extensions to the seminal LWR model.

An interesting set of extensions launched, was created by Daganzo, dealing with two
classes of vehicles, of which one class can use all lanes of a motorway, whereas the
other class is restricted to a right-hand subset of these lanes. When the capacity of the
latter vehicles in regular lanes is exceeded, a queue will develop in those lanes, but the
former vehicles will still be able to use the other lanes; this is called a 2-pipe regime.
Similarly, if the capacity of the yet freely flowing vehicles is exceeded, all lanes enter
a queued state, which is called a 1-pipe regime. In short, interactions between vehicles
in this and the following models are nearly always considered from a user equilibrium
perspective [Dag97a]. Daganzo et al. applied the theory to a case where there is a
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set of special lanes on which only priority vehicles can drive. The theory was also
suited to describe congestion on a motorway diverge, such that the motorway itself
can still be in the free-flow regime [Dag97c]. For the special case of queue spill back
at a motorway’s off-ramp, Newell also provided a graphical solution that is based on
the use of cumulative curves [New99].

Continuing the previous train of thought, Daganzo provided a logical extension: he
again considered different lanes, but now introduced two different types of drivers:
aggressive ones (called rabbits) and timid ones (called slugs). Daganzo himself states
that a correct traffic flow theory should involve both human psychology and lane-
changing aspects, leading him to such a behavioural description [Dag02a]. The theory
was also used to explain the phenomenon of a capacity funnel (see Section 2.5.5 for
more details): according to the theory, once a capacity drop occurs, the recovery to
the capacity-flow regime can not occur spontaneously, thereby requiring an exogen-
eous mechanism. Daganzo provides an explanation, called the pumping phenomenon:
drivers temporarily accept shorter time headways downstream of an on-ramp, lead-
ing to a ‘pumped state’ of high-density and high-speed traffic, or in other words, a
capacity-flow regime [Dag02b]. Chung and Cassidy later provided a validation of
the theory, by applying it to describe merge bottlenecks on multi-lane motorways
in Toronto (Canada) and Berkeley (California). In their study, they introduced the
concept of semi-congestion, denoting a regime in which on vehicle class enters a state
with a reduced mean speed, whereas the other vehicle class can still travel unimpeded.
Their findings indicated an agreement between both shock wave speeds empirically
observed and predicted by the model [Chu02].
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An interesting case to which the LWR theory can be applied, is the problem of moving
bottlenecks as stated by Gazis and Herman [Gaz92]. Examples of such bottlenecks are
slower trucks on the right shoulder lanes, which can impede upstream traffic. Newell
was among the first to try to give a satisfactory consistent treatment of this type of
bottlenecks. The trick he used was to translate the problem into a moving coordinate
system that is travelling at the bottleneck’s velocity. This resulted in a description of a
stationary bottleneck, after which the classical LWR theory can be applied [New98].
Although the theory is sound, there exist some serious drawbacks, mainly due to its
underlying assumptions. For example, the moving bottlenecks are assumed to be long
convoys, and other drivers’ behaviours are not affected by the bottlenecks’ speeds;
even more serious is the fact that the theory is not valid for very light traffic condi-
tions, and that several strange effects are predicted by the theory (e.g., a bottleneck
with increasing speed can result in a lower upstream capacity). To this end, Muñoz
and Daganzo applied the previously mentioned behavioural model with rabbits and
slugs to the problem of a moving bottleneck. Their theory performs satisfactorily and
agrees well with empirically observed motorway features. However, because of the
fact that it relies on the LWR model, it is not entirely valid for bottlenecks that travel at
high speeds under light traffic conditions. In this latter case, they state that driver dif-
ferences are much more important than the dynamics dictated by the kinematic model
[Muñ02a].

Another theory that deals with the problem of moving bottlenecks, is the one pro-
posed by Daganzo and Laval: they treat moving bottlenecks as a sequence of con-
secutive fixed obstructions that have the same capacity restraining effects. Despite
the fact that the previous theory of Muñoz and Daganzo has a good performance, it
does not easily lend itself to discretisation schemes that allow numerical solutions. In
contrast to this, the hybrid theory (fixed obstructions coupled with the LWR model
dynamics) of Daganzo and Laval holds high promise as they have shown that it can
be discretised in a numerically stable fashion [Dag03b]. As a continuation of this
work, Lavel furthermore investigated the power of these fixed obstructions, allowing
him to capture lane-changes as random events modelled by moving bottlenecks in a
LWR 1-pipe regime. It is suggested that (disruptive) lane changes form the main cause
for instabilities in a traffic stream. This leads the ‘Berkeley school’ to the statement
that incorporating lane-change capabilities into multi-lane macroscopic models seems
a prerequisite for observing effects such as capacity drops, kinematic waves of fast
vehicles, . . . [Lav04; Lav06] In this respect, Jin provides a theory that explicitly takes
into account to effects of lane changes [Jin05]. The starting point in this model, is
the presence of certain road areas in which traffic streams mix. The underlying as-
sumption here is that all lane changes lead to the same traffic conditions in each lane:
the crucial element in the model is that vehicles performing lane changes are tempor-
arily counted twice in the density total. This new ‘effective density’, is then used to
transform the qe(k) fundamental diagram, leading to a reversed lambda shape. How-
ever, because the current version of the theory employs a small artificial constant to
introduce the lane changes, we question its practical applicability when it comes to
calibration and validation.
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To conclude this overview of first-order models, we highlight another successful at-
tempt at increasing the capabilities of the classical LWR model. An important ex-
tension was made by Logghe, who derived a multi-class formulation14 that allows
for the correct modelling of heterogeneous traffic streams (e.g., preserving the FIFO
property for interacting classes). Classes are distinguished by their maximum speed,
vehicle length, and capacity (all intended for a triangular qe(k) fundamental diagram).
A central ingredient to his theory, is the interactions between different user classes
that reside on a road: in this respect, each class acts selfishly, with slower vehicles
taking on the role of moving bottlenecks. Besides being able to construct analytical
and graphical solutions, Logghe also provided a stable numerical scheme, as well as
a complete network version with road inhomogeneities, and two-way merges and di-
verges [Log03a; Log03b].

A finally important aspect that is mainly related to lane changes, is the aniso-
tropy property of a traffic stream. This property basically states that drivers are
not influenced by the presence upstream vehicles. In a sense, most models de-
scribing the acceleration behaviour of a vehicle, only take into account the state
of the vehicle directly in front. For most macroscopic traffic flow models, this
anisotropy constitutes a necessary ingredient. However, in his original paper,
Richards very subtly points out that the fact of whether or not drivers only re-
act to the conditions ahead, remains an open question [Ric56]. In contrast to this,
Newell states that a driver is only influenced by downstream conditions, leading
to a natural cause-and-effect relation, making the problem mathematically well-
posed [New93b]. Recently, Zhang stated that the anisotropy property is likely to
be violated in multi-lane traffic flows. His explanation is closely tied to the con-
cavity character of a qe(k) fundamental diagram (non-concave regions can lead to
characteristics that travel faster than the space-mean speed of the traffic stream).
He also provides an intuitive reasoning based on Daganzo’s rabbits and slugs,
whereby tailgating vehicles induce slower downstream vehicles to ‘make way’.
Note that for single-lane traffic flows, the anisotropy property is expected to hold
because of the FIFO property (vehicles can not pass each other), although there
are exceptions in the case of some higher-order macroscopic traffic flow mod-
els [Zha03a]. Finally, Logghe refined this notion for heterogeneous traffic flows,
whereby now the anisotropy condition remains valid for each vehicle class separ-
ately (i.e., vehicles are not influenced by similar upstream vehicles) [Log03a].

3.2.1.6 Higher-order models

The development of higher-order macroscopic models came as a response to the ap-
parent shortcomings of the first-order LWR model. Harold Payne was among the first

14At approximately the same time, Chanut and Buisson constructed a first-order model that incorporates
vehicles with different lengths and free-flow speeds [Cha03]. Their model can be considered as a trimmed-
down version of Logghe’s multi-class formulation.
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in 1971 to develop such a higher-order model [Pay71]. In those days, ramp meter-
ing15 control strategies were basically an all-empirical occasion. Payne recognised
the necessity to include dynamic models in the control of on-ramps; the celebrated
LWR model however, was found to perform unsatisfactorily with respect to the mod-
elling of real-life traffic flows. One of these shortcomings, was the model’s inability
to generate stop-and-go waves. Zhang later traced this to be a consequence of the
model’s persistent reliance on a single equilibrium curve (i.e., the fundamental dia-
grams) [Zha03b]. In the LWR model, drivers are assumed to adapt their vehicle speed
instantaneously according to the fundamental diagram when crossing a shock wave, a
phenomenon termed the no-memory effect (i.e., they encounter infinite accelerations
and decelerations [Zha98]). One option that leads to a solution of the previously men-
tioned problems, is to introduce different fundamental diagrams for vehicles driving
under different traffic conditions; this avenue was explored by Newell [New63b] and
Zhang [Zha99] (see also Section 2.5.3 for a connection with the capacity drop and hys-
teresis phenomena). Another, more popular type of solution was proposed by Payne
(as well as by Whitham some years later [Whi74]): they suggested to add an equation
to the LWR conservation law (3.6) and its fundamental diagram16. This new dynamic
speed equation was derived from the classical car-following theories of Gazis et al.
[Gaz59] (see also Section 3.2.3.1 for more details). An important aspect is this deriv-
ation, is the fact that the car-following model includes a reaction time, resulting in a
momentum equation that relates the space-mean speed of a vehicle stream to its dens-
ity. As a result, vehicles no longer instantaneously change their speed when crossing
a shock wave. Payne’s second-order macroscopic traffic flow model is now described
by the following pair of PDEs, i.e., a conservation law and a momentum equation:

kt + (k vs)x = 0, (3.14)

dvs = vst + vsvsx︸︷︷︸
convection

=
vse(k)− vs

τ︸ ︷︷ ︸
relaxation

−
c2(k)

k
kx

︸ ︷︷ ︸
anticipation

, (3.15)

with vst and vsx denoting the partial derivatives of the space-mean speed with respect
to time and space, respectively, vse the traditional fundamental diagram, and τ the
reaction time. The function c(k) corresponds to the model-dependent sound speed
of traffic (i.e., the typical speed of a backward propagating kinematic shock wave);
examples of c(k) are [Zha03c]:

15Ramp metering is an ATMS whereby a traffic light is placed at an on-ramp, such that traffic enters
the highway from the on-ramp by drops. We refer the reader to the work of Bellemans [Bel03] and Hegyi
[Heg04] for an overview and some recent advancements.

16Note that Lighthill and Whitham originally proposed to extend the conservation law in their model with
relaxation and diffusion terms, but the idea did not receive much thought at the time [Lig55].
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−

√
−

1
2τ

dvse(k)

dk
(Payne) (3.16)

−

√
νW

τ
(Whitham) (3.17)

k
dvse(k)

dk
(Zhang) (3.18)

with νW being a parameter in equation (3.17).

In equation (3.15), the left hand side corresponds to the derivative of the speed, i.e.,
the acceleration of vehicles. As can be seen from the formulation, Payne identified
three different aspects for the momentum equation: a convection term describing how
the space-mean speed changes due to the arrival and departure of vehicles at the time-
space location (t, x), a relaxation term describing how vehicles adapt their speed to the
conditions dictated by the fundamental diagram, but with respect to a certain reaction
time (as opposed to the instantaneous adaption in the LWR model), and finally an
anticipation term describing how vehicles react to downstream traffic conditions.

In continuation of the above derivation, many other higher-order models have been
based on the Payne-Whitham (PW) second-order traffic flow model. An example is
the work of Phillips, who changed the reaction time τ in the relaxation term of equa-
tion (3.15) from a constant to a value that is dependent on the current density [Phi79].
Another example is due to Kühne, who artificially introduced a viscosity term into
equation (3.15), in order to smooth the shock waves [Küh84]. The physical role that
viscosity plays in a vehicular traffic stream is however not entirely understood: ac-
cording to Zhang, the viscosity reflects the resistance of drivers against sharp changes
in speeds [Zha03b]. For a rather complete overview of extensions to the PW model,
we refer the reader to the work of Helbing [Hel01b].

3.2.1.7 Critiques on higher-order models

Higher-order models have been successfully applied in various computer simulations
of traffic flows, e.g., the original FREFLO implementation by Payne [Pay78], the work
of Kwon and Machalopoulos who developed KRONOS which is an FDE solver for
a motorway corridor [Kwo95], the METANET model of Messmer and Papageorgiou
[Mes90], the Macroscopic Dynamic Assignment Model (MaDAM) which is a sim-
ilar Payne-type model and is used in the OmniTRANS software suite as mentioned
in Section 3.1.2.4 [Ver03a], . . . Despite their success, it was Daganzo who in 1995
published their final requiem, which stood out as an obituary for all higher-order mod-
els [Dag95d]. From a theoretical perspective, there were some serious physical flaws
that littered these second-order models. Most notably was the fact that there exist
two families of characteristics (called Mach lines) in the Payne-Whitham type mod-
els. On the one hand, there are characteristics that imply a diffusion-like behaviour,
which under certain circumstances can lead to negative speeds at the end of a queue,
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i.e., vehicles travelling backwards. On the other hand, there are characteristics that
have the property of travelling faster than the propagation of traffic flow. This latter
gas-like behaviour means that vehicles can get influenced by upstream conditions (be-
cause information is sent along the characteristics), which is a clear violation of the
anisotropy property for single-lane traffic as explained in the previous section. From
a physical point of view, the relaxation term in equation (3.15) may even introduce a
‘suction process’ because slower vehicles can get sucked along by leading faster ones
[Heg01].

Several years after these critiques, Papageorgiou responded directly to the comments
stated in Daganzo’s article [Pap98]. In his response, Papageorgiou put a lot of em-
phasis at the incapabilities of first-order traffic flow models for use in a traffic control
strategy (e.g., ramp metering). He very briefly reacts to the anisotropy violation, by
mentioning that in multi-lane traffic flows, the space-mean speeds of the different lanes
are not all the same, leading to characteristics that are allowed to travel faster than the
space-mean speed of all lanes combined. With respect to negative speeds (and hence,
negative flows), he proposes to simply include an a posteriori check that allows to set
the negative flows equal to zero. One year later, in 1999, Heidemann reconsidered
these higher-order models, but this time from the perspective of mathematical flaws.
His main argument was the fact that the models led to an internal inconsistency, be-
cause they ignored some aspects related to the conservation law [Hei99]. However,
after careful scrutiny, Zhang later refuted Heidemann’s claims: the inconsistencies that
plague the models are a result of the insistence on the universality of a conservation
law and the imposing of arbitrary solutions. As a consequence, the Payne-Whitham
type of models are mathematically consistent theories, although they may suffer from
the aforementioned physical quirks [Zha03c].

Note that the dynamic speed equation (3.15), can also be cast in another form that
is more closely related to a gas-kinetic analogy. With this in mind, we can rewrite
the momentum equation as follows [Hoo01]:

dvs = vst + vsvsx︸︷︷︸
transport

=
vse(k)− vs

τ︸ ︷︷ ︸
relaxation

−
Px

k︸︷︷︸
pressure

+
ν

k
vsxx

︸ ︷︷ ︸
viscosity

, (3.19)

with now P denoting the traffic pressure and ν the kinematic traffic viscosity (as
introduced by Kühne [Küh84]). The convection term has been relabelled a trans-
port term, describing the propagation of the speed profile with the speed of the
vehicles. The pressure term reflects the change in space-mean speed due to arriv-
ing vehicles having different speeds, and the viscosity term reflects changes due
to the ‘friction’ between different successive vehicles. The classical Payne model
is obtained if we set P = kc2(k) and ν = 0.

In contrast to Papageorgiou’s response which did not provide a definite answer, Aw
and Rascle carefully examined the reason why the PW model exhibited the strange
phenomena indicated in Daganzo’s requiem [Aw00]. The root cause of this behaviour
can be traced back to the spatial derivative Px of the pressure term in equation (3.19).
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Their solution suggests to abandon the transport and relaxation terms, and replace
the spatial derivative of the pressure P (which is a function of the density k) with a
convective (Lagrangian) derivative, i.e., D/Dt = ∂t + (vs · ∇) = ∂t + vs∂x, with
(vs · ∇) called the advective derivative term [Pri05]:

(vs + P (k))t + vs (vs + P (k))x = 0. (3.20)

This new formulation allows to remedy all Daganzo’s stated problems [Aw00]. Be-
cause of the somewhat limited character of their derivation of equation (3.20), Rascle
add a relaxation term to the equation’s right-hand side, and developed a numerically
stable discretisation scheme, as well as showing convergence to the classical LWR
model when the relaxation tends towards zero [Ras02].

To end our overview of higher-order models, we illustrate two other types. The first
model is actually a third-order model created by Helbing. It is based on the two
PDEs of the Payne-Whitham type models, but is extended with a third equation that
describes the change in the variance of the speed, denoted by Θ [Hel96]. Helbing
derived his equations using a gas-kinetic analogy, resulting in the following Navier-
Stokes-like equation (it is typically encountered in the pressure term for P ):

Θt + vsΘx =
2(Θe(k)−Θ)

τ︸ ︷︷ ︸
relaxation

+
2
k

vsx(ν vsx − P )
︸ ︷︷ ︸

pressure

+
ν

k
vsxx +

κ

k
Θxx

︸ ︷︷ ︸
viscosity

, (3.21)

with now the equilibrium relation vse(k,Θ) of equation (3.19) also depending on the
speed variance Θ. In addition to the viscosity ν, the dynamic speed variance equation
(3.21) also contains an equilibrium relation Θe(k, vs) for the variance of the speed, and
κ which is a kinetic coefficient that is related to the reaction time τ , the density k, and
the speed variance Θ. For ν = κ = 0, Helbing’s model reduces to an inviscid Euler
type model as explained in Section 3.2.1.1 [Kla96]. Whereas in the LWR model there
is only one family of characteristics, and in the PW model there are two families, the
Helbing model generates three different families of characteristics; this implies that
small perturbations in the traffic flow propagate both with the traffic flow itself, as
well as in upstream and downstream direction relative to this flow [Hoo01].

The second model we illustrate, is the non-equilibrium model of Zhang. Because of
the relaxation terms in the Payne-Whitham equations, drivers initially tend to ‘over-
shoot’ the equilibrium speed as dictated by the vse(k) fundamental diagram. It takes
a certain amount of time for them to adapt to their speed to the new traffic conditions
(i.e., a change in density is accompanied by a smooth change in space-mean speed),
after which they converge on the diagram. This latter aspect gives rise to the empir-
ically observed scatter in the (k,q) phase space, leading Zhang to the terminology of
‘non-equilibrium models’ because of the deviation from the one-dimensional equilib-
rium fundamental diagram [Zha98].

In his model, Zhang considers equilibrium traffic to be a state in which dvs/dt =
∂k/∂x = 0. In similar spirit of Payne’s theory, Zhang constructs his model using
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an equilibrium relation between density and space-mean speed (i.e., the fundamental
diagram), a reaction time that allows relaxation, and an anticipation term that adjusts
the space-mean speed to downstream traffic conditions. This results in a macroscopic
model that contains equation (3.14) as the conservation law, as well as the following
momentum equation:

dvs = vst + vsvsx =
vse(k)− vs

τ
− k

(
dvse(k)

dk

)2

kx, (3.22)

with the last anticipation term showing the dependence on the spatial change of the
density. Zhang also complements the theory with a finite difference scheme that allows
to solve the equations in a numerically stable fashion, based on an extension of the
Godunov scheme that satisfies the entropy condition referred to in Section 3.2.1.3
[Zha01a].

Just as with the improved PW model of Aw and Rascle, this model alleviates Daganzo’s
stated problem of wrong-way travel, even though there are also two families of charac-
teristics, travelling slower, respectively faster, than the space-mean speed of traffic. An
important fact here is that for the slower characteristics, the associated shock waves
and fans correspond perfectly to those of the first-order LWR model. However, the
shock waves and fans associated with the faster family of characteristics can still vi-
olate the anisotropy property of traffic (although they decay exponentially), but in the
end, Zhang questions its universal validity, stating that traffic might occasionally vi-
olate this principle due to the heterogeneity of a traffic stream [Zha00; Zha03a]. The
violation of anisotropy, i.e., drivers get influenced by upstream traffic, is sometimes re-
ferred to as gas-like behaviour, because in contrast to fluid-dynamics, gas particles are
not anisotropic. In an attempt to remove this faulty behaviour, Zhang developed yet
another non-equilibrium model that removed the gas-like behaviour, thereby respect-
ing the anisotropy property. Moreover, both families of characteristics in his model
satisfy the condition of travelling at a lower speed than the space-mean speed of the
traffic stream, but still keeping the one-to-one correspondence between the slower
characteristics and those of the first-order LWR model. At present, it is however un-
clear if this new model can generate stop-and-go waves, although there are indications
that it can because of the non-equilibrium transitions that can occur [Zha02].
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Despite the significant progress that has been made on the front of higher-order
macroscopic traffic flow models, the Berkeley school firmly holds its faith
in first-order models and their extensions. Its main reason is because of the
numerical solution schemes that are well developed and understood. This is
not the case for higher-order models, as these contain other characteristics that
complicate the finite difference schemes (because information is now carried
both up- and downstream, and because their numerical schemes initially were
flawed [Zha01a; Lav04]). Related to this critique, is the fact that in contrast to the
first-order model, no analytical solutions exist for the higher-order models. Also
note that a couple of years ago, Lebacque and Lesort provided a nice discussion
of the then-existing macroscopic models [Leb99].

Another reason for sticking with first-order models, is because the school be-
lieves that first-order characteristics are sufficient for the description of traffic
flows [Cas01; Win01]. Using a triangular qe(k) fundamental diagram that cap-
tures the most important traffic flow characteristics (i.e., the free-flow speed vff,
the capacity qcap, the jam density kj, and the backward kinematic wave speed w),
results in a further elegance of the models.

3.2.2 Mesoscopic traffic flow models

The previous section dealt with macroscopic models that described traffic streams at
an aggregated level, derived from a fluid-dynamic analogy. This section describes
how traffic can be modelled at this aggregate level, but with special consideration for
microscopic characteristics (e.g., driver behaviour). Because of the ambiguity that
surrounds mesoscopic models, we first elucidate what is meant by the term meso-
scopic (i.e., it is something between a macroscopic and a microscopic approach). In
the sections thereafter, we zoom in on a derivation of mesoscopic models based on a
gas-kinetic analogy. For an outstanding overview of gas-kinetic models, we refer the
reader to the work of Tampère [Tam04a].

3.2.2.1 The different meanings of ‘mesoscopic’

Considering the amount of literature that has been generated during the last few dec-
ades, it seems to us that there exists no unanimous consensus as to what exactly con-
stitutes mesoscopic traffic flow models. In general, there are three popular approaches
when it comes to mesoscopic models [Hoo01]:

• Cluster models

When considering vehicles driving on a road, a popular method is to group
nearby vehicles together with respect to one of their traffic flow characteristics,
e.g., their space-mean speed. Instead of having to perform detailed updates
of all vehicles’ speeds and positions, the cluster approach allows to treat these
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vehicles as a set of groups (called clusters, cells, packets, or macroparticles);
these groups are then propagated downstream without the need for explicit lane-
changing manoeuvres (leading to the coalescing and splitting of colliding and
separating groups).

Examples of this kind of models, are the CONtinuous TRaffic Assignment Model
(CONTRAM) of Leonard et al. [Leo89; Tay03], the work of Ben-Akiva et
al., called Dynamic network assignment for the Management of Information
to Travellers (DynaMIT), which is based on a cell transmission model with a
cell of a link containing a set of vehicles with identical speeds [BA96; BA98;
Sun02], the Mesoscopic Traffic Simulator (MesoTS) of Yang, which allows fast
predictions of future traffic states [Yan97], . . .

• Headway distribution models

This rather unknown and somewhat outdated class of models, places the em-
phasis on the probability distributions of time headways of successive vehicles
(this aggregation makes them mesoscopic). Two popular examples are Buckley’s
semi-Poisson model [Buc68], and Branston’s generalised queueing model [Bra76].
As clarified in the summary of Hoogendoorn and Bovy, the original versions of
these headway distribution models assume homogeneous traffic flows and they
are inadequate at describing the proper dynamics of traffic flows [Hoo01].

• Gas-kinetic models

The third and most important characterisation of mesoscopic models comes
from a gas-kinetic analogy. Because macroscopic models aim towards obey-
ing the fundamental diagram (either instantaneously as in the first-order LWR
model or through a relaxation process as in higher-order models), the focus there
lies on the generation and dissipation of shock and rarefaction waves. As a con-
sequence, more complex and non-linear dynamics such as the different traffic
regimes, encountered in Sections 2.5.1 and 2.5.4, can not be reproduced. To
remedy this, gas-kinetic models implicitly bridge the gap between microscopic
driver behaviour and the aggregated macroscopic modelling approach.

In the next sections, we will first give an overview of the original gas-kinetic model
as derived by Prigogine and Herman, after which we discuss some of the recent suc-
cessful modifications that allow for heterogeneity in the traffic stream (i.e., multi-class
modelling), as well as the inclusion of more specific driver behavioural characteristics.

3.2.2.2 Mesoscopic models considered from a gas-kinetic perspective

As opposed to the macroscopic traffic flows models that are derived from a conser-
vation equation based on the Navier-Stokes equations, mesoscopic models can be de-
rived from a gas-kinetic analogy. From individual driving behaviour (termed a micro-
scopic approach), a macroscopic model is derived. The earliest model can be traced
back to the work of the late Nobel laureate Ilya Prigogine, in cooperation with Frank
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Andrews and Robert Herman [Pri60; Pri71]. A central component in their theory, is
the concept of a phase-space density (PSD):

k̃(t, x, vs) = k(t, x) P (t, x, vs), (3.23)

in which P (t, x, vs) denotes the distribution of the vehicles with space-mean speed vs

at location x and time t; the concept of this distribution originated in Boltzmann’s the-
ory of gas dynamics. For the above density function, a kinetic conservation equation
can be derived, looking as follows [Hel01b]:

dk̃

dt
= k̃t + vs k̃x =

(
k̃t

)

acc
+
(
k̃t

)

int
, (3.24)

with now the two terms on the right hand side denoting the accelerations of and in-
teractions between the vehicles; they are also called gains and losses, relaxation and
slowing down, or continuous and discrete terms, respectively [Kla96; Tam04a]. Equa-
tion (3.24) is called the Prigogine-Herman kinetic model and it actually describes
three processes:

1. Similar to the macroscopic conservation equation, the term vs k̃x describes a
convective behaviour: arriving and departing vehicles cause a change in the
distribution k̃ of vehicle speeds.

2. The first term on the equation’s right hand side,
(
k̃t

)

acc
, describes the accel-

eration behaviour of vehicles, which is assumed to be a density-dependent re-
laxation process of the speed distribution P of equation (3.23) towards some
pre-specified target speed distribution P0 (typically based on an equilibrium
speed).

3. The second term on the equation’s right hand side,
(
k̃t

)

int
, describes the inter-

actions between vehicles, as fast vehicles either must slow down or overtake
slower ones (hence implying inherently multi-lane traffic). The decision on
when to either slow down or to overtake (which is assumed to be a discrete
event), is governed by the probabilities (1 − π) and π, respectively. The in-
teraction term is called a collision equation, in analogy with the physics of the
Boltzmann equation (where the collision term describes the scattering of the
gas molecules). Because there occur joint distributions in this latter equation
(i.e., the probability of a faster vehicle encountering a slower one), a common
assumption called vehicular chaos is used, which states that vehicles’ speeds
are uncorrelated, hence allowing to split the joint distribution.

More than a decade later, Paveri-Fontana criticised the assumption of vehicular chaos
in the interaction term [Pav75]. He subsequently proposed an improved gas-kinetic
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model, in which he extended the phase-space density of equation (3.23) with a de-
pendence on the desired speed vdes, i.e., k̃(t, x, vs, vdes); in Prigogine’s original de-
rivation, this desired speed was incorrectly considered to be a property of the road,
instead of being a driver-related property [Hel01b].

An interesting property of the gas-kinetic modelling approach instigated by the
seminal work of Prigogine, is that for densities beyond a certain critical dens-
ity, Nelson and Sopasakis found that the model solutions split into two distinct
families. The current hypothesis surrounding this phenomenon states that this
corresponds to the widely observed data scatter in the empirically obtained (k,q)
fundamental diagrams [Nel98].

3.2.2.3 Improvements to the mesoscopic modelling approach

Significant contributions to the gas-kinetic mesoscopic model have been sporadic;
after the work of Paveri-Fontana, Nelson was among the first to tackle the computa-
tional complexity associated with the four-dimensional phase-space density k̃(t, x, vs,
vdes) [Nel95]. In his derivation, he reformulated the relaxation and interaction terms
both as discrete events, based on a bimodal distribution of the vehicles’ speeds (i.e.,
corresponding to stopped and moving vehicles). In contrast to the classical model
which uses a relaxation process in the acceleration term, Nelson furthermore based
his derivation on a microscopic behavioural model [Hel01b; Hoo01; Tam04a].

Building on the work of Nelson (which is, as he describes, just a first initial step
towards constructing a suitable kinetic model), Wegener and Klar derived a kinetic
model in similar spirit, based on a microscopic description of individual driver beha-
viour with respect to accelerations and lane changes. Attractive to their work, is the
fact that they also pay attention to the numerical solutions of their model, with respect
to the description of homogeneous traffic flows [Weg96].

Noting that the correct reproducing of traffic flow behaviour at moderate to higher
densities still troubled the existing mesoscopic models, Helbing et al. explored an
interesting avenue. Not only did they capture the effect that vehicles require a cer-
tain finite space (leading to an Enskog- instead of a Boltzmann-equation), they also
generalised the interaction term of equation (3.24). This last method allowed them to
dismiss the traditional assumption of vehicular chaos, i.e., they were now able to treat
correlations between vehicles’ speeds (which have a substantial influence at higher
densities). The trick to obtain this behaviour, was to assume that drivers react to the
downstream traffic conditions. This leads to the inclusion of non-local interaction
(braking) term, and hence their model is referred to as the non-local gas-kinetic traffic
flow model [Hel98a; Hel02a]. Interestingly, this non-locality can generate effects that
are similar to the ones induced by viscosity/diffusion terms in macroscopic traffic
flows models, causing smooth behaviour at density jumps [Hel01b]. The power of
their model is also demonstrated as it is able to reproduce all traffic regimes listed in
Sections 2.5.4 and 2.5.5.
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Central to some of the recently proposed models, is the step process that trans-
forms one model class into another. Starting from microscopic driver behavioural
principles (e.g., accelerating, braking, . . . ), a mesoscopic model is deduced. This
mesoscopic model can then be translated into an equivalent macroscopic one by
applying the method of moments. This allows to obtain PDEs that describe the
dynamic evolution of the density k, space-mean speed vs, and its variance Θ (an
exception to this methodology is the previously mentioned model of Wegener and
Klar that obtains dynamic solutions directly [Weg96]). As an example, Helbing
et al. also devised a numerical scheme for their previously discussed model. It
was implemented in a simulation package called MASTER [Hel01a].

Important progress was made by the work of Hoogendoorn et al., who extended the
gas-kinetic traffic flow models with multiple user classes, in the sense that different
classes of drivers have different desired speeds. In order to achieve this, they replaced
the traditional phase-space density with a multi-class phase-space density (MUC-
PSD). The kinetic conservation equation thus describes the tempo-spatial evolution
of this MUC-PSD (i.e., the interactions between different user classes), after which
an equivalent system of macroscopic model equations is derived. The generalisation
power of their model is exemplified as the previously mentioned model of Helbing
et al., which is just a special case, having only one class [Hoo99; Hoo00]. The de-
veloped multiclass gas-kinetic model is currently being integrated in a macroscopic
simulation model for complete road networks, called HELENA, which allows predic-
tion of future traffic states, and hence to assess the effectiveness of policy measures
[Hoo02b; Hoo02a].

Recently, Waldeer derived a kinetic model that is based on the description of a driver’s
acceleration behaviour (as opposed to his observed speed behaviour). This novel
approach attempts to alleviate the unrealistic jumps in speeds that are typically en-
countered in kinetic models. To this end, Waldeer extends the phase-space density
even further, including a vehicle’s acceleration in addition to its position, speed, and
desired speed (leading to an even more complex system). Because now the acceler-
ation is updated discretely, the speed will change continuously as a result [Wal04b].
Furthermore, Waldeer provided a numerical scheme for solving his model, by employ-
ing a Monte Carlo technique that is frequently used in non-equilibrium gas-kinetic
theory [Wal04a].

To end this overview of gas-kinetic models, we mention the important work of Tampère,
who significantly extended the previous modelling approaches [Tam04a; Tam04b]. In
his work, he used the generalised phase-space density (as derived by Hoogendoorn
[Hoo99]), which incorporates a dependency on the traffic state S (e.g., encompassing
vehicles’ speeds and their desired speeds). As it is an increasingly recognised fact that
a complete traffic flow model should contain elements which describe the human beha-
viour (see for example the comments made by Daganzo [Dag02a; Dag02b]), Tampère
proposes to include a driver’s activation level. His human-kinetic model (HKM) is,
just like that of Helbing et al. and Hoogendoorn, able to reproduce all known traffic
regimes listed in Sections 2.5.4 and 2.5.5. Because of the dependency of the PSD on a
behavioural parameter (i.e., the activation level that describes a driver’s awareness of
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the governing traffic conditions), the model is well-suited to evaluate the applicability
of advanced driver assistance systems (ADAS). As another illustrating example, the
phenomenon of a capacity funnel (see Section 2.5.5 for a description) can be realist-
ically explained and reproduced [Tam03]. However, despite the progress related to
incorporating human behaviour into mathematical models for traffic flows, Tampère
argues that most of the work can currently not be validated because there is no appro-
priate data yet available.

3.2.3 Microscopic traffic flow models

Having discussed both mesoscopic and macroscopic traffic flows models, we now
arrive at the other end of the spectrum where the microscopic models reside. Whereas
the former describe traffic operations on an aggregate scale, the latter kind is based
on the explicit consideration of the interactions between individual vehicles within a
traffic stream. The models typically employ characteristics such as vehicle lengths,
speeds, accelerations, and time and space headways, vehicle and engine capabilities,
as explained in Section 2.2, as well as some rudimentary human characteristics that
describe the driving behaviour.

The material in this section is organised as follows: we first introduce the classical car-
following (and lane-changing) models as well as some of their modern successors,
after which we discuss the optimal velocity model, then introduce the more human
behaviourally psycho-physiological spacing models, which are subsequently followed
by a brief description of traffic cellular automata models (this latter family of models
will be elaborated upon in Chapter 4). After some words on models based on queueing
theory, the section concludes with a concise overview of some of the (commercially)
available microscopic traffic flow simulators, as well as some of the issues that are
related to the calibration and validation of microscopic traffic flow models.

More detailed information with respect to microscopic models (more specifically, car-
following models), can be found in the book of May [May90], the overview of Rothery
[Gar97], the work of Ahmed [Ahm99], and the overview of Brackstone and McDonald
[Bra00].

3.2.3.1 Classical car-following and lane-changing models

Probably the most widely known class of microscopic traffic flow models is the so-
called family of car-following or follow-the-leader models. One of the oldest ‘models’
in this case, is the one due to Reuschel [Reu50], Pipes [Pip53], and Forbes et al.
[For58]. It is probably best known as the “two-second rule” taught in driving schools
everywhere17 . An earlier example of this line of reasoning is the work of Herrey and
Herrey, who specified a safe driving distance that also included the distance needed to
come to a full stop [Her45].

17Note that, in his article, Pipes actually stated his safe-distance rule as keeping at least a space gap equal
to a vehicle length for every 15 km/h of speed you are travelling at [Pip53; Hoo01].
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It still remains astonishing that the seemingly daunting and complex task that encom-
passes driving a vehicle, can be executed with such relative ease and little exercise,
as is testified by the many millions of kilometres that are driven each year. In spite
of this remark, the first mathematical car-following models that have been developed,
were based on a description of the interaction between two neighbouring vehicles in a
traffic stream, i.e., a follower and its leader. In this section, we historically sketch the
development of car-following theories, as they evolved from conclusions about early
experiments into more sophisticated models.

The above mentioned model was originally formulated as the following ordinary dif-
ferential equation (ODE) for single-lane traffic:

dvi(t)

dt
=

vi+1(t)− vi(t)

Tr
, (3.25)

with vi(t) and vi+1(t) the speeds of the following, respectively leading, vehicle at
time t, and Tr a relaxation parameter. For the above case, the underlying assump-
tion/justification is that vehicle i (the follower) tries to achieve the speed vi+1(t) of
vehicle i + 1 (its leader), whilst taking a certain relaxation time Tr into account.

As equation (3.25) describes a stable system, Chandler et al. were among the first to
include an explicit reaction time τ into the model (e.g., τ =1.5 s), leading to destabil-
isation of vehicle platoons [Cha58]. This reaction encompasses both a perception-
reaction time (PRT), i.e., the driver sees an event occurring (for example the brake
lights of the leading vehicle), as well as a movement time (MT), i.e., the driver needs
to take action by applying pressure to the vehicle’s brake pedal [Gar97]. Introducing
this behaviour, resulted in what is called a stimulus-response model, whereby the right-
hand side of equation (3.25) describes the stimulus and the left-hand side the response
(the response is frequently identified as the acceleration, i.e., the actions a driver takes
by pushing the acceleration or brake pedal). The relaxation parameter is then recip-
rocally reformulated as the sensitivity to the stimulus, i.e., λ = T−1

r , resulting in the
following expression:

response = sensitivity× stimulus

dvi(t + τ)

dt
= λ (vi+1(t)− vi(t)). (3.26)

Additional to this theoretical work, there were also some early controlled car-following
experiments, e.g., the ones done by Kometani and Sasaki, who add a non-zero acceler-
ation term to the right-hand side of the stimulus-response relation, in order to describe
collision-free driving based on a safety distance [Kom58; Kom61].

Equation (3.26) is called a delayed differential equation (DDE), which, in this case,
is known to behave in an unstable manner, even resulting in collisions under certain
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initial conditions. Gazis et al. remedied this situation by making the stimulus λ de-
pendent on the distance, i.e., the space gap gsi

between both vehicles [Gaz59]:

dvi(t + τ)

dt
= λ

vi+1(t)− vi(t)

xi+1(t)− xi(t)
. (3.27)

Further advancements to this car-following model were made by Edie, who introduced
the current speed of the following vehicle [Edi61]. Gazis et al, forming the club of
people working at General Motors’ research laboratories, generalised the above set of
models into what is called the General Motors non-linear model or the Gazis-Herman-
Rothery (GHR) model [Gaz61]:

dvi(t + τ)

dt
= λ vm

i (t)
vi+1(t)− vi(t)

(xi+1(t)− xi(t))l
, (3.28)

with now λ, l, and m model parameters (in the early days, the model was also called
the L&M model [Gaz02]). For a good overview of the different combinations of para-
meters attributed to the resulting models, we refer the reader to the book of May
[May90], and the work of Ahmed [Ahm99].

A recent extension to the classical car-following theory, is the work of Treiber and
Helbing, who developed the intelligent driver model (IDM). Its governing equation is
the following [Tre99; Tre00; Tre01]:

dvi

dt
= amax


1−

(
vi

vdes

)δ

︸ ︷︷ ︸
acceleration

−

(
g∗s (vi,∆vi)

gsi

)2

︸ ︷︷ ︸
deceleration


 , (3.29)

with amax the maximum acceleration, vdes the vehicles’ desired speed, and ∆vi the
speed difference with the leading vehicle (we have dropped the dependencies on time
t for the sake of visual clarity). The first terms within the brackets denote the tendency
of a vehicle to accelerate on a free road, whereas the last term is used to allow braking
in order to avoid a collision (the effective desired space gap g∗s (vi,∆vi) is based on the
vehicle’s speed, its relative speed with respect to its leader, a comfortable maximum
deceleration, a desired time headway, and a jam space gap). The finer qualities of
the IDM are that it elegantly generalises most existing car-following models, and that
it has an explicit link with the non-local gas-kinetic mesoscopic model discussed in
Section 3.2.2.3 [Tre00]. It is furthermore quite capable of generating all known traffic
regimes, encountered in Sections 2.5.1 and 2.5.4 [Tre03]. Based on the IDM, Treiber
et al. also constructed the human driver model (HDM), which includes a finite reaction
time, estimation errors, temporal and spatial anticipation, and adaptation to the global
traffic situation [Tre05a].

Similar to the work of Kometani and Sasaki, Gipps proposed a car-following model
based on a safe braking distance, leading to collision-free dynamics [Gip81]. The
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model is interesting because no differential equations are involved (i.e., the speeds
are computed directly from one discrete time step to another), and because it can
capture underestimation and overreactions of drivers, which can lead to traffic flow
instabilities. In similar spirit of Gipps’ work, Krauß developed a model that is based
on assumptions about general properties of traffic flows, as well as typical acceleration
and deceleration capabilities of vehicles. Fundamental to his approach, is that all
vehicles strive for collision-free driving, resulting in a model that has the ability to
generalise most known car-following models [Kra97a; Kra98].

Another example of a recently proposed car-following model, is the ‘simple’ model of
Newell, who formulates his theory in terms of vehicle trajectories whereby the traject-
ory of a following vehicle is essentially the same as that of its leader18. Remarkable
properties are that the model has no driver reaction time, and that it corresponds to the
first-order macroscopic LWR traffic flow model with a triangular qe(k) fundamental
diagram (see Section 3.2.1.3) [New02b]. The model furthermore also agrees quite
well with empirical observations made at a signallised intersection, which support the
model and consequently also the first-order macroscopic LWR model [Ahn04].

As a final example, we briefly illustrate Zhang’s car-following theory which is based
on a multi-phase vehicular traffic flow. This means that the model is able to reproduce
both the capacity drop and hysteresis phenomena (see Section 2.5.3), because his the-
ory is based on the asymmetry between acceleration and deceleration characteristics
of vehicles. The model also holds a generalisation strength, as it is possible to derive
all other classical car-following models [Zha05].

With respect to the stability of the car-following models, there exist two criteria, i.e.,
local and asymptotic stability (also called string stability). The former describes how
initial disturbances in the behaviour of a leading vehicle affect a following vehicle,
whereas the latter is used to denote the stability of a platoon of following vehicles.
By such a stable platoon it is then meant that initial finite disturbances exponentially
die out along the platoon. Early experiments by Herman et al. already considered
these criteria for both real-life as for the developed mathematical car-following models
[Her59].

As an example, we graphically illustrate in Figure 3.8 the asymptotic stability of a
platoon of some 10 identical vehicles. We have used the simple car-following model
of Gazis et al. of equation (3.27) to describe how a following vehicle changes his
acceleration, based on the speed difference and space gap with its direct leader in the
platoon (the sensitivity λ was set to 5000 m/s2 with a reaction time τ = 1 s). The left
part of the figure shows all the vehicles’ positions, whereas the middle and right parts
show the speeds and accelerations of the 2nd , the 5th , and the 10th vehicle respect-
ively. We can see that all vehicles are initially at rest (homogeneously spaced), after
which the leading vehicle applies an acceleration of 1 m/s2, decelerates with -1 m/s2,
and then comes to a full stop. As can be seen, the first 4 following vehicles mimic
the leader’s behaviour rather well, but from the 5th following vehicle on, an instability
starts to form (note that all following vehicles suffer from oscillations in their accel-

18A similar model was proposed earlier by Helly [Hel61; Ger64; New02b].
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eration behaviour). This instability grows and leads to very large accelerations for the
last vehicle, which even momentarily reaches a negative speed of some -150 km/h;
this is clearly unrealistic (the vehicles shouldn’t be driving backwards on the road),
indicating that the specified car-following model is unsuitable to capture the realistic
behaviour of drivers under these circumstances.
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Figure 3.8: An example based on Gazis et al.’s car-following model of equation (3.27), in-
dicating an asymptotically unstable platoon of 10 vehicles. Left: the time-space trajectories of
all ten vehicles (the leading vehicle is shown with a thick solid line). We can see an instability
occurring at the 6th (?) vehicle, growing severely such that the last vehicle even has to drive
backwards at a high speed of -150 km/h. Middle: the speeds of the first, the 2nd (◦), the 6th (?),
and the last vehicle (×). Note the oscillations and negative values for the speeds of the vehicles
at the end of the platoon. Right: the accelerations of the first, the 2nd (◦), and the 6th (?) vehicle
(example based on [Imm98b]).

In continuation of this small excerpt on stability, we refer the reader to the work of
Zhang and Jarrett who analytically and numerically derive the general stability condi-
tions (in function of the reaction time and the sensitivity to the stimulus) for the pre-
viously mentioned classical car-following models [Zha97], the work of Holland who
derives general stability conditions and validates them with empirical data containing
non-identical drivers (i.e., aggressive and timid ones); central to Holland’s work is
the source for instability with respect to a breakdown of a traffic flow. He relates this
event to a so-called anticipation time that describes the duration for a wave containing
an instability to travel to the current driver [Hol98]. Finally, we mention that stability
analysis is of paramount importance for, e.g., automated vehicle technologies (‘smart
cars’) such as intelligent or adaptive cruise control (ICC/ACC), as in for example the
platooning experiments in the PATH project where a platoon of vehicles autonomously
drives close to each other at high speeds.

To conclude this section, we shed some light on the typical mechanisms behind lane-
changing models. With respect to microscopic models for multi-lane traffic, it is a
frequent approximation to only take lateral movements between neighbouring lanes
into account (as opposed to the within-lane lateral dynamics of a vehicle). In such
cases, a vehicle changes a lane based on an incentive: these lane changes can then
be classified as being discretionary (e.g., to overtake a slower vehicle), or mandatory
(e.g., to take an off-ramp). When a vehicle (i.e., driver) has decided to perform a
lane change, a check is made on whether or not it is physically possible to merge in
to the adjacent lane (note this lane changing process also describes vehicles turning
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at street intersections). This latter process is called the gap acceptance behaviour: if
there is no such possibility (as it is frequently the case in dense traffic), a driver may
initiate at forced merging, in which case the following vehicle in the target lane might
have to yield. This interaction between forced merging and yielding can be frequently
observed at on-ramps where heavy duty vehicles enter the motorway. Although it
seems intuitive that there is an asymmetry between the frontal and backward space
gaps in the target lane (i.e., the former is usually smaller than the latter due to the hu-
man behaviour associated with forced merging and yielding), there is in our opinion
nevertheless not enough empirical data available to calibrate the microscopic models
that describe lane-changing (see for example the work of Ahmed [Ahm99]). One way
to obtain a correct behaviour is to use a kind of a black box approach, in which for
example the downstream capacity of a motorway section is used as a measure for cal-
ibrating the interactions (i.e., lane changes) between vehicles in a traffic stream. Note
that as technology advances, new detailed data sets are constructed. An example is the
work of Hoogendoorn et al. who use a remote sensing technique to capture vehicle
trajectories based on aerial filming of driving behaviour under congested conditions
[Hoo03].

3.2.3.2 Optimal velocity models

Closely related to the previously discussed classical car-following models, are the
so-called optimal velocity models (OVM) of Newell and Bando et al. Whereas the
previous car-following models mostly describe the behaviour of a vehicle that is fol-
lowing a leader, the OVMs modify the acceleration mechanism, such that a vehicle’s
desired speed is selected on the basis of its space headway, instead of only consider-
ing the speed of the leading vehicle [Hel01b]. Newell was the first to suggest such an
approach, using an equilibrium relation for the desired speed as a function of its space
headway (e.g., the vs(hs) fundamental diagram of Section 2.5.2.2) [New63a].

Bando et al. later improved this model, resulting in the following equation that de-
scribes a vehicle’s acceleration behaviour [Ban95]:

dvi(t)

dt
= α (V (hsi

(t))− vi(t)) , (3.30)

in which V () is called the optimal velocity function (OVF). The difference between
this desired speed, associated with the driver’s current space headway, and the vehicle’s
current speed, is corrected with an acceleration αV (), with now α a coefficient ex-
pressing the sensitivity of a driver. This sensitivity corresponds to the inverse of the
relaxation time, which is the time needed to reach the speed dictated by the OVF. Spe-
cification of the optimal velocity function (typically a sigmoid function such as tanh)
is done such that it is zero for hsi

→ 0, and bounded to vmax for hsi
→ +∞; this latter

condition means that the model is able to describe the acceleration of vehicles without
the explicit need for a leader as in the previous car-following models.
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Interestingly, the OVM requires, in contrast to the classical car-following models, no
need for a reaction time in order to obtain spontaneous clustering of vehicles [Kra98].
Unfortunately, the model is not always free of collisions, and can result in unrealistic-
ally large accelerations [Nag03a].

3.2.3.3 Psycho-physiological spacing models

Instead of using continuous changes in space gaps and relative speeds, it was already
recognised in the early sixties that drivers respond to certain perception thresholds
[Bra00]. For example, a leading vehicle that is looming in front of a follower, will
be perceived as having approximately the same small size for a large duration, but
once the space gap has shrunk to a certain size, the size of the looming vehicle will
suddenly seem a lot bigger (i.e., like crossing a threshold), inducing the following
vehicle to either slow down or overtake.

The underlying thresholds with respect to speeds, speed differences, and space gaps,
were cast into a model by the work of Wiedemann et al. [Wie74]. In this respect,
the models are called psycho-physiological spacing models, and although they seem
quite successful in explaining the traffic dynamics from a behavioural point of view
(even lane-change dynamics can be included based on suitable perception thresholds),
calibration of the models has nevertheless been a difficult issue [Bra00].

3.2.3.4 Traffic cellular automata models

In the field of traffic flow modelling, microscopic traffic simulation has always been re-
garded as a time consuming, complex process involving detailed models that describe
the behaviour of individual vehicles. Approximately a decade ago, however, new mi-
croscopic models were being developed, based on the cellular automata programming
paradigm from statistical physics. The main advantage was an efficient and fast per-
formance when used in computer simulations, due to their rather low accuracy on a
microscopic scale. These so-called traffic cellular automata (TCA) are dynamical sys-
tems that are discrete in nature, in the sense that time advances with discrete steps and
space is coarse-grained (e.g., the road is discretised into cells of 7.5 metres wide, each
cell being empty or containing a vehicle). This coarse-graininess is fundamentally
different from the usual microscopic models, which adopt a semi-continuous space,
formed by the usage of IEEE floating-point numbers. TCA models are very flexible
and powerful, in that they are also able to capture all previously mentioned basic phe-
nomena that occur in traffic flows [Bar99; Cho00; Mah05]. In a larger setting, these
models describe self-driven, many-particle systems, operating far from equilibrium.
And in contrast to strictly gaseous analogies, the particles in these systems are intelli-
gent and able to learn from past experience, thereby opening the door to the incorpor-
ation of behavioural and psychological aspects [Cho99a; Wol99; Hel01b; Mah05].

The cellular automata approach proved to be quite useful, not only in the field of
vehicular traffic flow modelling, but also in other fields such as pedestrian behaviour,
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escape and panic dynamics, the spreading of forest fires, population growth and mi-
grations, cloud formation, material properties (corrosion, cracks, creases, peeling et
cetera), ant colonies and pheromone trails, . . . [Hel99c; Kar97; Nag92a; Gob01;
Nis03a; Cho05]. It is now feasible to simulate large systems containing many ‘in-
telligent particles’, such that is it possible to observe their interactions, collective be-
haviour, self-organisation, . . . [Imm98a; Zuy99; Hel99c; Hel01b; Hel04; Nag02a;
Nag02b; Cho04]

Because the subsequent parts in the remainder of this dissertation are mainly focussed
on the use of cellular automata models for traffic flows, we refer the reader to Chapter
4 for a more complete overview of the existing TCA models.

3.2.3.5 Models based on queueing theory

In this final section dealing with types of microscopic traffic flow models, we briefly
summarise some of the models that are based on the paradigm of queueing theory.
Early applications of queueing theory to the field of transportation engineering are
mostly related to descriptions of the behaviour signallised and unsignallised intersec-
tions, overtaking on two-lane roads with opposing traffic, . . . [Cle64]. Later, Vickrey
introduced the bottleneck model which actually is a point-queue model, as explained
in Sections 3.1.2.5 and 3.1.4.2 [Vic69]. Another more theoretically oriented applic-
ation can be traced back to the work of Newell, who gives a nice summary of the
mathematical details related to the practical application of the methodology. Newell
was one of the few people who directly questioned the usefulness of cleverly devis-
ing a lot of methods and solutions, whereby corresponding problems remained absent
[New82]. In his later work, Newell reintroduced the concept of arrival and depar-
ture functions (i.e., the cumulative curves as described in Section 2.3.2.2), giving an
analytical but still highly intuitive method for solving traffic flow problems, and draw-
ing parallels with the well-known and studied first-order macroscopic LWR model,
thereby linking both model classes [New93a; New93b; New93c].

During the mid-nineties, Heidemann developed several queueing-based traffic flow
models, of which the most powerful version deals with non-stationary conditions and
is able to model the capacity drop and hysteresis phenomena, as well as providing an
explanation for the wide scatter observed in empirical fundamental diagrams [Hei01].

Central to the approach in this field, is the partitioning of a road into equal pieces of
width 1/kjam. Each of these pieces is then considered as a service station operating
with a service rate µ = kjam · vff. Equivalently, vehicles arrive at each service station
with an arrival rate λ = k · vff, with the assumption that k is the prevailing density
and that traffic can flow unimpeded in the free-flow traffic regime. When vehicles
enter the motorway, they can get stuck inside the queues, thereby reducing the space-
mean speed in the system. Different queueing policies can be specified in the form of
service and arrival distributions. In queueing theory, the Kendall notation is adopted,
whereby a system is described as A/S/m with A the arrival distribution, S the service
distribution, and m the number of servers (i.e., service stations). Typical forms are
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the M/M/1 queues that have an exponentially distributed arrival time, exponentially
distributed service time, and one server (with an infinite buffer).

Recently, Van Woensel extended the existing queueing models for traffic flows, lead-
ing to, e.g., analytical derivations of fundamental diagrams based on G/G/m queues
that have general distributions for the arrival and service rates with multiple servers
[Woe03]. The methodology also includes queues with finite buffers, and has been
applied to the estimation of emissions, although we question the validity of this latter
approach (which is essentially based on a one-dimensional fundamental diagram) as
we believe dynamic models are necessary, e.g., to capture transients in traffic flows
[Van00].

Queue-based models were also used to describe large-scale traffic systems, e.g., com-
plete countries, as was mentioned in Section 3.1.2.5 [Cet03]. In that section, we
already mentioned that queues with finite buffer capacities are to be preferred in order
to correctly model queue spill back. However, with respect to a proper description of
traffic flow phenomena, some of the problems can not be so easily solved, e.g., the
speed of a backward propagating kinematic shock wave. Take for example vehicles
queued behind each other at a traffic light: once the light turns green, the first-order
macroscopic LWR model correctly shows the dispersal of this queue. In a queue-based
model however, once a vehicle exits the front of the queue, all vehicles simultaneously
and instantly move up one place, thus the kinematic wave propagates backwards at an
infinite speed !

To conclude this short summary on queueing models, we mention the work of Júlvez
and Boel, who present a similar approach, based on the use of Petri nets19. Their work
allows them to construct complete urban networks, based on the joining together of
short sections; they employ continuous Petri nets for the propagation of traffic flows,
and discrete Petri nets for the description of the traffic lights [Bas04; Júl05].

3.2.3.6 Microscopic traffic flow simulators

In continuation of the previous sections that gave an overview of the different types of
existing microscopic traffic flow models, this section introduces some of the computer
implementations that have been built around these models. In most cases, the com-
puter simulators incorporate the car-following and lane-changing processes as sub-
models, as opposed to strategic and operational modules that work at a higher-level
layer (i.e., route choice, . . . ).

Whereas most microscopic traffic simulators allow to build a road network, specify
travel demands (e.g., by means of OD tables), there was quite some effort spent over
the last decade, in order to achieve a qualitative visualisation (e.g., complete virtual
environments with trees, buildings, pedestrians, bicycles, . . . An example of such a
virtual environment is shown in Figure 3.9, which is based on VISSIM’s visualisation

19Petri nets (invented in the sixties by Carl Adam Petri) are a formalism for describing discrete systems
[Pet62]; they consist of directed graphs of ‘transitions’ and ‘places’, with arcs forming the connections
between them. Places can contain ‘tokens’, which can be ‘consumed’ when a transition ‘fires’.
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module. Note that in our opinion, the usefulness of these virtual scenes should not be
underestimated, as in some cases a project’s approval might hinge on a good visual
representation of the results. It is one thing for policy makers to judge the effects
of replacing a signallised intersection with a roundabout, based on a report of the
observed downstream flows of each intersection arm, but it gives a whole other feeling
when they are able to see how the traffic streams will interact ! Even in the early
sixties, it was recognised that a visual representation of the underlying traffic flow
process, was an undeniable fact for promoting its acceptance among traffic engineers
[Ger64]. With respect to this latest comment, Lieberman even states that “There is a
need to view vehicle animation displays, to gain an understanding of how the system
is behaving, in order to explain why the resulting statistics were produced” [Gar97].

Figure 3.9: A screenshot of the VISSIM microscopic traffic flow simulator, showing a de-
tailed virtual environment containing trees, buildings, pedestrians, . . . (image reproduced after
[PTV05]).

Quite a large amount of microscopic traffic flow models have been developed, in most
cases starting from a research tool, and — by the law of profit — naturally evolving
into full-blown commercial packages, including, e.g., dynamic traffic assignment and
other transportation planning features. Note the sad observation that this commer-
cialisation inherently tends to obscure the underlying models. In such cases, pri-
vacy concerns, company policies, and project contracts and agreements prohibit a
total disclosure of the mathematical details involved. Some of these computer mod-
els are listed here. For starters, the Generic Environment for TRaffic Analysis and
Modeling (GETRAM) couples the multi-modal traffic assignment model EMME/2 to
the Advanced Interactive Microscopic Simulator for Urban and Non-Urban Networks
(AIMSUN2) model [Bar02a]. Next, the Parallel microscopic traffic simulator (Para-
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mics), initially developed at the Edinburgh Parallel Computing Centre, but afterwards
bought by Quadstone [Cam94; Lim00]. Subsequently, Yang developed a MIcroscopic
Traffic flow SIMulator (MITSIM) [Yan97], and Maerivoet constructed a MIcroscopic
TRAffic flow SIMulator (Mitrasim 2000) which was mostly based on and influenced
by MITSIM’s and Paramics’ dynamic behaviour [Mae01b]. Two further examples
are the Open Source Software (OSS) package called Simulation of Urban MObil-
ity (SUMO), developed at the Deutsches Zentrum für Luft- und Raumfahrt [Kra04],
and the Verkehr in Stadten SIMulation (VISSIM) programme developed by the Ger-
man PTV group [PTV05]. In addition, there is the INTEGRATION software package
developed by Van Aerde et al. This latter simulator deserves a special mention: it
is microscopic in nature, but the speeds of the vehicles that are propagated through
the network, are based on a macroscopic vse(hs) fundamental diagram for each link
[Aer96]. Finally, we mention the TRansportation ANalysis and SIMulation System
(TRANSIMS) project [Nag98c], . . .

An extensive overview of all existing microscopic traffic flow simulators until 1998 is
provided by the Simulation Modelling Applied to Road Transport European Scheme
Tests, or better known as the SMARTEST report [Alg98].

When using one of these microscopic simulators, it is important to understand
the assumptions and limitations inherent to the implemented models, in order to
judge the results objectively. Indeed, as with any model, the question on whether
some observed behaviour arises due to the implemented model, or as a result
of the imposed boundary conditions, should always be asked, understood, and
answered.

3.2.4 Submicroscopic traffic flow models

As the level of modelling detail is increased, we enter the realm of submicroscopic
models. Traditional microscopic models describe vehicles as single operating units,
putting emphasis on the interactions between different (successive) vehicles. In addi-
tion to this, submicroscopic models push the boundaries even further, giving detailed
descriptions of a vehicle’s inner workings. This typically entails modelling of the
physical characteristics such as engine performance, detailed gearbox operations, ac-
celeration, braking, and steering manoeuvres, . . . Complementary to the functioning
of a vehicle’s physical components, submicroscopic models can also describe a hu-
man driver’s decision taking process in much more detail than is usually done. Some
examples of submicroscopic models are:

• van Arem’s Microscopic model for Simulation of Intelligent Cruise Control
MIXIC: it contains a driver model (for deciding on and executing of lane changes,
car-following behaviour, and the application of intelligent (or adaptive) cruise
control – ICC/ACC) and a vehicle model (dealing with the engine, the transmis-
sion, road friction, aerodynamic, rolling, and slope resistance) [Are97].
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• In similar spirit, Minderhoud has developed the Simulation model of Motor-
ways with Next generation vehicles (Simone); this model focusses on intelligent
driver support systems, such as ICC/ACC, platoon driving, centralised control
of vehicles, et cetera. In contrast to most other (sub)microscopic models, Si-
mone explicitly allows for rear-end collisions to occur under certain parameter
combinations. As there is a close coupling between driver behaviour related
parameters and those of the simulation, these collision dynamics enable the
modeller to find realistic values (or ranges) for these parameters [Min99].

• Ludmann’s Program for the dEvelopment of Longitudinal micrOscopic traffic
Processes in a Systemrelevant environment (PELOPS), is akin to the previous
two models. It is however more technologically oriented with respect to the car-
following behaviour of vehicles, aiming at merging both a driver’s perceptions
and decisions, the car’s handling, and the surrounding traffic conditions. At
the core of the model, there are four modules that respectively describe vehicle
routing in a road network, human decision taking (i.e., car-following, tactical
decisions with respect to lane-changing, . . . ), vehicle handling (i.e., a driver’s
physical acts of steering, accelerating and braking, . . . ), and finally a module
that describes physical vehicle characteristics (traction on elevations, engine
capabilities, exhaust gas modelling, . . . ) [Lud98; Ehm00].

To conclude this section, we like to mention an often scientifically-neglected area of
research, namely the popular field of simulation in the computer gaming industry.
Over the last couple of decades, numerous arcade-style racing simulations have been
developed, allowing a player to be completely immersed in a three-dimensional vir-
tual world in which racing at high speeds is paramount. Examples of these kinds
of programmes are the highly addictive world of Formula 1 racing, street racing in
city environments, off-road rally races, . . . The underlying submicroscopic models
in these games, have over the course of several years been evolved to incorporate all
sorts of physical effects. Friction characteristics (e.g., pavement versus asphalt), road
elevation, wet conditions, air drag and wind resistance (including effects such as slip
streaming and downforce), car weight depending on fuel consumption, tyre wear, . . .
have had influences on what we commonly refer to as car handling, i.e., realistic beha-
viour with respect to car acceleration, braking, and steering. Thanks to the increasing
computational power of desktop computers, graphics cards, as well as dedicated gam-
ing consoles (e.g., Microsoft’s Xbox, Sony’s PlayStation, Nintendo’s GameCube, . . . ),
the path to a whole plethora of extra realistic effects has been paved: skidding, under-
and oversteering, sun glare, overly realistic collision dynamics (in our opinion, this is
where the arcade sensation plays a major role), . . .

3.2.5 The debate between microscopic and macroscopic models

Deciding which class of models, i.e., microscopic, or macroscopic (and we also in-
clude the mesoscopic models), is the correct one to formulate traffic flow problems,
has been a debate among traffic engineers ever since the late fifties. Although the
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debate was not as intense as say, the one between first- and higher-order macroscopic
traffic flow models (see Section 3.2.1.7 for more details), it nevertheless sparkled some
interesting issues. As is nearly always the case, the true answer to the above question
depends on the kind of problem one is interested in solving [Gaz02].

In the beginning years of traffic flow engineering, a bridge was formed between the
microscopic General Motors car-following model of equation (3.28), and the Green-
berg macroscopic model [Gre59; Gaz61]. This proved to be quite a significant break-
through, as it was now possible to obtain all known steady-state macroscopic funda-
mental diagrams, by integrating the car-following equation with suitably chosen para-
meter values [Gaz02]. A recent example of this kind of linking, was done by Treiber
and Helbing, who provided a micro-macro link between their non-local gas-kinetic
mesoscopic model (see Section 3.2.2.3) and the intelligent driver model (see Section
3.2.3.1) [Hel98a; Hel02a].

Besides this explicit translation of microscopic into macroscopic (mesoscopic) models
and vice versa, it is also possible to develop hybrid models that couple macroscopically
modelled road links to microscopically modelled ones. Examples include the work of
Magne et al., who develop a hybrid simulator that couples a METANET-like second-
order macroscopic traffic flow model with the SImulation TRAfic (SITRA-B+) micro-
scopic traffic flow model. Special attention is given to the interfaces between macro-
scopically and microscopically modelled road segments; each macroscopic time itera-
tion in the simulator, is accompanied by a number of microscopic iterations [Mag00].
Lerner et al. also describe such a system, in which they employ a ‘disaggregator’ that
combines macroscopic measurements with microscopic historical information in or-
der to obtain correct vehicle time series [Ler00]. In similar spirit, the work of Bourrel
and Henn links macroscopic representations of traffic flows to microscopic ones, us-
ing interfaces that describe the transitions between them. As an application of their
methodology, they describe the translation between the first-order macroscopic LWR
model and a vehicle representation of this model (based on trajectories) [Bou02]. An-
other avenue was pursued by the Wilco [Bur04b] and Wilco et al. [Bur05], who de-
veloped an integration framework between the MITSIMLab microscopic model and
the Mezzo mesoscopic model. By building upon a mesoscopic approach, the strength
of their work lies in the fact that no aggregation and disaggregation of flows needs to
be performed.

3.2.6 Calibration and validation issues

As is the case for all simulation models, it is a necessity to perform calibration and
validation when applying them to real-world case studies. In this section, we take a
look at some of the issues related to these phases, considering them for both meso-
scopic/macroscopic and microscopic models. We conclude with some general remarks
that are related to a correct calibration methodology, holding for any type of model.
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3.2.6.1 The case for mesoscopic and macroscopic models

As a general rule of thumb, these models are the easiest to calibrate. Due to their
structure, they have a feasible amount of parameters that need to be tuned. In many
cases, an explicit automatic optimisation of the parameter set is possible within a
reasonable computation time. As the models typically exhibit a high-level behaviour
on an aggregated scale, the main inputs for the calibration phase consist of flows
and mean speeds over large sections (e.g., to estimate a vse(k) fundamental diagram).
These latter data can be derived from measurements stemming from sensors such as
single and double inductive loop detectors, camera’s, . . .

Some examples of calibration and validation issues that go beyond the traditional OD-
estimation procedures, are the early work of Cremer and Papageorgiou who used a
parameter identification technique [Cre81], the work of Bellemans [Bel03] and Hegyi
[Heg04] who used the second-order macroscopic METANET model (see also Section
3.2.1.7) in combination with a model predictive control (MPC) setup. Based on traffic
sensor data, Balakrishna provided a framework for jointly calibrating the OD-matrices
and route choice within the DynaMIT planning system [Bal02]. An interesting ex-
ample of the calibration of the first-order macroscopic LWR model (see also Section
3.2.1.2) is the work of Logghe who combined both tempo-spatial plots and oblique
cumulative curves (see also Section 2.3.2.2) [Log03a].

3.2.6.2 The case for microscopic models

Due to the sometimes large amount of parameters typically involved in microscopic
traffic flow models, their computational complexity is often a significant disadvantage
when compared to meso- or macroscopic models (although there are some exceptions,
e.g., the traffic cellular automata models of Section 3.2.3.4). From the point of view
of model calibration (matching the model’s output to real-world observations) and
validation (testing if the model’s output matches with different data sets), this poses
an interesting conundrum, as in many cases not all parameters are equally influential
on the results (thus requiring some sensitivity analyses). In this sense, microscopic
models contain a real danger of purporting to convey a sort of fake accuracy. Different
parameter combinations can lead to the same phenomenological effects, leaving us
pondering as to what exactly is causing the observed behaviour [Tam04a]. As there is
no clear road map on how to calibrate microscopic traffic flow models, we here give a
small sample of some of the numerous attempts that have been made.

There is the work of Jayakrishan and Sahraoui who distinguish between calibration
in the conceptual (i.e., at the level of the underlying mathematical model) and oper-
ational (i.e., within the global context of the study) phases; they apply their opera-
tional methodology to both PARAMICS (micro) and DYNASMART (macro), using
the California Freeway Performance Measurement System (PeMS) database from the
PATH project to feed and couple both models [Jay00].

Based on a publicly available data set of a one-lay road corridor of six kilometres long
(the data contained detailed cumulative curves), Brockfeld et al. systematically tested
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the predicted travel times of some ten well-known microscopic traffic flow models.
As a result of a non-linear optimisation process to calibrate the models, they found
that the intelligent driver model and the cell-transmission model perform the best (i.e.,
below an error rate of 17%), due to the fact that these models require the least amount
of parameters (there were even some models such as the Gipps-based ones that had
hidden parameters). Their final conclusion is noteworthy, as they state that “creating
a new model is often done, however calibrating this model to reality is a formidable
task, which explains why there currently are more models than results about them”
[Bro03].

Related to the previous study, Hourdakis et al. present an automated systematic cal-
ibration methodology based on an optimisation process, applied to the AIMSUN2
simulator. The data used for the calibration procedure stem from a twenty kilometres
long motorway in Minneapolis, Minnesota. The process first involves a calibration of
the global model parameters (i.e., to get the macroscopic flows and speeds correct),
after which the local parameters are dealt with (i.e., ramp metering setups, et cetera).
In their results, Hourdakis et al. state an obtained average correlation coefficient of
0.961 for manual calibration (the results for the automated calibration are similar),
which is quite high (they mostly explain this due to the data’s high level of detail, as
well as the quality of the simulator software) [Hou03].

Recently, Chu et al. extended the systematic, multi-stage calibration approach for the
PARAMICS simulator. Based on data of a highly congested six kilometres long cor-
ridor network in the city of Irvine, Orange County, California, they first calibrate the
driving behaviour models, then the route choice model, after which estimation and
fine-tuning of the OD tables is done. Despite the good reproduction of travel times,
their calibration methodology was done manually, and an automated optimisation pro-
cedure remains future work [Chu04a].

Other examples of calibration of microscopic traffic flow models, include the work
of Rakha et al., who describe the data collection challenges for simulating a large-
scale road network with the INTEGRATION simulator while providing a calibration
framework [Rak98], the work of Dowling et al., who give an extensive account on the
application of commercially available simulation tools to typically encountered traffic
engineering problems [Dow02], the work of Mahanti which is primarily based on the
correct representation of OD tables [Mah04], and the work of Panwai and Dia, who
compared the car-following models in AIMSUN2, PARAMICS, and VISSIM using
radar speed data from the Robert Bosch GmbH Research Group [Pan05].

And finally, we note the interesting work with respect to issues related to the gen-
eral calibration of traffic flow models of Rakha et al. who provide an explicit frame-
work in which they distinguish between calibration, validation, and model verification
[Rak96], Hellinga who poses some key questions involved in the calibration process
[Hel98c], and Burghout who gives an estimation on the number of runs for stochastic
traffic simulation models [Bur04a].
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3.2.6.3 Some general remarks

To end this section, we state some important principles that are — in our opinion —
related to a correct calibration methodology. First and foremost, we believe that all
traffic flow models (whether they are macro-, meso- or microscopic in nature), should
be able to accurately reproduce and predict the encountered delays, queue lengths,
and other macroscopic first-order characteristics (i.e., the kinematic wave speed, a
correct and realistic road capacity, . . . ). One way to test this is the use of cumulative
curves, as they provide an elegant way to automatically perform a good calibration.
It is for example possible to consider the difference between observed and simulated
curves, and then use a Kolmogorov-Smirnov goodness-of-fit statistical test to decide
on whether the difference is statistically significant, or if it is just a Brownian motion
with a zero mean. Only when these first-order effects can be correctly reproduced, the
next step can be to consider second-order effects such as waves of stop-and-go traffic,
oscillations, . . .

Furthermore, it is important to take into account the spatial nature of the study area,
i.e., a detailed description of the road infrastructure, with bottleneck locations as well
as up- and downstream boundary conditions. With respect to the model that is created
within the computer, it is paramount to know how the model behaves on both the link
as well as the node level. Because the models are most of the time working with fairly
homogeneous road links (e.g., constant elevations, no road curvature, . . . ), it might be
necessary to allow for small deviations from (or fixes to) reality (e.g., inserting extra
intermediate nodes in the network in order to artificially obtain bottlenecks).

3.3 Conclusions

The material elaborated upon in this chapter, spanned a broad range going from trans-
portation planning models that operate on a high level, to traffic flow models that
explicitly describe the physical propagation of traffic flows.

As explained in the introduction, we feel there is a frequent confusion among traffic
engineers and policy makers when it comes to transportation planning models and
the role that traffic flow models play therein. To this day, many transportation plan-
ning bureaus continue to use static tools for evaluating policy decisions, whereas the
need for dynamic models is getting more and more pronounced [Mae04b]. Still more
troublesome is the fact that in the present day, incorrect studies (e.g., wrong assump-
tions, an inadequate modelling approach, . . . ) may lead to unsound policy decisions.
Indeed, as Brinkman states, “Thirty years ago scholars first presented convincing evid-
ence that local officials use biased travel demand forecasts to justify decisions based
on unstated considerations.” [Bri03]

Even after more than sixty years of traffic flow modelling, the debate on what is the
correct modelling approach remains highly active. On the transportation planning
side, many agencies still primarily focus on the traditional four step model (4SM),
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because it is the best intuitively understood approach. In contrast to this, activity-
based modelling (ABM) is gaining momentum, although it remains a rather obscure
discipline to many people. At the basis of this scrutiny towards the ABM, lies the
absence of a generally accepted framework such as the one of the 4SM. It is tempting
to translate the ABM approach to the 4SM, by which, e.g., the ABM’s synthetic pop-
ulation generation (including activity generation, household choices and scheduling)
corresponds to the 4SM’s production and attraction, distribution, and modal split (or
to discrete choice theory in a broader setting), thereby generating (time dependent)
OD tables. Similarly, the ABM’s agent simulation can be seen as an implementation
of the 4SM’s traffic assignment. However, it remains difficult to gain insight into this
kind of direct translation and the resulting travel behaviour, although the ABM’s sci-
entific field is continuously in a state of flux thanks to the increasing computational
power.

On the traffic flow modelling side, the debate on whether or not to use macro-/meso- or
microscopic models still continues to spawn many intriguing discussions. Despite the
respective criticisms, it is widely agreed upon that modelling driver behaviour entails
complex human-human, human-vehicle, and vehicle-vehicle interactions. These call
for interdisciplinary research, drawing from fields such as mathematics, physics, and
engineering, as well as sociology and psychology (see, e.g., the overview of Helbing
and Nagel [Hel04]).

In the next chapter, we go into more detail on the class of traffic cellular automata,
which are, as explained in Section 3.2.3.4, a special case of computationally efficient
microscopic traffic flow models.
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Chapter 4

Traffic cellular automata

As hinted at in the previous chapter, we now focus our attention towards computation-
ally efficient microscopic traffic flow models. Traffic cellular automata (TCA) models
fit this description nicely. True to the spirit of statistical mechanics, all the TCA mod-
els discussed in this dissertation do not have a realistic microscopic description of
traffic flows as their primary intent1, but are rather aimed at obtaining a correct mac-
roscopic behaviour through their crude microscopic description. As such, they are
able to positively capture the first- and second-order macroscopic effects of traffic
streams.

In this chapter, we provide a detailed description of the methodology of cellular auto-
mata applied to traffic flows2. We first discuss their background and physical setup,
followed by an account of the mathematical notations we adopt. The remaining ma-
jority of this chapter extensively discusses the behavioural aspects of several state-
of-the-art TCA models encountered in literature (our overview distinguishes between
single-cell and multi-cell models). The chapter concludes with a concise overview of
TCA models in a multi-lane setting, and TCA models used to describe two-dimensional
traffic (e.g., a grid for city traffic). We end with a description of several common ana-
lytical approximations to single-cell TCA models.

Note that aside from our phenomenological discussion of different TCA models,
we refer the reader to the work of Chowdhury et al. [Cho00], Santen [San99],
and Knospe et al. [Kno04] for more theoretically- and quantitatively-oriented
overviews. Mahnke et al. also provide a well-defined background for probabilistic
traffic flow models [Mah05].

1Such an approach would involve more human-oriented aspects such as those found in socio-economic,
behavioural, and psychological sciences. Due to large lack of knowledge about the manner in which human
beings operate in a traffic system, traffic engineers currently stick with this higher-level scientific approach.

2Note that this chapter was also published as a stand-alone review in Physics Reports [Mae05].
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142 Chapter 4 – Traffic cellular automata

4.1 Background and physical setup for road traffic

In this section, we give a brief overview of the historic origins of cellular automata,
as they were conceived around 1950. We subsequently describe which main ingredi-
ents constitute a cellular automaton: the physical environment, the cells’ states, their
neighbourhoods, and finally a local transition rule. We then move on to a general
description on how cellular automata are applied to vehicular road traffic, discussing
their physical environment and the accompanying rule set that describes the vehicles’
physical propagation.

4.1.1 Historic origins of cellular automata

The mathematical concepts of cellular automata (CA) models can be traced back as
far as 1948, when Johann Louis von Neumann introduced them to study (living) bio-
logical systems [Neu48]. Central to von Neumann’s work, was the notion of self-
reproduction and theoretical machines (called kinematons) that could accomplish this.
As his work progressed, von Neumann started to cooperate with Stanislaw Marcin
Ulam, who introduced him to the concept of cellular spaces. These described the
physical structure of a cellular automaton, i.e., a grid of cells which can be either
‘on’ or ‘off’ [Wol83; Del98]. Interestingly, Alan Mathison Turing proposed in 1952 a
model that illustrated reaction-diffusion in the context of morphogenesis (e.g., to ex-
plain the patterns of spots on giraffes, of stripes on zebras, . . . ). His model can be seen
as a type of continuous CA, in which the cells have a direct analogy with a simplified
biological organism [Tur52].

In the seventies, CA models found their way to one of the most popular applications
called ‘simulation games’, of which John Horton Conway’s “Game of Life” [Gar70] is
probably the most famous. The game found its widespread fame due to Martin Gard-
ner who, at that time, devoted a Scientific American column, called “Mathematical
Games”, to it. Life, as it is called for short, is traditionally ‘played’ on an infinitely
large grid of cells. Each cell can either be ‘alive’ or ‘dead’. The game evolves by con-
sidering a cell’s all surrounding neighbours, deciding whether or not the cell should
live or die, leading to phenomena called ‘birth’ (a dead cell becomes alive when there
are exactly three neighbouring cells alive), ‘survival’ (a live cell with two or three live
neighbours stays alive), and ‘overcrowding’ or ‘loneliness’ (in all other cases a cell
dies or remains dead). An example of a Life game board can be seen in Figure 4.1.
Typical of Life, is the spawning of a whole plethora of patterns or shapes, having il-
lustrious names such as gliders, guns, space ships, puffers, beehives, oscillators, . . .
The Game of Life is now all about how these shapes evolve, and whether or not they
die out or live indefinitely (either by remaining stationary or moving around).

The widespread popularisation of CA models was achieved in the eighties through the
work of Stephen Wolfram. Based on empirical experiments using computers, he gave
an extensive classification of CA models as mathematical models for self-organising
statistical systems [Wol83; Wol02]. Wolfram’s work culminated in his mammoth
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Figure 4.1: An example of the Game of Life, with a rectangular grid of cells. Live cells
are coloured black, whereas dead cells remain white. The image shows a snapshot during
the game’s course, illustrating many different shapes to either die out, or live indefinitely by
remaining stationary or moving around (image adapted from [Geo02]).

monograph, called A New Kind of Science [Wol02]. In this book, Wolfram related
cellular automata to all disciplines of science (e.g., sociology, biology, physics, math-
ematics, . . . ). Despite the broad range of science areas touched upon, Wolfram’s book
has received its share of criticism. As an example of this, we mention the comments of
Gray, who points out that Wolfram’s results suffer from a rigourous mathematical test.
As a consequence, the physical examples in his book are deemed either uncheckable or
unconvincing. Gray’s final critique is that “. . . he [Wolfram] has helped to popular-
ise a relatively little-known mathematical area (CA theory), and he has unwittingly
provided several highly instructive examples of the pitfalls of trying to dispense with
mathematical rigour” [Gra03]. However, with respect to their computational power,
CA models can emulate universal Turing machines within the theories of computa-
tion and complexity. Recently, Chua took Wolfram’s empirical observations one step
further, proving that some of the CA models are capable of Turing universal compu-
tations. He furthermore introduced the paradigm of cellular neural networks (CNN),
which provide a very efficient method for performing massive parallel computations,
and are a generalisation of cellular automata [Chu04b].

Finally, an important step in this direction, is Bill Gosper’s proof that the Game of Life
is computationally universal, i.e., it can mimic arbitrary algorithms [Gos74]. Notably,
one of the most profound testimonies related to this concept, is the work of Konrad
Zuse and Edward Fredkin at the end of the sixties. Their Zuse-Fredkin thesis states
that “The Universe is a cellular automaton”, and is based on the assumption that the
Universe’s physical laws are discrete in nature [Zus67; Zus69; Fre90]. This latter
statement was also conveyed by Wolfram in his famous CA compendium [Wol02].

4.1.2 Ingredients of a cellular automaton

From a theoretical point of view, four main ingredients play an important role in cel-
lular automata models [Gut96; Del98; Sar00]:
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(1) The physical environment
This defines the universe on which the CA is computed. This under-
lying structure consists of a discrete lattice of cells with a rectangular,
hexagonal, or other topology (see Figure 4.2 for some examples). Typ-
ically, these cells are all equal in size; the lattice itself can be finite or
infinite in size, and its dimensionality can be 1 (a linear string of cells
called an elementary cellular automaton or ECA), 2 (a grid), or even
higher dimensional. In most cases, a common — but often neglected —
assumption, is that the CA’s lattice is embedded in a Euclidean space.

Figure 4.2: Some examples of different Euclidean lattice topologies for a cellu-
lar automaton in two dimensions. Left: rectangular. Middle: triangular/isometric.
Right: hexagonal.

(2) The cells’ states
Each cell can be in a certain state, where typically an integer represents
the number of distinct states a cell can be in, e.g., a binary state. Note
that a cell’s state is not restricted to such an integer domain (e.g., Z2), as
a continuous range of values is also possible (e.g., R

+), in which case we
are dealing with coupled map lattices (CML) [Cru87; Kan90]. We call
the states of all cells collectively a CA’s global configuration3.

(3) The cells’ neighbourhoods
For each cell, we define a neighbourhood that locally determines the evol-
ution of the cell. The size of neighbourhood is the same for each cell in
the lattice. In the simplest case, i.e., a 1D lattice, the neighbourhood con-
sists of the cell itself plus its adjacent cells. In a 2D rectangular lattice,
there are several possibilities, e.g., with a radius of 1 there are, besides
the cell itself, the four north, east, south, and west adjacent cells (von
Neumann neighbourhood), or the previous five cells as well as the four
north-east, south-east, south-west, and north-west diagonal cells (Moore
neighbourhood); see Figure 4.3 for an example of both types of neigh-
bourhoods. Note that as the dimensionality of the lattice increases, the

3This convention asserts that states are local and refer to cells, while a configuration is global and refers
to the whole lattice.
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number of direct neighbours of a cell increases exponentially.PSfrag replacements
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Figure 4.3: Two commonly used two-dimensional CA neighbourhoods with a
radius of 1: the von Neumann neighbourhood (left) consisting of the central cell
itself plus 4 adjacent cells, and the Moore neighbourhood (right) where there are 8
adjacent cells. Note that for one-dimensional CAs, both types of neighbourhoods
are the same.

(4) A local transition rule
This rule (also denoted as a function δ) acts upon a cell and its direct
neighbourhood, such that the cell’s state changes from one discrete time
step t to another t + 1 (i.e., the system’s iterations4), as is depicted in
Figure 4.4. The CA evolves in time and space as the rule is subsequently
applied to all the cells in parallel. Typically, the same rule is used for all
the cells (if the converse is true, then the term hybrid CA is used). When
there are no stochastic components present in this rule, we call the model
a deterministic CA, as opposed to a stochastic (also called probabilistic)
CA.

PSfrag replacements
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Figure 4.4: An illustration of the local transition rule δ, acting upon a cell i and
its direct neighbourhood in the lattice of a one-dimensional cellular automaton.
The cell’s state changes from one discrete time step t to another t + 1.

4Note that in case the new state of a cell is based on more than one previous time step, the resulting
cellular automaton is said to be of higher order, as opposed to most classical first-order CAs.



i

i

i

i

i

i

i

i

146 Chapter 4 – Traffic cellular automata

As the local transition rule is applied to all the cells in the CA’s lattice,
the global configuration of the CA changes. This is also called the CA’s
global map, which transforms one global configuration into another. This
corresponds to the notion of computing a function in automata theory, see
also Section 4.2.1. Sometimes, the CA’s evolution can be reversed by
computing past states out of future states. By evolving the CA backwards
in time in this manner, the CA’s inverse global map is computed. If this
is possible, the CA is called reversible, but if there are states for which
no precursive state exists, these states are called Garden of Eden (GoE)
states and the CA is said to be irreversible.

Finally, when the local transition rule is applied to all cells, its global
map is computed. In the context of the theory of dynamical systems, this
phenomenon of local simple interactions that lead to a global complex
behaviour (i.e., the spontaneous development of order in a system due to
internal interactions), is termed self-organisation or emergence.

Whereas the previous paragraphs discussed the classical approach to CA models, the
following sections will exclusively focus on vehicular traffic flows, leading to traffic
cellular automata (TCA) models: Section 4.1.3 discusses the physical environment on
which these TCA models are based, and Section 4.1.4 deals with their accompanying
rule set that determines the vehicular motion.

4.1.3 Road layout and the physical environment

When applying the cellular automaton analogy to vehicular road traffic flows, the
physical environment of the system represents the road on which the vehicles are driv-
ing. In a classical single-lane setup for traffic cellular automata, this layout consists
of a one-dimensional lattice that is composed of individual cells (our description here
thus focuses on unidirectional, single-lane traffic). Each cell can either be empty, or is
occupied by exactly one vehicle; we use the term single-cell models to describe these
systems. Another possibility is to allow a vehicle to span several consecutive cells,
resulting in what we call multi-cell models. Because vehicles move from one cell to
another, TCA models are also called particle-hopping models [Nag96].

An example of the tempo-spatial dynamics of such a system is depicted in Figure 4.5,
where two consecutive vehicles i and j are driving on a 1D lattice. A typical dis-
cretisation scheme assumes ∆T = 1 s and ∆X = 7.5 m, corresponding to speed
increments of ∆V = ∆X/∆T = 27 km/h. The spatial discretisation corresponds to
the average length a conventional vehicle occupies in a closely packed jam (and as
such, its width is neglected), whereas the temporal discretisation is based on a typical
driver’s reaction time and we implicitly assume that a driver does not react to events
between two consecutive time steps [Nag92b].

With respect to the layout of the system, we can distinguish two main cases: closed
versus open systems. They correspond to periodic (or cyclic) versus open boundary
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Figure 4.5: Schematic diagram of the operation of a single-lane traffic cellular automaton
(TCA); here, the time axis is oriented downwards, the space axis extends to the right. The
TCA’s configuration is shown for two consecutive time steps t and t + 1, during which two
vehicles i and j propagate through the lattice.

conditions. The former is usually implemented as a closed ring of cells, sometimes
called the Indianapolis scenario, while the latter considers an open road. This last type
of system, is also called the bottleneck scenario. The name is derived from the fact
that this situation can be seen as the outflow from a jam, where vehicles are placed
at the left boundary whenever there is a vacant spot. Note that, in closed systems,
the number of vehicles is always conserved, leading to the description of number
conserving cellular automata (NCCA) [Mor03].

4.1.4 Vehicle movements and the rule set

The propagation of the individual vehicles in a traffic stream, is described by means
of a rule set that reflects the car-following and lane-changing behaviour of a traffic
cellular automaton evolving in time and space. The TCA’s local transition rule ac-
tually comprises this set of rules. They are consecutively applied to all vehicles in
parallel (called a parallel update). So in a classic setup, the system’s state is changed
through synchronous position updates of all the vehicles: for each vehicle, the new
speed is computed, after which its position is updated according to this speed and a
possible lane-change manoeuvre. Note that there are other ways to perform this update
procedure, e.g., a random sequential update (see Section 4.3.2.4). Because time is dis-
cretised in units of ∆T seconds, an implicit reaction time is assumed in TCA models.
It is furthermore assumed that a driver does not react to events between consecutive
time steps.

Similar to our discussion of anisotropy at the end of Section 3.2.1.5, we assume that for
single-lane traffic, vehicles act as anisotropic particles: they respond only to frontal
stimuli. So typically, the car-following part of a rule set only considers the direct
frontal neighbourhood of the vehicle to which the rules are applied. The radius of
this neighbourhood should be taken large enough such that vehicles are able to drive
collision-free. Typically, this radius is equal to the maximum speed a vehicle can
achieve, expressed in cells per time step.
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From a microscopic point of view, the process of a vehicle following its predecessor
is typically expressed using a stimulus-response relation (see Section 3.2.3.1 for more
details). Typically, this response is the speed or the acceleration of a vehicle; in TCA
models, a vehicle’s stimulus is mainly composed of its speed and the distance to its
leader, with the response directly being a new (adjusted) speed of the vehicle. In a
strict sense, this only leads to the avoidance of accidents. Some models however,
incorporate more detailed stimuli, such as anticipation terms5. When these effects
are taken into account together with a safety distance, strong accelerations and abrupt
braking can be avoided. Hence, as the speed variance is decreased, this results in a
more stable traffic stream [Kno02b; Eis03; Lár04].

To conclude this section, we note that a TCA model can also be derived from a Gipps
car-following model. As explained in Section 3.2.3.1, all speeds in the Gipps model
are directly computed from one discrete time step to another. If now the spatial di-
mension is also discretised (a procedure called coarse graining), then this will result
in a TCA model.

4.2 Mathematical notation

In this section, we give an overview of the mathematical notation adopted throughout
this dissertation. The focus will be on the variables in TCA models, the measurements
that can be done on a TCA model’s lattice, and their conversion to real-world units.
We first take a look at the notation that is commonly used in automata theory, from
which cellular automata sprung.

4.2.1 Classical notation based on automata theory

Let us first briefly present the notation for cellular automata models, adopted in spirit
of automata theory. As mentioned in Section 4.1, a CA model represents a discrete
dynamic system, consisting of four ingredients:

CA = (L,Σ,N , δ), (4.1)

where the physical environment is represented by the discrete lattice L and the set of
possible states denoted by Σ. Each ith cell of the lattice, has at time step t a state
σi(t) ∈ Σ. Furthermore, the associated neighbourhood with this cell is represented
by Ni(t), i.e., a (partially) ordered set of cells. Finally, the local transition rule is
represented as:

δ : Σ|N | −→ Σ :
⋃

j∈Ni(t)

σj(t) 7−→ σi(t + 1). (4.2)

5These forms of ‘anticipation’ only take leaders’ reactions into account, without predicting them.



i

i

i

i

i

i

i

i

4.2 Mathematical notation 149

Equation (4.2) shows that the state of the ith cell at the next time step t+1 is computed
by δ based on the states of all the cells in its neighbourhood at the current time step
t. In the previous equation, |N | represents the number of cells in this neighbourhood,
which is taken to be invariant with respect to time and space. Note that the local
transition rule is commonly given by a rule table, where the output state is listed for
each possible input configuration of the neighbourhood. Given the sizes of Σ and N ,
the total number of possible rules equals:

|ΣΣN |, (4.3)

where each of the |ΣN | possible configurations of a cell’s neighbourhood is mapped
to the number of possible states a cell can be in.

Considering the ordered set of all the states of all cells collectively at time step t, a
CA’s global configuration is obtained as:

C(t) =
⋃

j∈L

σj(t), (4.4)

with C(t) ∈ ΣL where the latter refers to the set of all possible global configurations
a CA can be in (also called its phase space). Sometimes, such a global configuration
C(t) is also represented by its characteristic polynomial (i.e., generating function)
[Wol84b]:

C(t) =

|L|∑

j=0

σj(t) xj . (4.5)

If we now apply the local transition rule to all the cells in the CA’s lattice, the next
configuration of the CA can be computed by its induced global map:

G : ΣL −→ ΣL : C(t) 7−→ C(t + 1). (4.6)

Note that if the CA is reversible, the inverse global map G-1 can be computed. As
the CA evolves in time and space, the global map is iterated from a certain initial
configuration C(0) at t = 0, leading to the following sequence of configurations:

C(0)→ G(C(0))→ G2(C(0))→ G3(C(0))→ · · · (4.7)

The above sequence is called the trajectory of the initial configuration C(0) under the
global map G, and we denote it by:

TC(0)|G = {Gn(C(0)) | n ∈ N}. (4.8)
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When this trajectory is periodic or chaotic, we use the terminology forward orbit and
denote it by O+

C(0)|G. Similarly, the backward orbit (i.e., the reverse trajectory) is

denoted by O−C(t)|G−1 , where we specify a certain global configuration C(t) at time

step t under the inverse global map G-1.

4.2.1.1 Classification of CA rules

Computing the global map G is rather difficult, as it may require many or even an
infinite amount of iterations in order to obtain the trajectories. In practice, the system’s
lattice size should be taken infinitely large, but even only considering 1000 cells of a
binary elementary cellular automaton (ECA) would increase the size of the search
space of global configurations to 21000 ≈ 10300.

A more intuitive methodology, is to observe a CA’s tempo-spatial behaviour, i.e., its
evolution on the lattice in the course of time. To this end, Stephen Wolfram empirically
studied many configurations of binary ECA rules, with a neighbourhood of three cells.
According to equation (4.3), this amounts to 223

= 256 different rules. In 1984, based
on this research, Wolfram conjectured four distinct universality classes [Wol84a]:

Class I
These CA evolve after a finite number of iterations to a unique ho-
mogeneous state, i.e., a limit point.

Class II
These CA generate regular, periodic patterns, i.e., entering a limit
cycle.

Class III
CAs in this class evolve to aperiodic patterns, independent of the
initial configuration; their trajectories in the configuration space lie
on a chaotic attractor.

Class IV
This class encompasses all the CAs that seem to behave in a complex
way, with features such as propagating structures, long transients;
they are thought to have the capability of universal computation.

Although Wolfram’s classification scheme is widely adopted, it still remains a tentat-
ive result as he himself states [Wol02]. Note that the type of classification he provides
is phenotypical, in the sense that it is based on observed behaviour, whereas a gen-
otypical classification would be based on the intrinsic structure of the rules in each
class.

Despite these observations, classification still remains a difficult task as is evidenced
by the ongoing research in dynamical systems. Other attempts at classification of ECA
rules include the following. Firstly, Čulik and Yu gave a formalisation of Wolfram’s
classes [Čul88]. Secondly, Li and Packard studied the structure of the ECA rule space
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according to a certain distance metric, resulting in five classes [Li90]. Then, Braga
et al. identified three classes based on the growth of patterns observed in CA models
[Bra95]. Next, Wuensche used a whole arsenal of local measures to automatically cre-
ate complex rules, thereby classifying the rule space for the CAs’ dynamics [Wue99].
Furthermore, Dubacq et al. classified CA models based on their algorithmic complex-
ity by measuring the information content of the local transition rule [Dub01]. And
finally, Fatès who used a macroscopic parameter, i.e., the density of 1’s, to separate
chaotic ECA rules from non-chaotic ones [Fat03].

4.2.1.2 An example of a CA

To end this section, let us give some definitions of a one-dimensional, infinitely large,
binary state CA with a neighbourhood of radius 1:

L = Z
d (with d = 1), (4.9)

Σ = Z2 = {0, 1}, (4.10)

Ni = {i− 1, i, i + 1}, (4.11)

δ(i, t) : Z
3
2 −→ Z2

: {σi−1(t), σi(t), σi+1(t)} 7−→ σi(t + 1), (4.12)

G(C(t)) : Z
Z

2 −→ Z
Z

2

: C(t) 7−→ C(t + 1). (4.13)

Note that in equation (4.11), we assume that the ith cell’s neighbourhood is represented
by integer indices (i.e., the cells form a totally ordered set). This alleviates the need
for an explicit representation of the cells themselves, as it is now sufficient to work
with the cells’ indices and states. The transition rule δ in equation (4.12) takes as
its arguments a cell’s index i and current time step t, but operates on the states of
this cell’s neighbourhood. The global map in equation (4.13) operates on the global
configuration of the CA at time step t.

4.2.2 Basic variables and conventions

Conforming to the setup and notation discussed in the previous sections, we denote a
TCA’s discrete lattice by L (for the remainder of this section, we assume a rectangular
lattice). This lattice physically represents the road on which vehicles will drive in a
TCA model. It consists of LL lanes, each of which has KL cells, so in total there
are LL × KL cells in the lattice (LL,KL ∈ N0). Each cell can either be empty, or
occupied with a single vehicle that spans one or more consecutive cells. An example
of a lattice containing several vehicles, can be seen in Figure 4.6.
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PSfrag replacements

i

li

gsi

hsi

g
l,f
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l,b
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g
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Figure 4.6: A portion of the lattice L at a certain time step; it has LL = 3 lanes, containing
six vehicles. The central vehicle i has a space headway hsi = 6 cells, consisting of a space gap
gsi = 4 cells and its length li = 2 cells. There are four other space gaps to be considered when
the neighbouring lanes are taken into account: g

l,f
si (left-front), g

l,b
si (left-back), g

r,f
si (right-front),

and g
r,b
si (right-back), equalling 6, 4, 2 and 2 cells, respectively.

Based on the microscopic vehicle characteristics of Section 2.2.2, we propose to use
the following set of definitions6 for multi-lane vehicular road traffic flows that are
heterogeneous (in the sense of having different vehicle lengths):

gl,f
si

= xl,f
i − xi − li, (4.14)

gr,f
si

= xr,f
i − xi − li, (4.15)

gl,b
si

= xi − xl,b
i − ll,b

i , (4.16)

gr,b
si

= xi − xr,b
i − lr,b

i , (4.17)

for which we assume that a vehicle’s position is denoted by the cell that contains its
rear bumper. For the example in Figure 4.6, the left and right frontal and backward
space gaps of the central vehicle i are 6, 4, 2 and 2 cells, respectively (all these space
gaps thus represent effective distances, corresponding to the number of empty cells
between vehicles). Similar definitions hold for the space headways hl,f

si
, hr,f

si
, hl,b

si
, and

hr,b
si

, i.e., the vehicle lengths in the right-hand sides of equations (4.14) – (4.17) are
dropped. Derivations for the time gaps gl,f

ti , gr,f
ti , gl,b

ti , and gr,b
ti , and time headways hl,f

ti ,
hr,f

ti , hl,b
ti , and hr,b

ti are analogous.

Discriminating between frontal and backward neighbours in the adjacent lanes to the
ith vehicle, is done based on their positions, i.e.:

{xl,b
i , xr,b

i } < xi ≤ {x
l,f
i , xr,f

i }. (4.18)

6Note that in the remainder of this dissertation, we have dropped the functional dependencies in favour
of visual clarity.
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According to equation (4.18), a vehicle that is driving alongside in an adjacent lane to
the ith vehicle, will be considered as a backward neighbour as long as its rear bumper
is located strictly behind the rear bumper of the ith vehicle (even if this neighbour has
a large length that ‘sticks out’ in front of the ith vehicle).

Under the above set of assumptions, we can now write the conditions for a successful
lane change (i.e., a possible gap acceptance) as the following constraints:

gl,f
si
≥ 0 ∧ gl,b

si
≥ 0 (left lane change), (4.19)

gr,f
si
≥ 0 ∧ gr,b

si
≥ 0 (right lane change). (4.20)

With respect to the domains of all variables, we note that all vehicle lengths, space
gaps, and space headways are expressed as integers, or more specifically:

li, hsi
, hl,b

si
, hr,b

si
∈ N0,

gsi
, hl,f

si
, hr,f

si
∈ N,

gl,b
si

, gr,b
si

, gl,f
si

, gr,f
si
∈ Z.

In contrast to this, the occupancy times, time headways, and time gaps are not restric-
ted to the domain of integers, i.e.:

ρi, hti , h
l,b
ti , hr,b

ti ∈ R
+
0 ,

gti , h
l,f
ti , hr,f

ti ∈ R
+,

gl,b
ti , gr,b

ti , gl,f
ti , gr,f

ti ∈ R.

For example, the occupancy time as defined by equation (2.3) in Section 2.2.2, corres-
ponds to the time a vehicle ‘spends’ in its own cells.

To conclude, each vehicle i in the lattice has an associated speed vi ∈ N (expressed
in cells per time step ∆T ), which is bounded by a maximum speed vmax ∈ N0. For
example, if we set ∆T = 1.2 s, ∆X = 7.5 m, and vmax = 5 cells/time step, then
vi ∈ {0, . . . , 5} which corresponds to a maximum of 5 ×∆X/∆T = 5 × 7.5 m/s ÷
1.2 s = 31.25 m/s = 112.5 km/h. As can be seen in this derivation, we only consider
positive speeds in our models, i.e., vehicles always move forward.

4.2.3 Performing macroscopic measurements

The previously discussed quantities are all microscopic traffic stream characteristics,
corresponding to those of Section 2.2. In this section, we reconsider the macroscopic
quantities of Section 2.3, i.e., densities, flows, and mean speeds. As we now have
to measure these quantities on a TCA’s lattice L, we present three possibilities for
obtaining the data points:
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• by performing local measurements with an artificial loop detector of finite length
(open and closed systems),

• by performing global measurements on the entire lattice (closed system),

• and by performing local measurements with an artificial loop detector of unit
length (open and closed systems).

In the following three sections, we give detailed derivations of each of these measure-
ment techniques. Locally measured quantities are indicated by a ‘l’ subscript, whereas
globally measured ones are indicated by an ‘g’ subscript. A temporal and spatial dis-
cretisation of respectively ∆T (in seconds) and ∆X (in metres) is implicitly assumed.

For all following techniques, we assume an integer measurement period of Tmp

time steps. Thus, aggregating data into intervals of 60 seconds with ∆T = 1.2 s,
requires a measurement period of:

Tmp =

[
60
1.2

]
= 50 time steps. (4.21)

Furthermore, densities are expressed in vehicles per cell, flows in vehicles per
time step, and space-mean speeds in cells per time step.

4.2.3.1 Local measurements with a detector of finite length

In this section, we deal with an artificial loop detector of finite length Kld ∈ N0, loc-
ated in a single lane. Note that typically, Kld ≥ vmax, so as to ensure that no vehicles
can ‘skip’ the detector between consecutive time steps. The first step in our approach
for performing these measurements, is based on obtaining local measurements of the
density and flow for a measurement region Rs (see Figure 2.3 of Section 2.3) at a cer-
tain time step t, using equations (2.4) and (2.15), respectively. Once these are known,
the space-mean speed can be derived using the fundamental relation (2.33):

kl(t) =
N(t)

Kld
, (4.22)

ql(t) =
1

Kld

N(t)∑

i=1

vi(t), (4.23)

⇓

vsl(t) =
ql(t)

kl(t)
=

1
N(t)

N(t)∑

i=1

vi(t), (4.24)

where we assumed N(t) vehicles are present at time t in the loop detector’s segment.
The density and flow measurements of consecutive time steps are now temporally
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averaged over subsequent Rs measurement regions, according to equations (2.9) and
(2.17), respectively. In similar fashion as before, the space-mean speed is derived
using the fundamental relation (2.33):

kl =
1

Tmp

Tmp∑

t=1

kl(t) =
1

Tmp Kld

Tmp∑

t=1

N(t), (4.25)

ql =
1

Tmp

Tmp∑

t=1

ql(t) =
1

Tmp Kld

Tmp∑

t=1

N(t)∑

i=1

vi(t), (4.26)

⇓

vsl =
ql

kl
=

Tmp∑

t=1

N(t)∑

i=1

vi(t)

/
Tmp∑

t=1

N(t) , (4.27)

=

Tmp∑

t=1

N(t)
1

N(t)

N(t)∑

i=1

vi(t)

/
Tmp∑

t=1

N(t) ,

=

Tmp∑

t=1

N(t) vsl(t)

/
Tmp∑

t=1

N(t) . (4.28)

Our derivations for kl and ql as outlined above, also correspond to the generalised
definitions encountered in Sections 2.3.1 and 2.3.2, where the total time spent, re-
spectively the total distance travelled, was divided by the area of the measurement
region (which corresponds to Tmp × Kld). Furthermore, note that the last equation
(4.28) essentially is a weighted mean of the local space-mean speeds vsl(t) at each
time step t, with the number of vehicles N(t) as weights. This actually corresponds
to the space-mean speed based on different substreams, as was computed by equation
(2.36).

4.2.3.2 Global measurements on the entire lattice

For the global measurements, we consider N vehicles that are driving in a closed
single-lane system, i.e., with a length of KL cells (the extension to multi-lane traffic
is straightforward). As a consequence, the global density kg remains constant during
the entire measurement period. The derivations of the equations for kg, qg, and vsg , are
completely equivalent to those of the previous Section 4.2.3.1, but now with Kld =
KL:
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kg =
N

KL
, (4.29)

qg =
1

Tmp KL

Tmp∑

t=1

N∑

i=1

vi(t), (4.30)

⇓

vsg =
qg

kg
=

1
Tmp N

Tmp∑

t=1

N∑

i=1

vi(t), (4.31)

=
1

Tmp N

Tmp∑

t=1

N
1
N

N∑

i=1

vi(t),

=
1

Tmp

Tmp∑

t=1

vsg(t). (4.32)

Note that, for single-cell TCA models, the global density computed with equation
(4.29) corresponds to the occupancy ρ as defined by equation (2.26). For multi-cell
models, the number of vehicles is in general less than the number of occupied cells.

4.2.3.3 Local measurements with a detector of unit length

The third technique for measuring macroscopic traffic flow characteristics on a TCA’s
lattice, bears perhaps the closest resemblance to reality: it is based on an artificial loop
detector with unit length, i.e., Kld = 1 cell. The loop detector now explicitly counts
all the vehicles that pass it at each time step ∆T during the measurement period Tmp.

This type of measurement corresponds to the point measurement region Rt, as depic-
ted in Figure 2.3 of Section 2.3. Because of this, the appropriate method for computa-
tion is different from the one used in the previous two sections: we now first compute
the local flow, using equation (2.12), and the local space-mean speed, using equation
(2.27), both for single-lane traffic. The local density is then derived according to the
fundamental relation (2.33), resulting in the following set of equations:

ql =
N

Tmp
, (4.33)

vsl =

(
1
N

N∑

i=1

1
vi

)−1

, (4.34)

⇓

kl =
ql

vsl

, (4.35)
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in which N now denotes the number of vehicles that have passed the detector during
the measurement period Tmp. Because the detector physically occupies one cell and
because a vehicle has to ‘drive by’ in order to get counted, this means that stopped
vehicles are ignored: only moving vehicles are counted. Note that, as opposed to the
previous two techniques, the above measurements no longer denote temporal averages.
And because of the temporal region Rt, we have to take the harmonic average of the
vehicles’ speeds vi in order to obtain the local space-mean speed vsl . As it turns
out, our derivation corresponds perfectly to equation (2.7) which computes the local
density at a point in space.

4.2.4 Conversion to real-world units

Converting between TCA and real-world units seems straightforward, as we only need
to suitably multiply with or divide by the temporal and spatial discretisations ∆T and
∆X , respectively. However, problems arise due to the discrete nature of a TCA model,
involving some intricacies with respect to coordinate systems and their associated
units. For example, as defined in Section 4.2.2, a vehicle i’s space headway hsi

is
always an integer, expressing the number of cells. The same holds true for its space
gap gsi

and length li. The difficulty now lies in the fact that fractions of cells are not
representable in our definition of a TCA model. Keeping equation (2.1) in mind, and
noting that hsi

∈ N0, it follows that gsi
+ li > 0, which means that either gsi

6= 0
and/or li 6= 0.

As a solution, we therefore adopt throughout this dissertation the convention that,
without loss of generality, a vehicle’s length li ≥ 1 cell (which agrees perfectly with
our earlier definitions in Section 4.2.2). Consequently, when a vehicle i is residing
in a compact jam (i.e., ‘bumper-to-bumper’ traffic), its space headway hsi

= l cells
and its space gap gsi

= 0 cells. Our convention thus gives a rigourous justification
to formulate the TCA’s update rules more intuitively using space gaps, because as
already stated in Section 4.1.4, the rules in a TCA rule set are typically not expressed
in terms of space headways, but rather in terms of speeds and space gaps (i.e., the
distance to the leading vehicle).

In a similar fashion, time headways, time gaps, and occupancy times represent mul-
tiples of the temporal discretisation ∆T . But note that, as explained before in Section
4.2.2, these are however no longer constrained to integer values.

In the following two sections, we explain how to convert between coordinate systems
of TCA models and the real world. All common variables (e.g., hsi

) are expressed in
TCA units, except for their ‘primed’ counterparts (e.g., h′si

), which are expressed in
real-world units. The conversions will be done with respect to the following conven-
tions:

• TCA model

– hsi
, gsi

, and li are dimensionless integers, denoting a number of cells,
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– hti , gti , and ρi are dimensionless real numbers, denoting a fractional mul-
tiple of a time step,

– kl and kg are real numbers, expressed in vehicles/cell,

– ql and qg are real numbers, expressed in vehicles/time step,

– and vi, vsl , and vsg are real numbers, expressed in cells/time step.

• Real world

– ∆X , h′si
, g′si

, and l′i are real numbers, expressed in metres,

– ∆T , h′ti , g′ti , and ρ′i are real numbers, expressed in seconds,

– k′l and k′g are real numbers, expressed in vehicles/kilometre,

– q′l and q′g are real numbers, expressed in vehicles/hour,

– and v′i, v′sl
, and v′sg

are real numbers, expressed in kilometres/hour.

4.2.4.1 From a TCA model to the real world

Under the previously mentioned convention that li ∈ N0, we can write the conversions
of the microscopic characteristics related to the space and time headways and gaps,
and the vehicle lengths and occupancy times, in a straightforward manner:





h′si
= hsi

·∆X, g′si
= gsi

·∆X, l′i = li ·∆X,

h′ti = hti ·∆T, g′ti = gti ·∆T, ρ′i = ρi ·∆T.
(4.36)

Related to equations (4.36), there is a small but important detail that is easily over-
looked: we can not just convert between gsi

, g′si
, li, and l′i without making some

assumptions. Because we adopted the convention that li ≥ 1 cell, it follows that
l′i ≥ ∆X . So it is not possible to take the real length of a vehicle smaller than the
spatial discretisation, because we assumed that the spatial units of a TCA model are
all integer values.

The conversions for the macroscopic traffic stream characteristics densities, flows, and
space-mean speeds, as well as the microscopic vehicle speed, are as follows:





k′ = k ·
1000
∆X

,

q′ = q ·
3600
∆T

,

v′s = vs · 3.6 ·
∆X

∆T
.

(4.37)

To keep the previous equations clear, we have dropped the subscripts denoting global
and local measurements.
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It is interesting to see what happens at the jam density, i.e., the maximum density
when all cells in the lattice are occupied. As all vehicles are standing still
bumper-to-bumper, the associated space gap at this density, equals zero. Com-
puting the space headway according to equation (2.1), results in hsi

= 0 + li. By
virtue of equation (2.11), we can cast this space headway into a density, e.g., for

a single-cell TCA model: kj = hsj

−1
= l

−1
= l−1

i = 1. Applying the conversion
by means of equations (4.37) and assuming a spatial discretisation ∆X = 7.5 m,
results in a real-world jam density k′j = 1000÷ 7.5 m ≈ 133 vehicles/kilometre.
Conversely, if we know k′j , then we can derive kj (see Section 4.2.4.2) and hence
we have a method to pick a ∆X .

If we were to consider multi-cell traffic, e.g., vehicles with different lengths, then
the jam density would be inversely proportional to the average vehicle length. A
solution here is to assume a common unit for all vehicle lengths, e.g., the pas-
senger car units (PCU) as explained in Sections 2.3.1.2 and 2.5.1.3. Even though
the jam density can be defined for each vehicle class separately, it would be more
correct to speak of an average jam density at this point due to the temporal and
spatial variations in traffic flows.

4.2.4.2 From the real world to a TCA model

Based on equations (4.36), we can write the reverse conversion of the microscopic
characteristics in the following manner:





hsi
=

h′si

∆X
, gsi

=
g′si

∆X
, li =

l′i
∆X

,

hti =
h′ti
∆T

, gti =
g′ti
∆T

, ρi =
ρ′i

∆T
.

(4.38)

In order to agree with our previously stated convention, i.e., all spatial microscopic
characteristics in a TCA model are integers, equations (4.38) implicitly assume that
the real-world spatial variables are multiples of the spatial discretisation (e.g., h′si

=
m ·∆X with m ∈ N0).

Another possible approach to the spatial conversion to TCA model units, is to approx-
imate the real-world values as best as possible, whilst keeping our adopted convention.
As li ≥ 1 cell, this leads to the following scheme where we use upward rounding (i.e.,
ceiling):





hsi
=

⌈
h′si

∆X

⌉
, li =

⌈
l′i

∆X

⌉
,

=⇒ gsi
= hsi

− li.

(4.39)
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For example, if ∆X = 7.5 m, l′i = 4.5 m, and g′si
= 5 m, then h′si

= 4.5 + 5 = 9.5 m,
and from equation (4.39) it follows that hsi

= 2 cells, li = 1 cell, and gsi
= 2−1 = 1

cell. Because equation (4.39) is only an approximation, it more than often occurs that
the computed space headway ‘exceeds’ the real-world space headway.

In similar spirit, the conversion for the macroscopic characteristics can be easily de-
rived from equations (4.37). However, as opposed to equations (4.38) and (4.39), there
is no need for an approximation by means of rounding, because these quantities are
real numbers, as mentioned in the introduction of Section 4.2.4.

4.3 Single-cell models

Having discussed the mathematical and physical aspects of cellular automata and TCA
models in particular, we now focus on single-cell models. As explained before in Sec-
tion 4.1.3, each cell can either be empty, or is occupied by exactly one vehicle; all
vehicles have the same length li = 1 cell. Traffic is also considered to be homogen-
eous, so all vehicles’ characteristics are assumed to be the same. In the subsequent
sections, we take a look at the following TCA models (accompanied by their suggested
abbreviations):

• Deterministic models

– Wolfram’s rule 184 (CA-184)

– Deterministic Fukui-Ishibashi TCA (DFI-TCA)

• Stochastic models

– Nagel-Schreckenberg TCA (STCA)

– STCA with cruise control (STCA-CC)

– Stochastic Fukui-Ishibashi TCA (SFI-TCA)

– Totally asymmetric simple exclusion process (TASEP)

– Emmerich-Rank TCA (ER-TCA)

• Slow-to-start models

– Takayasu-Takayasu TCA (T2-TCA)

– Benjamin, Johnson, and Hui TCA (BJH-TCA)

– Velocity-dependent randomisation TCA (VDR-TCA)

– Time-oriented TCA (TOCA)

– TCA models incorporating anticipation

– Ultra discretisation, slow-to-accelerate, and driver’s perspective
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For other excellent overviews of TCA models, we refer the reader to the works of
Chowdhury et al. [Cho00], Knospe et al. [Kno04], Nagel [Nag96], Nagel et al.
[Nag03a], Schadschneider [Sch00; Sch02a], and Schreckenberg et al. [Sch01].

All following TCA models will be empirically studied using simulations that are per-
formed on a unidirectional, single-lane lattice with periodic boundary conditions, i.e.,
a closed loop with LL = 1. The length of this lattice equals KL = 103 cells, which
is taken large enough in order to reduce most unwanted finite-size effects. Our own
experiments indicate that larger lattice sizes do not render any significant advantage,
aside from the burden of a larger computation time.

The importance of studying closed-loop, single-lane traffic

There is often a criticism expressed as to why it is important to study the be-
haviour of traffic flows in such a simplified system. After all, can such a basic
system capture all the dynamics of real-life traffic flows, or be even representative
of them ? The answer to this question is that, in our opinion, the dynamics of
these constrained systems play an important, non-negligible role. For example,
when considering traffic flows on most unidirectional two-lane European motor-
ways, drivers are by law obliged to drive on the right shoulder lane, unless when
performing overtaking manoeuvres. A frequently observed phenomenon is then
that under light traffic conditions (e.g., 10 vehicles/km/lane), a slower moving
vehicle (e.g., a truck) is located on the right lane, and is acting as a moving bot-
tleneck. As a result, all faster vehicles will line up on the left lane (overtaking on
the right lane is prohibited by law), thereby causing a density or lane inversion
[Nag98d; New98; Wol99; Ker04]. It is under these circumstances that the stabil-
ity of the car-following behaviour plays an important role. Similarly, in densely
congested traffic, e.g., the synchronised-flow regime, the same stability may gov-
ern the fact whether or not a traffic breakdown is likely to be induced (see Section
2.5.5 for a discussion on the nature of this breakdown). Even for multi-lane traffic,
we believe its dynamics are essentially those of parallel single lanes when con-
sidering densely congested traffic flows. Another argument for the necessity of
studying these simplified systems, is the one given by Nagel and Nelson. They
state that this is the easiest way to determine whether or not internal effects of a
traffic flow model play a role in, e.g., the spontaneous breakdown of traffic, as all
external effects (i.e., the boundary conditions) are eliminated [Nag05]. Neverthe-
less, when applying these models to real-life traffic networks, closed-loop traffic
is not very representative, as the behaviour near bottlenecks plays a far more im-
portant role [Hel01b].

All measurements on the TCA models’ lattices are based on two possible initial con-
ditions: depending on the nature of the study, we will either use homogeneous initial
conditions (the default), or a compact superjam to start with. In the former case, all
vehicles are uniformly distributed over the lattice, implying equal space headways.
In the latter case, all vehicles are ‘bunched up’ behind each other, with zero space
gaps. When going from one global density to another, an equivalent method would
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be to adiabatically add (or remove) vehicles to an already homogeneous or jammed
state. In our experiments however, we always reset the initial conditions, correspond-
ing to the first method. The simulations7 ran each time for 104 time steps, after an
initial period of 103 time steps was discarded in order to let transients from the initial
conditions in the system die out. Global densities, flows, and space-mean speeds are
computed by means of equations (4.29) – (4.32), whereas we use a point detector,
i.e., equations (4.33) – (4.35), to compute their local variants. In this latter case, the
data points were collected with a measurement period Tmp = 60 time steps. Based on
these results, we can construct (kg,vsg ), (kg,qg), (kl,vsl ), and (kl,ql) diagrams. To keep
a clear formulation, we will however from now on drop the subscripts denoting global
and local measurements.

For a deeper insight into the behaviour of the space-mean speed vs, the average
space gap gs, and the median time gap8 gt, detailed histograms showing their dis-
tributions are provided. These are interesting because in the existing literature (e.g.,
[Cho98; Sch00; Hel01b]) these distributions are only considered at several distinct
global densities, whereas we show them for all densities. Each of our histograms is
constructed by varying the global density k between 0 and 1, computing the space-
mean speed, the average space gap and the median time gap for each simulation run.
A simulation run consists of 5 × 104 time steps (with a transient period of 500 time
steps) on systems of 300 cells, varying the density in 150 steps. Note that a larger size
of the system’s lattice, has no significant effects on the results, except for an increase
of the variance [Mae04g].

Before giving an elaborate discussion of some of the classical TCA models, it is
worthwhile to mention the first historical and practical implementations of traffic
cellular automata. Cremer and Ludwig conceived an implementation of traffic
flows based on lattice gas automata (LGA), which are a special case of cellu-
lar automata typically employed when simulating viscous fluids [Cre86]. Their
seminal work, using individual bits to represent vehicles, was extended by Schütt,
who provided a simulation package for heterogeneous traffic, multi-lane motor-
ways, and network and city traffic [Sch91]. Unfortunately, the developed models
were quite inefficient when they were used in setting that called for large scale
Monte Carlo simulations [Nag95a].

4.3.1 Deterministic models

In this section, we discuss Wolfram’s original rule 184, and its generalisation to higher
speeds as proposed by Fukui and Ishibashi’s deterministic model. We abbreviate these
two TCA models as CA-184 and DFI-TCA, respectively.

7All simulations were performed by means of our Traffic Cellular Automata + software (developed for
the JavaTM Virtual Machine); more information can be found in Appendix B.

8Note that with respect to the time gaps and time headways, we will work in the remainder of this
dissertation with the median instead of the arithmetic mean. The median gives more robust results when
hti , gti → +∞, which, according to equation (2.3), occurs when a vehicle i stops.
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4.3.1.1 Wolfram’s rule 184 (CA-184)

The first deterministic model we consider, is a one-dimensional TCA model with bin-
ary states. As LL = 1, this model is called an elementary cellular automaton (ECA),
according to the terminology introduced in Section 4.1.2. If we furthermore assume a
local neighbourhood of three cells wide (i.e., a radius of 1), then there are 223

= 256
different rules possible, according to equation (4.3). Around 1983, Stephen Wolfram
classified all these 256 binary ECAs [Wol83]. One of these is called rule 184, who’s
name is derived from Wolfram’s naming scheme.

Wolfram’s scheme is based on the representation of how a cell’s state evolves in time,
depending on its local neighbourhood. In Figure 4.7, we have provided a convenient
visualisation for the evolution of the states in a binary ECA. Here, we can see the state
σi(t) of a central cell i at time step t, together with the states σi−1(t) and σi+1(t) of
its two direct neighbours i − 1 and i + 1, respectively. All three of them constitute
the local neighbourhood Ni(t) of radius 1 (see also our example of a CA in Section
4.2.1.2). Because states are binary, we can indicate them with a colour, i.e., a black
square represents a state of 1 (e.g., state σi+1(t) in Figure 4.7), whereas an empty
(white) square represents a state of 0. According to the local transition rule δ(i, t), the
local neighbourhood Ni(t) is then mapped from t to t + 1 onto a new state σi(t + 1).
The graphical representation in Figure 4.7 thus provides us with an illustrative method
to indicate the evolution of {σi−1(t), σi(t), σi+1(t)} 7−→ σi(t + 1).

PSfrag replacements

i− 1 i i + 1

t

t + 1

Figure 4.7: An illustrative method for representing the evolution of a cell’s state in time, based
on its local neighbourhood. We can see the state σi(t) of a central cell i at time step t, together
with the states σi−1(t) and σi+1(t) of its two direct neighbours i − 1 and i + 1, respectively.
This local neighbourhood is mapped onto a new state σi(t + 1). For binary states, we use a
black square to represent a state of 1 (e.g., state σi+1(t)), and an empty (white) square for a
state of 0. The depicted transition maps the triplet (001)2 onto the state σi(t + 1) = 0.

Considering the transition depicted in Figure 4.7, we can see that a complete neigh-
bourhood contains three cells, each of which can be in a 0 (white) or 1 (black) state.
So in total, there are 23 = 8 possible configurations for such a local neighbourhood.
Wolfram’s naming scheme for the binary ECAs is now based on an integer coding of
this neighbourhood. Indeed, the local transition rule δ(i, t) is given by a table lookup
containing eight entries, one for each of the possible local neighbourhoods. If we bin-
ary sort these eight configurations in the descending order (111), (110), (101), (100),
(011), . . . , then we obtain a graphic scheme such as the one in Figure 4.8. As can be
seen, for each of the local configurations, a resulting 0 or 1 state is returned for cell i
at time step t + 1. Collecting all resulting states, and writing them in base 2, results in
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the number (10111000)2. Converting this code to base 10, we obtain the number 184.
Wolfram now coded all 256 possible binary ECAs by a unique number in the range
from 0 to 255, resulting in 256 rules for these CAs.

PSfrag replacements

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

1111 0000

Figure 4.8: A graphical representation of Wolfram’s rule 184, which is written as (10111000)2

in base 2. All 8 possible configurations for the local neighbourhood are sorted in descending
order, expressing the local transition rule δ(i, t) as explained by Figure 4.7. For example, the
local neighbourhood (100)2 gets mapped onto a state of 1. This has the physical meaning that
a particle (black square) moves to the right if its neighbouring cell is empty.

Rule 184 (which we abbreviate as CA-184) is an asymmetrical rule because δ((110)2, t) =
0 6= δ((011)2, t) = 1. It is also called a quiescent rule because δ((000)2, t) = 0 (so
all zero-initial conditions remain zero). As an example of the rule’s evolution, Fig-
ure 4.8 shows that the local neighbourhood (100)2 gets mapped onto a state of 1. If
we consider these 1 states as particles (i.e., vehicles), and the 0 states as holes, then
rule 184 dictates that all particles move one cell to the right, on the condition that this
right neighbour cell is empty. Equivalently, all holes have the tendency to move to
the left for each particle that moves to the right, a phenomenon which is termed the
particle-hole symmetry.

For a TCA model, we can rewrite the previous actions as a set of rules that are con-
secutively applied to all vehicles in the lattice, as explained in Section 4.1.4. For the
CA-184, we have the following two rules:

R1: acceleration and braking

vi(t)← min{gsi
(t− 1), 1}, (4.40)

R2: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.41)

Rule R1, equation (4.40), sets the speed of the ith vehicle, for the current updated
configuration of the system; it states that a vehicle always strives to drive at a speed of
1 cell/time step, unless its impeded by its direct leader, in which case gsi

(t − 1) = 0
and the vehicle consequently stops in order to avoid a collision. The second rule R2,
equation (4.41), is not actually a ‘real’ rule; it just allows the vehicles to advance in
the system.

In Figure 4.9, we have applied these rules to a lattice consisting of 300 cells (closed
loop), showing the evolution over a period of 580 time steps. The time and space axes
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are oriented from left to right, and bottom to top, respectively. In the left part, we
show a free-flow regime with a global density k = 0.2 vehicles/cell, in the right part
we have a congested regime with k = 0.75 vehicles/cell. Each vehicle is represented
as a single coloured dot; as time advances, vehicles move to the upper right corner,
whereas congestion waves move to the lower right corner, i.e., backwards in space.
From both parts of Figure 4.9, we can see that the CA-184 TCA model constitutes
a fully deterministic system that continuously repeats itself. A characteristic of the
encountered congestion waves is that they have an eternal life time in the system.

Figure 4.9: Typical time-space diagrams of the CA-184 TCA model. The shown closed-
loop lattices each contain 300 cells, with a visible period of 580 time steps (each vehicle is
represented as a single coloured dot). Left: vehicles driving a free-flow regime with a global
density k = 0.2 vehicles/cell. Right: vehicles driving in a congested regime with k = 0.75
vehicles/cell. The congestion waves can be seen as propagating in the opposite direction of
traffic; they have an eternal life time in the system. Both time-space diagrams show a fully
deterministic system that continuously repeats itself.

In Figure 4.10, we have plotted both the (k,vs) and (k,q) diagrams. As can be seen
from the left part, the global space-mean speed remains constant at vs = 1 cell/time
step, until the critical density kc = 0.5 is reached, at which point vs will start to di-
minish towards zero where the critical density kj = 1 is reached. Similarly, the global
flow first increases and then decreases linearly with the density, below and respect-
ively above, the critical density. Here, the capacity flow qcap = 0.5 vehicles/time step
is reached. The transition from the free-flowing to the congested regime is character-
ised by a first-order phase transition. As is evidenced by the isosceles triangular shape
of the CA-184’s resulting (k,q) fundamental diagram, there are only two possible kin-
ematic wave speeds, i.e., +1 and -1 cell/time step. Both speeds are also clearly visible
in the left, respectively right, time-space diagrams of Figure 4.9. More analytical
details on these values will be provided in the following Section 4.3.1.2.

4.3.1.2 Deterministic Fukui-Ishibashi TCA (DFI-TCA)

In 1996, Fukui and Ishibashi constructed a generalisation of the prototypical CA-184
TCA model [Fuk96]. Although their model is essentially a stochastic one (see Section
4.3.2.3), we will first discuss its deterministic version. Fukui and Ishibashi’s idea was
two-fold: on the one hand, the maximum speed was increased from 1 to vmax cells/time
step, and on the other hand, vehicles would accelerate instantaneously to the highest
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Figure 4.10: Left: the (k,vs) diagram for the CA-184, based on global measurements on the
lattice. The global space-mean speed remains constant at vs = 1 cell/time step, until the critical
density kc = 0.5 is reached, at which point vs will start to diminish towards zero. Right: the CA-
184’s (k,q) diagram, with its characteristic isosceles triangular shape. The transition between
the free-flowing and the congested regime is of a first-order nature.

possible speed. Corresponding to the definitions of the rule set of a TCA model, the
CA-184’s rule R1, equation (4.40), changes as follows:

R1: acceleration and braking

vi(t)← min{gsi
(t− 1), vmax}. (4.42)

Just as before, a vehicle will now avoid a collision by taking into account the size of
its space gap. To this end, it will apply an instantaneous deceleration: for example, a
fast-moving vehicle might have to come to a complete stop when nearing the end of a
jam, thereby abruptly dropping its speed from vmax to 0 in one time step.

Due to the strictly deterministic behaviour of the system, the time-space diagrams of
the DFI-TCA do not differ much from those of the CA-184. The only difference is
the speed of the vehicles in the free-flow regime, leading to steeper trajectories. It is
however interesting to study the (k,vs) and (k,q) diagrams in Figure 4.11. Here we
can see that increasing the maximum speed vmax creates — as expected — a steeper
free-flow branch in the (k,q) diagram. Interestingly, the slope of the congested branch
does not change, logically implying that the kinematic wave speed for jams remains
constant, i.e., -1 cell/time step. This can be confirmed with an analytical kinematic
wave analysis, as explained by Nagel [Nag03a].

Based on the behaviour of the vehicles near the critical density, we can analytically
compute the capacity flow as follows: in the free-flow regime, all vehicles move with
a constant speed of vmax cells/time step. When the critical density is reached, all
vehicles drive collision-free at this maximum speed, which implies that gsi

= vmax

cells. According to equation (2.1) the space headway hsi
= vmax + 1 (because li = 1
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Figure 4.11: Left: several (k,vs) diagrams for the deterministic DFI-TCA, each for a different
vmax ∈ {1, . . . , 5}. Similarly to the CA-184, the global space-mean speed remains constant,
until the critical density is reached, at which point vs will start to diminish towards zero. Right:
several of the DFI-TCA’s (k,q) diagrams, each having a triangular shape (with the slope of the
congestion branch invariant for the different vmax).

for single-cell models). Consequently, equation (2.11) reveals the value for the critical
density as:

kc =
1

hsc

=
1

vmax + 1
. (4.43)

The capacity flow is now computed by means of the fundamental relation (2.33), i.e.,
qcap = kc vmax:

qcap =
vmax

vmax + 1
. (4.44)

Applying equations (4.43) and (4.44), for, e.g., vmax = 5 cells/time step, results in
kc ≈ 0.167 vehicles/cell and qcap ≈ 0.83 vehicles/time step. If we furthermore assume
∆X = 7.5 m and ∆T = 1 s, then both values correspond to 22 vehicles/kilometre
and 3000 vehicles/hour, respectively.

As opposed to the instantaneous acceleration in rule R1, equation (4.42), we can also
assume a gradual acceleration of one cell per time step (the braking remains instant-
aneous):

R1: acceleration and braking

vi(t)← min{vi(t− 1) + 1, gsi
(t− 1), vmax}. (4.45)

However, our experimental observations have indicated that there is no difference
in global system dynamics, with respect to either adopting gradual or instantaneous
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vehicle accelerations.

There exists a strong relation between the previously discussed deterministic TCA
models, and the macroscopic first-order LWR model with a triangular qe(k) fun-
damental diagram as mentioned in Section 3.2.1.3. Some of the finer results in this
case, are the work of Nagel who extensively discusses some analytical results of
both deterministic and stochastic TCA models [Nag96], and the work of Daganzo
who explicitly proves an equivalency between two TCA models and the kinematic
wave model with a triangular qe(k) fundamental diagram [Dag06]. More details
with respect to such analytical relations, are given in Sections 4.3.2.4 and 4.5.3.

To conclude our discussion of deterministic models, we take a look at what happens
in the limiting case where vmax → +∞. As can be seen in Figure 4.12, the congested
branches in both (k,vs) and (k,q) diagrams grow, at the cost of the free-flow branches
which disappear. Interestingly, these diagrams correspond one-to-one with a triangular
qe(k) fundamental diagram that is now expressed in a moving coordinate system, as
explained by Newell [New99]. In such a simplified system, the critical density kc = 0,
with a capacity flow qcap = 1.
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Figure 4.12: Left: the (k,vs) diagram for the deterministic CA-184, with now vmax → +∞.
Right: the (k,q) diagram for the same TCA model, resulting in a critical density kc = 0, with
a capacity flow qcap = 1. This type of diagram corresponds to a simplified triangular qe(k)
fundamental diagram that is expressed in a moving coordinate system.

4.3.2 Stochastic models

The encountered models in the previous section were all deterministic in nature, im-
plying that there can be no spontaneous formation of jam structures. All congested
conditions produced in those models, essentially stemmed from the assumed initial
conditions. In contrast to this, we now discuss stochastic TCA models (i.e., these are
probabilistic CAs) that allow for the spontaneous emergence of phantom jams. As will
be shown, all these models explicitly incorporate a stochastic term in their equations,
in order to accomplish this kind of real-life behaviour [Nag93b].
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4.3.2.1 Nagel-Schreckenberg TCA (STCA)

In 1992, Nagel and Schreckenberg proposed a TCA model that was able to repro-
duce several characteristics of real-life traffic flows, e.g., the spontaneous emergence
of traffic jams [Nag92b; Nag95a]. Their model is called the NaSch TCA, but is more
commonly known as the stochastic traffic cellular automaton (STCA). It explicitly
includes a stochastic noise term in one of its rules, which we present in the same fash-
ion as those of the previously discussed deterministic TCA models. The STCA then
comprises the following three rules (note that in Nagel and Schreckenberg’s original
formulation, they decoupled acceleration and braking, resulting in four rules):

R1: acceleration and braking

vi(t)← min{vi(t− 1) + 1, gsi
(t− 1), vmax}, (4.46)

R2: randomisation

ξ(t) < p =⇒ vi(t)← max{0, vi(t)− 1}, (4.47)

R3: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.48)

Like in both CA-184 and DFI-TCA deterministic TCA models (see Sections 4.3.1.1
and 4.3.1.2), the STCA contains a rule for increasing the speed of a vehicle and brak-
ing to avoid collisions, i.e., rule R1, equation (4.46), as well as rule R3, equation
(4.48), for the actual vehicle movement. However, the STCA also contains an addi-
tional rule R2, equation (4.47), which introduces stochasticity in the system. At each
time step t, a random number ξ(t) ∈ [0, 1[ is drawn from a uniform distribution. This
number is then compared with a stochastic noise parameter p ∈ [0, 1] (called the slow-
down probability); as a result, there is a probability of p that a vehicle will slow down
to vi(t)− 1 cells/time step. The STCA model is called a minimal model, in the sense
that all these rules are a necessity for mimicking the basic features of real-life traffic
flows.

According to Nagel and Schreckenberg, the randomisation of rule R2 captures
natural speed fluctuations due to human behaviour or varying external conditions.
The rule introduces overreactions of drivers when braking, providing the key to
the formation of spontaneously emerging jams.

Although the above rationale is widely agreed upon, much criticism was however
expressed due to this second rule. For example, Brilon and Wu believe that this
rule has no theoretical background and is in fact introduced quite heuristically
[Bri99].
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To get an intuitive feeling for the STCA’s system dynamics, we have provided two
time-space diagrams in Figure 4.13. Both diagrams show the evolution for a global
density of k = 0.2 vehicles/cell, but with p set to 0.1 for the left diagram, and p = 0.5
for the right diagram. As can be seen in both diagrams, the randomisation in the model
gives rise to many unstable artificial phantom mini-jams. The downstream fronts of
these jams smear out, forming unstable interfaces [Nag03a]. This is a direct result of
the fact that the intrinsic noise (as embodied by p) in the STCA model is too strong:
a jam can always form at any density, meaning that breakdown can (and will) occur,
even in the free-flow traffic regime. For low enough densities however, these jams
can vanish as they are absorbed by vehicles with sufficient space headways, or by new
jams in the system [Kra99]. It has been experimentally shown that below the critical
density, these jams have finite life times with a cut-off that is about 5 × 105 time
steps and independent of the lattice size. When the critical density is crossed, these
long-lived jams evolve into jams with an infinite life time, i.e., they will survive for an
infinitely long time [Nag94b; Nag95a; Sch99a].

Figure 4.13: Typical time-space diagrams of the STCA model (similar setup as for the CA-
184 TCA model in Figure 4.9). Both diagrams have a global density of k = 0.2 vehicles/cell.
Left: the evolution of the system for p = 0.1. Right: the evolution of the system, but now for
p = 0.5. The effects of the randomisation rule R2 are clearly visible in both diagrams, as there
occur many unstable artificial phantom mini-jams. Furthermore, the speed w of the backward
propagating kinematic waves decreases with an increasing p.

In free-flow traffic, a vehicle’s speed will fluctuate between vmax and vmax − 1, due
to the randomisation rule R2. We can compute the space-mean speed in the free-flow
regime by means of a weighted average. This average corresponds to the probability
1 − p for driving with the speed vmax and the probability p for slowing down to the
speed vmax − 1. As such, we get vsff =

∑
wivi/

∑
wi = [(1 − p)vmax + p(vmax −

1)]/[(1 − p) + p] = vmax − p. In agreement with the space-mean speed observed in
the left (k,vs) diagram of Figure 4.14, we can state that a vehicle will drive with an
average free-flow speed of vff = vmax − p.

As mentioned in Section 4.3.1.2, the slope of the free-flow branch in a (k,q) diagram
can be changed by adjusting vmax. Similarly, the slope of the congested branch can be
changed by tuning the slowdown probability p (note that this also affects the average
free-flow speed). Looking at the (k,q) diagram in the right part of Figure 4.14, we
note that an increase of p will on the one hand result in a smaller vff, and on the other
hand the congested branch will lie lower, with a smaller critical density kc. In this
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Figure 4.14: Left: several (k,vs) diagrams for the STCA, each for a different p ∈
{0.1, 0.5, 0.9}. It is clear from the diagram, that a vehicle will drive with an average free-flow
speed of vff = vmax − p. Right: several (k,q) diagrams for the same STCA models as before.
The slope of the congested branch tends toward zero for an increasing slowdown probability p.
Note that the seemingly small capacity drops at the critical density in the right part, are actually
finite-size effects [Nag95b; Kra97b].

latter case, the speed w of the backward propagating kinematic waves will decrease,
an effect that is also visible in the time-space diagrams of Figure 4.13. Note that the
presence of noise in the STCA model causes both free-flow and congested branches
of the (k,q) diagram to be slightly curved, as opposed to the perfectly linear branches
of the deterministic models.

If we set p = 0, then the STCA model becomes deterministic; additionally, setting
vmax = 1 will recover the CA-184 TCA model. In the other deterministic case, when
p = 1, the system behaves differently: in the congested state, all vehicles will come
to a full stop, thereby reducing the global flow in the system to zero. As a result,
the congested branch in the (k,q) regime will coincide with the horizontal axis. This
implies that the behaviour of a system with vmax and p = 1 is totally different than
that of a system with vmax − 1 and p = 0.

Considering local measurements of the density, flow, and space-mean speed, the (k,q)
diagrams in Figure 4.15 reveal that an increasing slowdown probability p, results in
(i) a lower value for the critical density, (ii) a lower capacity flow, and (iii) a more
localised scatter of the data points.

In Figure 4.16, we have plotted a histogram of the distributions of the STCA’s vehicles’
space gaps, for all global densities k ∈ [0, 1]. For very low densities, the distributions
have a distinct maximum, indicating that all vehicles travel with very large space gaps.
At higher densities, the maxima of the distributions shift toward smaller space gaps, as
more and more vehicles encounter jams, even leading to a reduction of their space gap
to zero. Around the critical density however, the distributions are smeared out across
consecutive densities, but for each of those densities they exhibit a bimodal structure.
Because the STCA contains many jams, the system now contains both vehicles in
free-flow traffic, as well as vehicles that are in a congested state (i.e., driving closer to
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Figure 4.15: Three (k,q) diagrams based on local measurements in the STCA model with
vmax = 5 cells/time step. Left: p = 0. Middle: p = 1

3 . Right: p = 2
3 . Points obtained in

the free-flow regime (i.e., for vs ≈ vmax cells/time step) are marked with a ◦, points obtained
in the congested regime with a ·, and points that imply heavy congestion (i.e., for vs < 1
cell/time step) with a ?. Note that for these local diagrams, the slopes of the congested branches
(indicated by the points marked as ?) are the negative of its corresponding slope in a global
diagram.

each other) [Cho98; Cho99a; Hel01b; Sch99a].
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Figure 4.16: A histogram of the distributions of the vehicles’ space gaps gs, as a function of
the global density k in the STCA (with vmax = 5 cells/time step and p = 0.5). In the contour
plot to the left, the thick solid line denotes the average space gap, whereas the thin solid line
shows its standard deviation. The grey regions denote the probability densities. The histograms
(A) and (B) to the right, show two cross sections made in the left contour plot at k = 0.1325
and k = 0.4000 respectively: for example, in (B), the distribution exhibits a distinct unique
maximum at the histogram class gs = 0 cells, corresponding to the dark region in the lower
right corner of the contour plot where high global densities occur.

In similar spirit, Figure 4.17 shows the distribution of the vehicles’ speeds and time
gaps. Corresponding with our observations of the (k,vs) diagrams in Figure 4.14, the
left part of Figure 4.17 shows a distinct cluster of probability mass at the histogram
class vmax − p for very low global densities. In this region, the standard deviation
of the space-mean speed is more or less constant and equal to p. At higher global
densities, the distributions become temporarily bimodal, after which they again tend
to a unique maximum of 0 cells/time step, corresponding to severely congested traffic;
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the standard deviation drastically encounters a maximum at the critical density, after
which it declines steadily. With respect to the distributions of the time gaps, the right
part of Figure 4.17 shows an rapidly decreasing median time gap as the critical dens-
ity is approached. At this density, the time gaps settle around a local cluster at the
minimum of 1 time step. Going to higher global densities, the number of stopped
vehicles increases rapidly, frequently resulting in infinite time gaps. From the critical
density on, all distributions exhibit a bimodal structure, corresponding to vehicles that
are caught inside a jam, and other vehicles that are able to move freely (possibly at a
lower speed) [Cho98; Gho98; Sch99a].
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Figure 4.17: Histograms of the distributions of the vehicles’ speeds v (left) and time gaps gt

(right), as a function of the global density k in the STCA (with vmax = 5 cells/time step and
p = 0.5). The thick solid lines denote the space-mean speed and median time gap, whereas the
thin solid line shows the former’s standard deviation. The grey regions denote the probability
densities.

4.3.2.2 STCA with cruise control (STCA-CC)

As mentioned in the previous Section 4.3.2.1, a typical artifact of the STCA model
is that it gives rise to many unstable artificial jams. Due to the noise inherent in
the model, a jam can always form at any density, even inducing a local breakdown of
traffic in the free-flow traffic regime. One way to remedy this, is by stabilising the free-
flow branch of the (k,q) diagram. This can be done by inhibiting the randomisation
for high-speed vehicles. To this end, Nagel and Paczuski considered again the rules
R1 – R3 of the STCA, i.e., equations (4.46) – (4.48), but now complemented with a
rule R0 [Nag95b]:

R0: determine stochastic noise

{
vi(t− 1) = vmax =⇒ p′(t)← 0,
vi(t− 1) < vmax =⇒ p′(t)← p,

(4.49)
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with now p replaced by p′(t) in the STCA’s randomisation rule R2, i.e., equation
(4.47). This new rule effectively turns off the randomisation for high-speed vehicles,
as only ‘jammed’ vehicles will now have stochastic behaviour. The resulting TCA
model, is called the STCA in the cruise-control limit, or STCA-CC for short. If we
set the maximum speed vmax = 1 cell/time step, then all jams initially present in
the system will coalesce with each other, giving rise to one superjam as depicted in
Figure 4.18. This superjam has been found to follow a random walk in the time-space
diagram [Nag95b; Nag96]. Note that vmax > 1 cell/time step does not alter the critical
behaviour of the model, even though jam clusters are now branching, having regions
of free-flow traffic in between them [Nag96].

Figure 4.18: A time-space diagram of the STCA-CC model for vmax = 1 cell/time step and
a global density of k = 0.4 vehicles/cell. The shown lattice contains 300 cells, with a visible
period of 1000 time steps. We can see over ten initial jams evolving, coalescing over time into
one superjam. The system exhibits two distinct phases, i.e., a free-flow and a congested regime
with vs = 1 and vs = 0 cells/time step respectively.

In Figure 4.19, we show the (k,vs) and (k,q) diagram of the STCA-CC with vmax = 5
cells/time step and p = 0.2. As can be seen in the right part, the (k,q) diagram has a
typical inverted λ shape, corresponding to the diagram in the left part of Figure 2.11
in Section 2.5.3. The STCA-CC is said to be bistable, in that both the free-flow as
well as the congested branches of the (k,q) diagram are stable (the former because it
is noise-free). Vehicles going from the free-flow to the congested regime encounter at
the critical density a phenomenon much like a capacity drop. The reverse transition to
the free-flow branch proceeds via a lower density and, correspondingly, a lower flow
(which is the outflow qout of a jam). Comparing the right parts of Figure 4.14 and
Figure 4.19, it is evident that a destabilisation of the free-flow branch forms the main
reason for a lower capacity flow, reached at a lower critical density.

To conclude our discussion of the STCA-CC, we note that the use of cruise control as
an ADAS can have unintended consequences. The traffic system can be perceived as
having an underlying critical point, at which the life times of jams switch from finite
to infinite (see our discussion at the beginning of Section 4.3.2.1). The existence of
this point is closely tied to the self-organised criticality (SOC) of the STCA model:
the outflow from an infinite jam automatically self-organises to a state of maximum
attainable flow [Bak88; Nag93b; Nag95a; Tur99]. Stabilising the free-flow branch
with cruise-control measures, results on the one hand in traffic higher achievable flows
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Figure 4.19: Two (k,vs) (left) and (k,q) (right) diagrams for the STCA-CC model, with
vmax = 5 cells/time step and p = 0.2. The thick solid line denotes global measurements that
were obtained when starting from homogeneous initial conditions; the thin solid line is based on
a compact superjam as the initial condition (see Section 4.3 for an explanation of these condi-
tions). The right part clearly shows a typical reversed λ shape, which indicates a capacity drop.
Note that the observed smaller drop in flow for the compact superjam, is actually a finite-size
effect [Nag95b; Kra97b].

which is beneficial, but on the other hand the system is driven closer to its critical point
which is more dangerous. At this stage, travel times will experience a high degree of
variability, thereby reducing its predictability [Nag94c; Nag95b; Nag95a].

4.3.2.3 Stochastic Fukui-Ishibashi TCA (SFI-TCA)

In Section 4.3.1.2, we discussed the deterministic FI-TCA which is a generalisation of
the CA-184 TCA model. In their original formulation, Fukui and Ishibashi also intro-
duced stochasticity, but now only for vehicles driving at the highest possible speed of
vmax cells/time step [Fuk96]. We can express the rules of this model, by considering
the rules R2 and R3 of the STCA, i.e., equations (4.47) and (4.48), but now com-
plemented with the DFI-TCA’s rule R1 for instantaneous accelerations, i.e., equation
(4.42) of Section 4.3.1.2, and, as in the STCA-CC model, an extra rule R0:

R0: determine stochastic noise

{
vi(t− 1) = vmax =⇒ p′(t)← p,
vi(t− 1) < vmax =⇒ p′(t)← 0,

(4.50)

with now p replaced by p′(t) in the randomisation rule R2. It can be seen that for
vmax = 1, the SFI-TCA and STCA models are the same. Furthermore, for p = 0
the SFI-TCA becomes fully deterministic, and in contrast to the STCA’s zero-flow
behaviour (see Section 4.3.2.1), the SFI-TCA’s p = 1 case corresponds to the STCA
with p = 0 and vmax − 1.
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The rationale behind the specific randomisation in the SFI-TCA model, is that drivers
who are moving at a high speed, are not able to focus their attention indefinitely. As a
consequence, there will be fluctuations at these high speeds. As such, this corresponds
to the opposite of a cruise-control limit, e.g., the STCA-CC model. There will be no
capacity drop, but the effect on the (k,vs) diagram is that its free-flow branch will
become slightly downward curving, starting at vs = vmax − p for k = 0.

To conclude, we mention the related work of Wang et al., who studied the SFI-TCA
both analytically and numerically, providing an exact result for p = 0, and a close
approximation for the model with p 6= 0 [Wan98]. Based on the SFI-TCA, Wang
et al. developed a model that is subtly different. They assumed that drivers do not
suffer from concentration lapses at high speeds, but are instead only subjected to the
random deceleration when they are driving close enough to their direct frontal leaders
[Wan01]. And finally, we mention the work of Lee et al., who incorporate anticipation
with respect to a vehicle’s changing space gap gs as its leader is driving away. This
results in a higher capacity flow, as well as the appearance of a synchronised-traffic
regime, in which vehicles have a lower speed, but are all moving [Lee02].

4.3.2.4 Totally asymmetric simple exclusion process (TASEP)

The simple exclusion process is a simplified well-known particle transport model from
non-equilibrium statistical mechanics, defined on a one-dimensional lattice. In the
case of open boundary conditions (i.e., the bottleneck scenario), particles enter the
system from the left side at an entry rate α, move through the lattice, and leave it
at an exit rate β. The term ‘simple exclusion’ refers to the fact that a cell in the
lattice can only be empty, or occupied by one particle9. When moving through the
lattice, particles move one cell to the left with probability γ, and one cell to the right
with probability δ. When γ = δ, the process is called the symmetric simple exclu-
sion process (SSEP); if γ 6= δ, then it is called the asymmetric simple exclusion
process (ASEP) [Der92]. Finally, if we set γ = 0 and δ = 1, the system is called
the totally asymmetric simple exclusion process (TASEP). If we consider the TASEP
as a TCA model, then all vehicles move with vmax = 1 cell/time step to their direct
right-neighbouring cell, on the condition that this cell is empty.

Updating the configuration of CA essentially amounts to updating the states of all
its cells. In general, there are two methods for the update procedure [Raj96; Raj98;
Wöl05]:

Sequential update
This updating procedure considers each cell in the lattice one at a time.
If all cells are considered consecutively, two updating directions are pos-
sible: left-to-right and right-to-left. There is also a third possibility, called
random sequential update. Under this scheme and with N particles in the

9Note that some authors refer to the TASEP as a ‘stochastic’ exclusion process, which actually is an
incorrect terminology.
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lattice, each time step is divided in N smaller substeps. At each of these
substeps, a random cell (or vehicle) is chosen and the CA rules are ap-
plied to it. As a consequence of the updating procedure, each particle is
on average updated after N smaller substeps, which introduces a certain
amount of noise in the system. We have depicted several typical time-
space diagrams for the ASEP with γ = 1−δ in Figure 4.20. Furthermore
note that a hidden assumption here is that, after completing a substep, the
local information is immediately available to the whole system, which
can violate causality (as information is now transmitted through the lat-
tice at an infinite speed).

Parallel update
This is the classical update procedure that is used for all TCA models
discussed in this dissertation. For a parallel update, all cells in the sys-
tem are updated in one and the same time step. Compared to a sequential
updating procedure, this one is computationally more efficient (note that
it is equivalent to a left-to-right sequential update). There is however one
peculiarity associated with this updating scheme: because all particles
are considered simultaneously, certain lattice configurations can not ex-
ist, i.e., the Garden of Eden (GoE) states mentioned in Section 4.1.2. An
example of such a paradisiacal state, is two vehicles right behind each
other, with the following having a non-zero speed. This state would im-
ply that in single-lane traffic, the FIFO property was violated and con-
sequently a collision occurred. Such GoE states do not exist when using
a random sequential update.

In Figure 4.21, we have depicted two time-space diagrams for the TASEP with a ran-
dom sequential updating procedure, operating on a closed loop. As can be seen, the
diagrams qualitatively look the same, and have some of the same characteristic fea-
tures of the time-space diagrams in Figure 4.20. For the TASEP, there is no free-flow
regime, there are no large jams in the system, and, because of the random sequential
update, all vehicles continuously have the tendency to collide with each other. As a
consequence, the system is littered with mini-jams in both the low and high density
regimes [Nag95a; Nag96]. Note that the TASEP with open boundary conditions ex-
hibits a very rich behaviour, depending on the values for the entry and exit rates α and
β, respectively [Kol98; San99; Sch02a].

With respect to the relations between the TASEP with a random sequential update and
other models, we mention the following two analogies: on the one hand, the LWR
first-order macroscopic traffic flow model (see Section 3.2.1.2) corresponds to the
TASEP in the hydrodynamic limit to a noisy and diffusive conservation law, which
can be reduced to the LWR model [Nag95a; Nag96]. On the other hand, the TASEP
corresponds to the STCA (see Section 4.3.2.1), but now with vmax = 1 cell/time step
[Cho00; Hel01b].

To gain more insight into the macroscopic behaviour of the TASEP with random se-
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Figure 4.20: Typical time-space diagrams of the asymmetric simple exclusion process (ASEP
model) with a random sequential update and γ = 1 − δ. The shown lattices each contain 400
cells, with a visible period of 400 time steps (note that for clarity, the space and time axes
are located horizontally and vertically, respectively). The global densities in the systems were
set for each row to k ∈ {0.1, 0.3, 0.5, 0.7, 0.9} vehicles/cell. For each column, the ASEP’s
probability to move to the left was set to γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

quential update, we provide its (k,vs) and (k,q) diagrams in Figure 4.22. Looking at
the (k,vs) diagram on the left part, we notice that the TASEP with vmax = 1 cell/time
step corresponds exactly to Greenshields’ original linear relation between the dens-
ity and the mean speed (see Figure 2.6 in Section 2.5.2.1). This in fact is a further
testimony of the close link between the TASEP and the LWR model with a triangular
qe(k) fundamental diagram. Increasing the TASEP’s maximum speed, leads to a more
curved relation, intersection the vertical axis at the point (0,vmax). In any case, the
(k,vs) diagram also reveals the absence of a distinct free-flow branch, corresponding
to the observations of the large amount of mini-jams for all global densities, as could
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be seen in the time-space diagrams of Figure 4.21.
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Figure 4.21: Typical time-space diagrams of the TASEP model with a random sequential
update. The shown lattices each contains 300 cells, with a visible period of 580 time steps. The
global density in the system was set to k = 0.3 vehicles/cell (left), and k = 0.7 vehicles/cell
(right). The evolution of the system dynamics qualitatively looks the same in both diagrams:
the system is littered with mini-jams in both the low and high density regimes.

Studying the (k,q) diagram in the right part of Figure 4.22, we can see that the TASEP
corresponds with the STCA for vmax = 1 and an arbitrary slowdown probability (e.g.,
p = 0.1). The diagram also shows how the CA-184 leads to a sharp transition between
the free-flow and the congested regime, as opposed to the rounded peak of capacity
flow at k = 0.5 vehicles/cell for the STCA. However, whereas the TASEP also has
its capacity flow at the same value, there does not occur such a phase transition as in
the other models. Finally, we can see that increasing the maximum speed vmax for the
TASEP introduces no significant qualitative changes, except for a skewing towards
lower densities [Nag95a].

Note that with respect to the computational complexity of the implemented TCA
models, most measurements in this dissertation took a few hours to obtain, using
an Intel P4 2.8 GHz with 512 MB RAM, running the JavaTM JDK 1.3.1 under
Windows 2000. In sharp contrast to this, are the computations for the TASEP
model, which took nearly two weeks to complete.

4.3.2.5 Emmerich-Rank TCA (ER-TCA)

Whereas the classical STCA model provided a reasonable qualitative agreement with
real-world observations, Emmerich and Rank addressed the quantitative discrepancies
between the model and real-world data. To this end, they proposed a variation on the
STCA, extending the influence of the space gap on a vehicles updated speed [Emm97].

In their work, Emmerich and Rank fundamentally modified the STCA in two steps:
(i) they changed the parallel update procedure to a right-to-left sequential update pro-
cedure (see Section 4.3.2.4 for more details), and (ii) they changed the behaviour of
vehicles that are slowing down. In a nutshell, (i) leads to the important result that
vehicles are now able to drive directly behind each other (i.e., with a zero space gap)
at high speeds, because the gaps in a traffic stream are used more efficiently. The
reason is that due to the specific sequential update, a downstream vehicle is moved
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Figure 4.22: A comparison of the (k,vs) (left) and (k,q) (right) diagrams for the CA-184 with
vmax = 1 (∆), the STCA with vmax = 1 and p = 0.1 (?), the TASEP with random sequential
update and vmax = 5 (◦), and the TASEP with random sequential update and vmax = 1 (thick
solid line). Some distinct characteristics of the TASEP are the absence of a free-flow regime,
and for vmax = 1 cells/time step, the exact correspondence with Greenshields linear relation
between the density and the mean speed.

first (for a closed loop, the vehicle with the largest space gap is chosen first), after
which the next vehicle upstream will see a larger space gap.

Just as the STCA can be seen as a special case of the optimal velocity model, based on
a linear optimal velocity function (see Section 3.2.3.2), the ER-TCA model generalises
this function by making a vehicle’s speed dependent on a variable safe distance and
its current speed [Cho00]. This affects (ii), i.e., vehicles that are slowing down: when
determining the new speed of a vehicle, the ER-TCA model first checks if the vehicle
is within 10 cells of its direct frontal leader. If this is the case, then the vehicle will
slow down according to a table lookup in a gap-speed matrix Mgsi ,vi

. This matrix is
constructed in such a way that collisions are avoided (i.e., Mi,j ≤ min{i, j}):

MT =




0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1
0 1 2 2 2 2 2 2 2 2 2
0 1 2 3 3 3 3 3 3 3 3
0 1 2 3 4 4 4 4 4 4 4
0 1 2 3 4 4 4 4 4 4 5




(4.51)

The matrix in equation (4.51), conveys the idea that lower speeds require lower space
gaps, and that vehicles tend to keep larger space gaps when travelling at higher speeds.
This latter effect is also visible in the distribution of the vehicles’ space gaps, as visual-
ised in the histograms in the left part of Figure 4.23, where, in contrast to the STCA’s
space gaps distribution of Figure 4.16, large space gaps are observed for densities
near the critical density. Furthermore, because of this mechanism, vehicles will have
smoother decelerations, instead of the abrupt slowing down in the STCA model and
some of its variations.
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Figure 4.23: Histograms of the distributions of the vehicles’ space gaps gs (left) and time gaps
gt (right), as a function of the global density k in the ER-STCA (with vmax = 5 cells/time
step and p = 0.35). The thick solid lines denote the mean space gap and median time gap,
whereas the thin solid line shows the former’s standard deviation. The grey regions denote the
probability densities.

To understand some of the system dynamics of the ER-TCA model, we have provided
several (k,vs) and (k,q) diagrams in Figure 4.24. For p = 0.35, we can see in the (k,q)
diagram in right part, that the free-flow branch gets curved, implying that vehicles
travel at a slightly lower speed when they approach the capacity-flow regime. Be-
cause vehicles can travel at high speeds in dense platoons, the ER-TCA model can
achieve very high capacity flows, even leading to q > 1 vehicle/time step. In order
to constrain these flows to realistic values, the ER-TCA model needs a quite high
slowdown probability, e.g., p = 0.35.

These two effects, i.e., a curving of the free-flow branch and an increased capacity
flow, are basically what the ER-TCA model is all about, as there is no qualitative
change in the congested branch of the (k,q) diagram. There are however some serious
drawbacks to the ER-TCA model. First and foremost, the (k,q) diagram is no longer
non-monotonic for low densities when the sequential update is replaced by a parallel
one [Cho00; Kno04]. Secondly, the model exhibits too large time headways in the
free-flow regime when compared with real-world data. This effect is also visible in the
distribution of the vehicles’ time gaps, as depicted in the histograms in the right part
of Figure 4.23, where, in contrast to the STCA’s time gaps distribution of Figure 4.17,
a large amount of finite time gaps extends well into the region of medium densities.
Third, due to the sequential update, the ER-TCA model’s downstream jam dynamics
are unstable, just as in the STCA model [Kno04]. Fourth, as can be seen from the
(k,vs) diagram in the left part of Figure 4.24, for small slowdown probabilities p, the
resulting space-mean speed in the system is very unrealistic, even including plateaus
of constant speed in the congested regime, e.g., the curve associated with p = 0.1 (we
consider p = 0 as a degenerate case).
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Figure 4.24: Left: several (k,vs) diagrams for the ER-TCA, each for a different slowdown
probability p. It is clear from the diagram, that for low values of p, the resulting diagrams are
unrealistic, including plateaus of constant space-mean speed in the congested regime. Right:
several (k,q) diagrams for the same ER-TCA models as before. Due to the system dynamics
in the ER-TCA, very high capacity flows are possible. To constrain these flows, the slowdown
probability p has to be quite large in order to obtain realistic results. In both parts of the fig-
ure, the thick solid line denotes the original model of Emmerich and Rank, who used a value
p = 0.35 as their best fit to experimental data.

4.3.3 Slow-to-start models

In order to obtain a correct behavioural picture of traffic flow breakdown and stable
jam, it is necessary that a vehicle’s minimum time headway or reaction time should be
smaller than its escape time from a jam, or equivalently, the outflow from a jam (i.e.,
the queue discharge rate) must be lower than its inflow [Eis98; Kra99; Kay01; Jos02;
Jos03a; Nag03a]. If this is not the case, as in, e.g., the STCA model where both times
are exactly the same, then all jams will be unstable, as can be seen in the time-space
diagram of Figure 4.13. Because of their unstable jamming behaviour, the previously
discussed stochastic models, experience neither a capacity drop nor a hysteresis loop,
for which stable jams are a necessary prerequisite. Although the STCA-CC seems to
be an exception to this rule, the downstream fronts of its jams are still too unstable, in
the sense that new jams can emerge all too easily, which is unrealistic behaviour with
respect to real-life traffic flows [Wol99].

As just mentioned, one mechanism that deals with this, is by leaving free-flow traffic
undisturbed, and by significantly reducing the outflow from a jam once a breakdown
occurs, thereby stabilising the downstream front of a jam. Instead of just eliminating
the noise in free-flow traffic in the STCA-CC, this reduced outflow can also be ac-
complished more intuitively, by making the vehicles wait a short while longer before
accelerating again from stand still. As such, they are said to be “slow to start”.

Note that there exists yet another mechanism that allows for the reproduction of the
capacity drop and hysteresis phenomena (we will only briefly mention it here). The
approach followed by Werth, is based on the premise that drivers take into account
the speed difference with their direct frontal leader, instead of just the space gap as
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was previously assumed. This leads to Galilei invariant vehicle-vehicle interactions
(i.e., the system dynamics remain the same if a new linear moving coordinate sys-
tem is substituted in the equations). Interestingly, the metastability in this model is
not due to cruise control or slow-to-start rules, but rather a result of the anticipation
adopted. The model can exhibit stable dense platoons of fast vehicles, resulting in a
stabilisation of the free-flow branch, and consequently leading to hysteretic behaviour
[Wer98; Wol99; Cho00].

With respect to real-world units, we give some typical values associated with
the capacity drop and hysteresis phenomena (based on [Wol99]): an out-
flow qout ≈ 1800 vehicles/hour/lane at an associated density of kout ≈ 20
vehicles/km/lane, with qcap, kcrit, and kjam equal to 2700 vehicles/hour/lane, 20
vehicles/km/lane, and 140 vehicles/km/lane, respectively.

4.3.3.1 Takayasu-Takayasu TCA (T2-TCA)

In 1993, Takayasu and Takayasu proposed a deterministic TCA model, based on the
CA-184 (see Section 4.3.1.1), that incorporated a delay in acceleration for stopped
vehicles [Tak93]. Their motivation stems from the fact that high-speed vehicles are
in general able to decelerate very quickly, but conversely, it takes them a lot longer to
attain this high speed when they start from a stopped condition. As such, Takayasu
and Takayasu introduced a delay, based on the rationale that a vehicle will only start
to move when it recognises movement of its direct frontal leader. Translating this into
a rule set, we can write the T2-TCA’s rules based on those of the CA-184, but now
with the following modifications (note that vmax = 1 cell/time step):

R1: braking

vi(t− 1) > gsi
(t− 1) =⇒ vi(t)← gsi

(t− 1), (4.52)

R2: delayed acceleration

vi(t− 1) = 0 ∧ gsi
(t− 1) ≥ 2 =⇒ vi(t)← 1, (4.53)

R3: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.54)

From this rule set it follows that a vehicle will always drive at a speed of one cell/time
step, unless it has to brake and stop according to rule R1, equation 4.52. Furthermore,
the vehicle is only allowed to accelerate again to this speed of one cell/time step, on
the condition that it has a sufficiently large space gap in front, as dictated by rule R2,
equation 4.53. As a result, the introduced delay is spatial in nature, and it only affects
stopped vehicles.
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In Figure 4.25, we have depicted the resulting (k,vs) and (k,q) diagrams for the T2-
TCA model. The observed behaviour is similar to that of the STCA-CC model in
Section 4.3.2.2, in that the T2-TCA model also exhibits bistability. Starting from ho-
mogeneous initial conditions, the space-mean speed in the system undergoes a sharp
drop once a vehicle has to stop. The reverse process, i.e., going from the congested
to free-flow regime, is accompanied by a smooth continuous transition. Takayasu and
Takayasu state that this corresponds to a second-order phase transition, because their
order parameter (the sum of the jamming times) follows a power-law distribution,
with jam times tending to infinity once the system goes beyond the critical density.
With respect to the T2-TCA’s tempo-spatial behaviour, we note that the critical dens-
ity for the former transition is located at kc = 0.5 vehicles/cell, at which point all
vehicles travel at a speed of one cell/time step with all space gaps equal to one cell.
The density at which the recovery associated with latter transition occurs, is equal to
k = 1

3 vehicles/cell, at which point all vehicles travel at a speed of one cell/time step,
but now with all space gaps equal to two cells. Fukui and Ishibashi later modified
the delaying process, resulting in a system that always relaxes to a state in which the
space-mean speed oscillates between two values, both smaller than one cell/time step
[Fuk97].
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Figure 4.25: Two (k,vs) (left) and (k,q) (right) diagrams for the T2-TCA model, with vmax = 1
cells/time step. The thick solid line denotes global measurements that were obtained when
starting from homogeneous initial conditions; the thin solid line is based on a compact superjam
as the initial condition (see Section 4.3 for an explanation of these conditions). The right part
clearly shows a typical reversed λ shape, which indicates a capacity drop.
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The original background for Takayasu and Takayasu’s work, was based on the
presence of so-called 1/f noise (also known as pink noise or flicker noise) in the
Fourier transformed density fluctuations of motorway traffic. The seemingly ran-
dom stop-and-go motions of jammed vehicles, could indicate a chaotic behaviour
(as opposed to just statistical noise), closely coupled with self-organised critical-
ity (see also the end of Section 4.3.2.2) [Nag93b]. In the free-flow regime of the
T2-TCA model, jams have a finite life time leading to a flat spectrum, as opposed
to the congested regime where jams have an infinite life time, leading to a 1/f
spectrum [Tak93].

Schadschneider and Schreckenberg later provided a generalisation of the T2-TCA
model: keeping vmax = 1 cell/time step, they now modified the braking and accel-
eration behaviour of a vehicle. On the one hand, they kept Takayasu and Takayasu’s
original acceleration rule R2, equation (4.53), and on the other hand, they allowed a
vehicle with a space gap of just one cell to accelerate with a slow-to-start probabil-
ity 1 − pt [Sch97c]. They furthermore also introduced a randomisation for moving
vehicles, similar to the STCA (see Section 4.3.2.1), making vehicles stop with a slow-
down probability p. Several interesting phenomena occur for certain values of both
probabilities p and pt. The modified spatial slow-to-start rule can lead to the appear-
ance of an inflection point in the (k,q) diagram at very high densities. The effect gets
strongly exaggerated when pt → 1, at which point a completely blocked state of zero
flow appears for all global densities k ≥ 0.5 vehicles/cell [Sch97c; San99; Cho00].

4.3.3.2 The model of Benjamin, Johnson, and Hui (BJH-TCA)

Around the same time that Takayasu and Takayasu proposed their T2-TCA model,
Benjamin, Johnson, and Hui (BJH) constructed another type of TCA model, using a
slow-to-start rule that is of a temporal nature [Ben96]. Their BJH-TCA model is based
on the STCA (see Section 4.3.2.1), but extended it with a rule that adds a small delays
to a stopped car that is pulling away from the downstream front of a queue. Benjamin
et al. attribute this rule to the fact that it mimics the behaviour of a driver who moment-
arily looses attention, or when a vehicle’s engine is slow to react. Their slow-to-start
rule allows a stopped vehicle to move again with this slow-to-start probability 1− ps.
If the vehicle did not move, then it tries to move again but this time with probability
ps. Due to this peculiar acceleration procedure, all vehicles require a memory that, as
mentioned before, makes the slow-start-rule temporal in nature [Cho00]. As a result
of this new systematic behaviour, jams will now become less ravelled (as opposed to
the STCA), because the slow-to-start rule will have the tendency to merge queues.

The BJH-TCA model was also applied to the description of a motorway with an on-
ramp, leading to the conclusions that (i) it actually is beneficial to have jams on the
main motorway, due to the fact that these jams homogenise the traffic streams as they
compete for stopped vehicles, and (ii) it is desirable to set a maximum speed limit on
this main motorway which allows to maximise the performance of the on-ramp. Note
that in their discussion, Benjamin et al. used the queue length at the on-ramp as a
performance measure. In our opinion, this is not a very good choice as it ignores, e.g.,
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the total time spent in the system, which we believe is a more important measure (see
also the work of Bellemans [Bel03] and Hegyi [Heg01] in this respect).

To conclude, we note that the (k,q) diagrams of the BJH-TCA and T2-TCA models
qualitatively look the same, with the exception that the former does not have the pos-
sibility of an inflection point, or a density region with zero flow, as was the case for
the latter model (see Section 4.3.3.1) [Sch97c; San99].

4.3.3.3 Velocity-dependent randomisation TCA (VDR-TCA)

As already explained in the introduction of this section, reducing the outflow from
a jam is responsible for the capacity drop and hysteresis phenomenon. To this end,
Barlović et al. proposed a TCA model that generalises the STCA model (see Sec-
tion 4.3.2.1) by employing an intuitive slow-to-start rule for stopped vehicles [Bar98;
Bar03]. Similar to the STCA-CC (see Section 4.3.2.2), the complete rule set for the
VDR-TCA is as follows:

R0: determine stochastic noise
{

vi(t− 1) = 0 =⇒ p′(t)← p0,
vi(t− 1) > 0 =⇒ p′(t)← p,

(4.55)

R1: acceleration and braking

vi(t)← min{vi(t− 1) + 1, gsi
(t− 1), vmax}, (4.56)

R2: randomisation

ξ(t) < p′(t) =⇒ vi(t)← max{0, vi(t)− 1}, (4.57)

R3: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.58)

As before, in rule R2, equation (4.57), ξ(t) ∈ [0, 1[ denotes a uniform random number
(specifically drawn for vehicle i at time t) and p′(t) is the stochastic noise parameter,
dependent on the vehicle’s speed (hence the name ‘velocity-dependent randomisa-
tion’). The probabilities p0 and p are called the slow-to-start probability and the slow-
down probability, respectively, with p0, p ∈ [0, 1]. Note that Barlović et al. only
considered the case with two different noise parameters (i.e., p0 and p), ignoring the
more general case where we can have a noise parameter for each possible speed (i.e.,
p0, . . . , pvmax ). Their model was also considered for systems with open boundary con-
ditions [Bar02c].

Depending on their speed, vehicles are subject to different randomisations: typical
metastable behaviour results when p0 � p, meaning that stopped vehicles have to wait
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longer before they can continue their journey. This has the effect of a reduced outflow
from a jam, so that, in a closed system, this leads to an equilibrium and the formation
of a compact jam. For such a typical situation, e.g., p0 = 0.5 and p = 0.01, the tempo-
spatial evolution is depicted in Figure 4.26. We can see an initially homogeneous
traffic pattern (one metastable phase) breaking down and kicking the system into a
phase-separated state, consisting of a compact jam surrounded by free-flow traffic. In
such a state, traffic jams in the system will absorb as many vehicles as is necessary,
in order to have a free-flow phase in the rest of the system [Hel01b]. For rather small
values of p0 (i.e., a weak slow-to-start property), the system will exhibit a single phase,
just as in the classical STCA model. For larger values of p0 (i.e., a weak slow-to-
start property), the system typically exhibits two phases like in a gas-liquid analogy
[Jos03a; Jos03b]. Note that the VDR-TCA can also be equipped with a cruise control,
by turning of fluctuations for vehicles driving at the maximum speed vmax, thereby
stabilising the free-flow branch.

Figure 4.26: A time-space diagram of the VDR-TCA model for vmax = 5 cells/time step,
p0 = 0.5, p = 0.01, and a global density of k = 1

6 vehicles/cell. The shown lattice contains
300 cells, with a visible period of 1000 time steps. We can see the breakdown of an initially
homogeneous traffic pattern. As the phase separation takes place, a persistent compact jam is
formed, surrounded by free-flow traffic. The significant decrease of the density in the regions
outside the jam results from the jam’s reduced outflow.

In the left part of Figure 4.27, we have plotted a histogram of the distributions of
the vehicles’ speeds, for all global densities k ∈ [0, 1]. Here we can clearly see the
distinction between the free-flow and the congested regime: the space-mean speed
remains more or less constant at a high value, then encounters a sharp transition (i.e.,
the capacity drop), resulting in a steady declination as the global density increases.
Note that as the critical density is encountered, the standard deviation jumps steeply;
this means that vehicles’ speeds fluctuate wildly at the transition point (because they
are entering and exiting the congestion waves). Once the compact jam is formed, the
dominating speed quickly becomes zero (because vehicles are standing still inside the
jam). Although most of the weight is attributed to this zero-speed, there is a non-
negligible maximum speed present for intermediate densities. If the global density
is increased further towards the jam density, this maximum speed disappears and the
system settles into a state in which all vehicles either have speed zero or one (i.e.,
systemwide stop-and-go traffic).
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Figure 4.27: Left: a contour plot containing the histograms of the distributions of the vehicles’
speeds v as a function of the global density k in the VDR-TCA (with vmax = 5 cells/time step,
p0 = 0.5 and p = 0.01). The thick solid line denotes the space-mean speed, whereas the thin
solid line shows its standard deviation. The grey regions denote the probability densities. Right:
a (k,q) diagrams for the same TCA model. The dotted line denotes global measurements that
were obtained when starting from homogeneous initial conditions; the solid line is based on
a compact superjam as the initial condition. The right part clearly shows a typical reversed λ

shape, which indicates a capacity drop.

Studying the (k,q) diagram in the right part of Fig. 4.27, gives us another view of this
phase transition. We can see a capacity drop taking place at the critical density, where
traffic in its vicinity behaves in a metastable manner. This metastability is character-
ised by the fact that sufficiently large disturbances of the fragile equilibrium can cause
the flow to undergo a sudden decrease, corresponding to a first-order phase transition.
The state of very high flow is then destroyed and the system settles into a phase separ-
ated state with a large megajam and a free-flow zone. The large jam will persist as long
as the density is not significantly lowered, thus implying that recovery of traffic from
congestion follows a hysteresis loop. In contrast to the STCA-CC’s bistability, the
VDR-TCA model is truly metastable, because now the free-flow branch in the (k,q)
diagram becomes unstable for large enough perturbations. Furthermore, the spontan-
eous formation of jams in the downstream front that troubled the STCA, is suppressed
in the VDR-TCA model.

Note that if p0 � p, then the behaviour of the system will be drastically different.
Four distinct traffic regimes emerge in the limiting case where p0 = 0 and p =
1; in this case, the model is called fast-to-start [Gra01]. In these four regimes,
moving vehicles can never increase their speed once the system has settled into
an equilibrium. Furthermore, there exists a regime which experiences forward
propagating density waves, corresponding to a non-concave region in the system’s
flow-density relation. For more information, we refer to our work in [Mae04f] and
[Mae04g].



i

i

i

i

i

i

i

i

190 Chapter 4 – Traffic cellular automata

4.3.3.4 Time-oriented TCA (TOCA)

Considering the STCA model (see Section 4.3.2.1), Brilon and Wu acknowledged the
fact that it is quite capable of reproducing traffic dynamics in urban street networks.
However, they also recognised the fact that the model performed rather inadequate
when it comes to correctly describing the characteristics of traffic flows on motor-
ways, e.g., compared to field data of a German motorway. Brilon and Wu blamed the
unrealistic car-following behaviour of the STCA model for its inferior capabilities.
At the core of their argument, they attributed this to the fact that the STCA model
is exclusively based on spatial variables (e.g., space headways). In order to alleviate
these problems, they proposed to use a model that was based on temporal variables
(e.g., time headways), leading to more realistic vehicle-vehicle interactions [Bri99].
The rule set for this time-oriented TCA model (TOCA) is as follows:

R1: acceleration

gsi
(t− 1) > (vi(t− 1) · gts) ∧

ξ1(t) < pacc

=⇒ vi(t)← min{vi(t− 1) + 1, vmax},
(4.59)

R2: braking

vi(t)← min{vi(t), gsi
(t− 1)}, (4.60)

R3: randomisation

gsi
(t− 1) < (vi(t− 1) · gts) ∧

ξ2(t) < pdec

=⇒ vi(t)← max{vi(t)− 1, 0},
(4.61)

R4: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.62)

In the above rules, ξ1(t), ξ2(t) ∈ [0, 1[ are random numbers drawn from a uniform
distribution, gts ≥ ∆T is the safe time gap, pacc is the acceleration probability, and
pdec is the deceleration probability. Because all interactions between vehicles in the
STCA are bounded by the update time step, their speeds will never oscillate, leading
to a rigid and stable system. As a consequence of the TOCA’s temporal rules however,
vehicles will now behave more elastically, taking a safe time gap into account that
allows them to adapt their speeds with a relaxation. In this case, a vehicle will resort
to emergency braking (i.e., an instantaneous deceleration) only if it gets too close to its
direct frontal leader [Nag03a]. Typical parameter values for the TOCA are gts = 1.2
time steps and pacc = pdec = 0.9. Brilon and Wu also extended their model with
rudimentary rules that allowed for lane changes on unidirectional multi-lane roads.
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In the left part of Figure 4.28, we can see a similar tempo-spatial behaviour as with
the VDR-TCA (see Section 4.3.3.3), in that an initially homogeneous traffic pattern
breaks down, resulting in dilute jam that is surrounded by free-flow traffic. The major
difference between jamming in the VDR-TCA and TOCA models however, is that in
the former model, vehicles come to a complete stop when entering a jam (see Fig-
ure 4.26). They remain stationary until they can leave the downstream front of the
queue. In contrast to this, the jams in the TOCA model contain moving vehicles.
Pushing the global density even further to k = 0.5 vehicles/cell as was done in the
right part of Figure 4.28, results in a fully developed jam that dominates the entire
system and contains temporarily stopped vehicles.

Figure 4.28: Typical time-space diagrams of the TOCA model for vmax = 5 cells/time step,
gts = 1.2 time steps, and pacc = pdec = 0.9. The global density was set to k = 1

6 vehicles/cell
(left) and k = 0.5 vehicles/cell (right). The shown lattices each contain 300 cells, with a visible
period of 580 time steps. In the left part, we can see the breakdown of an initially homogeneous
traffic pattern, resulting in dilute jam that is surrounded by free-flow traffic. In the right part, we
see a fully developed jam, dominating the entire system. As can be seen, for moderately light
densities, the jams in the TOCA model contain moving vehicles.

Figure 4.29 depicts two groups of (k,q) diagrams for the TOCA model, with vmax =
5 cells/time step. The left part shows four diagrams for different combinations of
pacc and pdec ∈ {(0.9, 0.1), (0.9, 0.9), (0.1, 0.1), (0.1, 0.9)}, each time with g ts = 1.2
time steps. As can be seen, the default case with pacc = pdec = 0.9 leads to an
inflection point at a moderately high density of k = 0.5 vehicles/cell, resulting in two
different slopes for the congested branch of the TOCA’s (k,q) diagram. At this point,
vehicles will have average space gaps less than one cell, and because pdec is rather
high, vehicles will have the tendency to slow down (and pacc is smaller then one, so
their acceleration is somewhat inhibited). As a result, a large jam, comparable to the
system’s size, will dominate tempo-spatial evolution. Furthermore, the acceleration
probability pacc should take on rather high values, otherwise the global flow in the
system is too low because vehicles are not accelerating anymore. In the right part of
Figure 4.29, we have shown a large amount of diagrams for different gts with pacc =
pdec = 0.9. Here we can see that, for gts < ∆T , the resulting density-flow curves
are non-monotonic. Higher values for gts in more vehicles that drive more cautiously,
apparently leading to higher values for the critical density and the capacity flow. Note
that the seemingly small capacity drops at the end of each free-flow branch are in fact
finite-size effects [Nag95b; Kra97b].
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Figure 4.29: Two groups of (k,q) diagrams for the TOCA model, with vmax = 5 cells/time
step. Left: four diagrams for different combinations of pacc and pdec, with gts = 1.2 time steps.
Right: a large amount of diagrams for different g ts with pacc = pdec = 0.9. For gts < ∆T , the
resulting density-flow curves are non-monotonic. Note that the seemingly small capacity drops
at the end of each free-flow branch are in fact finite-size effects [Nag95b; Kra97b].

In their original paper, Brilon and Wu claim that their TOCA model results in a better
agreement with empirical data, a fact which is based on a qualitative comparison of the
(q,vs) diagrams10 [Bri99]. Despite this optimistic view, Knospe et al. later investigated
the TOCA model’s capabilities more thoroughly. Their conclusions state that a quite
large value for the deceleration probability pdec is necessary in order to obtain realistic
capacity flows. Although the time headway distribution of a jam’s downstream front
in the TOCA model is correct with respect to real-life observations, its downstream
front moves too fast due to the large deceleration probability. As a result, the jams in
the TOCA model are more dilute, as could be seen in Figure 4.28 [Kno04].

4.3.3.5 TCA models incorporating anticipation

One of the models related to anticipative driving (i.e., only taking a leaders’ reactions
into account, without predicting them), can be found in the work of Krauß et al., who
derived a collision-free model based on the STCA (see Section 4.3.2.1), but which
uses continuous vehicle speeds. Their model can be considered as a simplified ver-
sion of the Gipps model (see Section 3.2.3.1). Although the model restricts vehicles’
deceleration capabilities, it is still able to correctly reproduce the capacity drop and
hysteresis phenomena [Kra97b].

Another model with anticipation was proposed by Eissfeldt and Wagner [Eis03]. Their
model is based on Krauß’s work (see Section 3.2.3.1), and employs a next-nearest-
neighbour interaction, which stabilises dense flows and results in a non-unique flow-
density relation.

10Note that, after personal communication with the authors, it seems they performed a minimisation of
the square errors in the (k,vs) diagram. However, in order to get the correct values for calibrating the
TOCA’s parameters, they just manually guessed, without performing a thorough numerical optimisation.
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Recently, Lárraga et al. introduced a TCA model that includes a driver’s anticipation
of the leading vehicle’s speed [Lár04]. In contrast to the STCA model (see Section
4.3.2.1), the acceleration and braking rules are decoupled. As a first rule, the standard
acceleration towards the maximum speed is applied, after which the randomisation is
performed by means of a second rule. Only then, the model considers braking in its
third rule; however, the deceleration is not only based on the space gap between both
vehicles, but also on an anticipation of the leading vehicle’s speed:

R3: anticipation and braking

vi(t)← min





vi(t), gsi
(t− 1) +

[
(1− αi) · vi+1(t− 1) +

1
2

]

︸ ︷︷ ︸
safe distance





,

(4.63)

with vi(t) on the right-hand side corresponding to the computed speed after applying
rule R2, [x] denoting x rounded to the nearest integer, vi+1(t−1) the speed of the lead-
ing vehicle at the current time step, and αi ∈ [0, 1] an anticipatory driving parameter
for the ith vehicle. In their work, Lárraga et al. considered all αi to be equal.

The interesting aspect of this anticipatory TCA model, is that for certain values of α,
it can result in dense platoons of vehicles, travelling coherently and thereby leading to
forward propagating density structures. In the free-flow regime, the (k,q) diagram also
exhibits a slight curvature near the capacity flow, similar to the ER-TCA model (see
Section 4.3.2.5). Del Rió and Lárraga later also extended the model to accommodate
for multi-lane traffic flows [del05].

4.3.3.6 Ultra discretisation, slow-to-accelerate, and driver’s perspective

It is also possible to derive a cellular automaton model, based on the discretisation of
a partial differential equation. Starting from a PDE (e.g., the Burgers equation (3.3)
from Section 3.2.1.1), we can obtain an finite difference equation by discretising the
spatial and temporal dimensions, resulting in a model that still has continuous state
variables. As a further step, we can now also discretise these state variables, using
a process called the ultra-discretisation method (UDM) [Tok96]. The result of the
UDM can be interpreted as a cellular automaton in the Euler representation. The latter
means that for a TCA model, a road is considered to be a field, whereby the individual
cars are not distinguished [Nis01a]. The interesting part of this type of CA is that
its cells are allowed to hold multiple vehicles, which makes it possible to implicitly
model multi-lane traffic in a simplified sense (because the effects of lane changes are
neglected) [Cho00]. As a next step, this obtained CA can be cast in its Lagrangian
representation, by means of an Euler-Lagrange transformation [Nis01a; Mat03]. The
resulting Lagrange representation treats the positions of all vehicles individually, thus
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leading to the well-know position-based rule sets of the TCA models discussed in this
dissertation.

Nishinari proposed an interesting TCA model, based on the above UDM scheme.
Their discretisation leads to the so-called Burgers cellular automaton (BCA), which
is for single-lane traffic equivalent to the CA-184 TCA model (see Section 4.3.1.1)
[Nis99; Nis01b]. Emmerich et al. also provided a TCA model, by applying the UDM
scheme to a Korteweg-de Vries equation. In contrast to the BCA model, their work
resulted in a second-order TCA model because the CA’s global map not only needs
the configuration at the previous time step t−1, but also the configuration at time step
t− 2 [Emm98; Cho00].

Nishinari et al. recently extended the BCA model, thereby allowing for slow-to-start
effects with vmax > 1 cell/time step [Nis04]. Their model contains a rule similar
to the classical notion of slow-to-start rules, but now generalised for moving vehicles,
leading to the terminology of a slow-to-accelerate rule. Taking the idea of anticipation
one step further, they also incorporated a driver’s perspective, meaning that a vehicle
will base its acceleration and braking decisions not only on the basis of its space
gap and the anticipated speed of the vehicle ahead, but also on the space gap with
the next leading vehicle (or even a vehicle located more downstream). As a result,
the model exhibits multiple metastable branches in the (k,q) diagram, as can be seen
in Figure 4.30. For the lowest metastable branch, vehicles inside jams will come
to a complete stop. In contrast to this, vehicles will still be able to move forward
inside jams for the higher branches. Note that depending on the strength of a local
perturbation, traffic will shift from the highest branch to one of the lower branches.
Finally, Nishinari et al. also combined the model with the classical STCA (see Section
4.3.2.1), thereby allowing for stochasticity in both the acceleration and braking rules.

Figure 4.30: A (k,q) diagram of Nishinari et al.’s extended BCA model, with vmax = 5
cells/time step, ∆T = 1.3 s, ∆X = 7.5 m, and a driver’s perspective of two vehicles ahead.
The resulting diagram exhibits multiple metastable branches. Vehicles inside jams come to a
complete stop only for the lowest metastable branch; for the higher branches, vehicles inside
jams are still able to move forward. Depending on the strength of a local perturbation, traffic
will shift from the highest branch to one of the lower branches (image reproduced after [Nis04]).
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4.4 Multi-cell models

Whereas all the previously discussed TCA models were based on a single-cell setup,
this section introduces some of the existing multi-cell TCA models (still for single-
lane traffic). In a multi-cell model, a vehicle is allowed to span a number of consecut-
ive cells in the longitudinal direction, i.e., li ≥ 1 cell.

In the subsequent sections, we discuss several multi-cell TCA models encountered
in literature. We first start with an overview of the artifacts that can be introduced
when switching to a multi-cell setup. Subsequently, we describe three multi-cell TCA
models, which have more intricate rule sets than the simple models of Section 4.3:

• Helbing-Schreckenberg TCA (HS-TCA)

• Brake-light TCA (BL-TCA)

• The model of Kerner, Klenov, and Wolf (KKW-TCA)

Note that with respect to the measurements performed on the TCA models’ lattices,
we assume homogeneous traffic flows, i.e., all vehicles have the same length. This
allows us, after suitable adjustment with the average vehicle length l = li, to express
the global density as kg ∈ [0, 1].

4.4.1 Artifacts of a multi-cell setup

It might seem that a translation of the classical STCA model (see Section 4.3.2.1)
into a multi-cell version would be straightforward. However, using a finer discret-
isation introduces a very specific artifact, i.e, hysteresis. In order to investigate this
phenomenon, we have performed several experiments based on a multi-cell transla-
tion of the STCA model (now called the MC-STCA). In what follows, we assume a
closed-loop lattice consisting of 105 cells. The simulations ran each for 5 × 105 time
steps, with ∆T = 1 s.

Setting the slowdown probability to p = 0.5, the left part of Figure 4.31 shows the res-
ulting (k,q) diagrams for different spatial discretisations, each time for homogeneous
initial conditions. The average vehicle length was set to l ∈ {2, 4, 8, 16, 32, 64} cells.
In these experiments, we also scaled the maximum speed vmax correspondingly (e.g.,
if l = 4 cells, then vmax would become 5×4 = 20 cells/time step), as can be seen from
the coinciding free-flow branches in the left part in Figure 4.31. We also notice that
an increase of the average vehicle length apparently results in a higher critical density,
with an associated higher capacity flow. Furthermore, the flow seems to encounter a
capacity drop at this critical density.

What causes this capacity drop ? To answer this question, we must first consider
what happens in the deterministic case where p = 0. Here, our experiments have
shown that there is no difference between a single-cell and a multi-cell setup. Setting
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Figure 4.31: Left: several (k,q) diagrams of the MC-STCA, for l ∈ {2, 4, 8, 16, 32, 64} cells
and p = 0.5. As can be seen, an increase of the average vehicle length apparently results in a
higher critical density, with an associated higher capacity flow (followed by a capacity drop).
Right: the same setup for the MC-STCA, but now with a fixed l = 8 cells and vmax = 5×8 = 40
cells/time step. The (k,q) diagrams depict the results of changing the slowdown probability
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}: an increase of p, leads to decrease of both the critical density and
the capacity flow.

p > 0, the randomisation rule R2, equation (4.47), introduces fluctuations in the high
speeds of vehicles in free-flow traffic. However, these speed fluctuations are actually
small compared to the vehicles’ speeds themselves. Because of this limited influence,
the free-flow branch of the (k,q) diagrams remains very stable. The smaller the dis-
cretisation, i.e., the larger the average vehicle length, the more stable the free-flow
branch becomes for larger densities (note however that the capacity drop gets less
pronounced for increasing average vehicle lengths). This capacity drop behaviour due
to a stabilisation effect, is akin to the observations in the STCA’s cruise-control limit
(see Section 4.3.2.2), and thus different from the VDR-TCA (see Section 4.3.3.3),
where a reduced outflow from a jam causes the drop in flow [Kno04]. In contrast to
this, random initial conditions or a superjam to start the simulations with, will always
lead to the congested branch, thereby indicating a hysteretic phase transition. As the
left part of Figure 4.31 indicates, changing the discretisation level of the STCA, by
adjusting the average vehicle length and relatively keeping the same maximum speed,
has only an effect on the length of the free-flow branch; the traffic dynamics in the
congested regime remain the same.

Holding l fixed at 8 cells and vmax = 5 × 8 = 40 cells/time step, the right part of
Figure 4.31 shows the resulting (k,q) diagrams for different values of the slowdown
probability p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. It is clear that an increase of p, leads to a
decrease of both the critical density and the capacity flow. Note that the size of the
capacity drop remains approximately the same for the different p.

To conclude, we mention the work of Grabolus who performed extensive numerical
studies on the STCA. He also noted that it is possible to translate any multi-cell STCA
variant into an equivalent single-cell STCA model, by suitably adjusting the values of
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the density and the maximum speed [Gra01].

Interestingly, the use of a smaller discretisation was already considered by Barrett
et al. in the early course of the TRANSIMS project (see Section 3.1.3.3) [Bar95].
In their work, they introduce the terminology of multi-resolution TCA models,
corresponding to our multi-cell setup. Although they discuss several methods for
integral refinements of the TCA’s lattice, they do not make any mention of the
observed unexpected hysteresis phenomenon introduced by a finer discretisation.

4.4.2 Advanced multi-cell models

Having discussed the repercussions of switching to a multi-cell setup, we now illus-
trate three TCA models that have more complex rule sets. We discuss their properties
by means of time-space diagrams, fundamental diagrams of global and local measure-
ments, and histograms of the distributions of the space and time gaps.

4.4.2.1 The model of Helbing and Schreckenberg (HS-TCA)

Similar in spirit as the STCA (see Section 4.3.2.1) and the ER-TCA (see Section
4.3.2.5), Helbing and Schreckenberg proposed their HS-TCA model in analogy with
the optimal velocity model (see Section 3.2.3.2) [Hel99b]. In fact, their model can be
seen as a direct discretisation of the OVM, with the following rule set:

R1: acceleration and braking

vi(t)← vi(t− 1) + bα (V (gsi
(t− 1))− vi(t− 1))c, (4.64)

R2: randomisation

ξ(t) < p =⇒ vi(t)← max{0, vi(t)− 1}, (4.65)

R3: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.66)

The function V (gsi
) in rule R1, equation (4.64), is the discrete version of the op-

timal velocity function; it is specified in the form of a lookup table, containing speed
entries for each space gap (see Table 4.1). The parameter α is similar to the one
in equation (3.30) and has the following meaning: higher values indicate an almost
instantaneous adaptation of the vehicle’s speed to the OVF, whereas lower values de-
note an increasing inertia and longer adaptation times [Hel99b]. However, as stated
by Chowdhury et al. and Knospe et al., the role of α is a bit unclear as it does not
exactly correspond to the time scale of the adaptation to the OVF (which is the case
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for the original optimal velocity model) [Cho00; Kno04]. Furthermore, as mentioned
in Section 3.2.3.2, certain values for α can, in combination with the OVF, lead to col-
lisions between vehicles (because α reduces a vehicle’s braking capability). Knospe
et al. later provided the necessary conditions that guarantee collision-free driving,
and avoid the possible backward moving of vehicles [Kno04]. Note that, similar to
the Fukui-Ishibashi models (see Sections 4.3.1.2 and 4.3.2.3), vehicles are allowed to
accelerate instantaneously in the HS-TCA model. The model is stochastic, in that it
introduces randomisation by means of rule R2, equation (4.65), with ξ(t) ∈ [0, 1[ a
random number drawn from a uniform distribution.

gsi
(cells) V (gsi

) (cells/time step) gsi
(cells) V (gsi

) (cells/time step)

0, 1 0 11 8
2, 3 1 12 9
4, 5 2 13 10
6 3 14, 15 11
7 4 16 – 18 12
8 5 19 – 23 13
9 6 24 – 36 14
10 7 ≥ 37 15

Table 4.1: A possible optimal velocity function (OVF) for the TCA model of Helbing and
Schreckenberg (HS-TCA). The OVF is represented as a table, giving the optimal speed V (gsi)
associated with each possible space gap gsi .

In Figure 4.32, we have given two time-space diagrams of the HS-TCA for global
densities k = 0.25 and k = 0.40 vehicles/cell. The length of a vehicle was l = 2 cells,
p = 0.001, α = 1÷ 1.3, vmax = 15 cells/time step, ∆T = 1 s, and ∆X = 2.5 m.
Due the small slowdown probability, the system dynamics are strongly deterministic,
totally dependent on the initial (homogeneous) conditions. In the left diagram we can
observe how vehicles can accelerate instantaneously when exiting a jam. Note that
for higher densities, all jams become dense and compact, always containing stopped
vehicles, as is depicted in the right diagram. Because of the non-linearity introduced
by the discretised optimal velocity function, all tempo-spatial patterns in the system
are of a chaotic nature (i.e., nonlinear with stochastic noise) [Kno04].

The (k,vs) and (k,q) diagrams in Figure 4.33 are based on local and global meas-
urements. A feature of these diagrams is that the local measurements tend to form
clusters around certain space-mean speeds (see the left part of Figure 4.33): these
clusters correspond to the speeds dictated by the discretised optimal velocity function
of Table 4.1, each time associated with an average space gap corresponding to the
inverse of the locally measured density. As a result, the (k,q) diagram in the right
part of Figure 4.33 shows several branches, each one with a different OVF speed. The
lowest branch corresponds to the speed of the backward propagating waves, i.e., the
jam speed. Even more striking, is that from a certain finite density k � 1 vehicle/cell
on, all vehicles always come to a full stop and the flow in the system becomes zero
[Hel99b].
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Figure 4.32: Typical time-space diagrams of the HS-TCA model, with l = 2 cells, p = 0.001
α = 1÷ 1.3, and vmax = 15 cells/time step. The shown closed-loop lattices each contain
300 ×2 = 600 cells, with a visible period of 580 time steps. The global density k was set to
0.25 vehicles/cell (left) and 0.40 vehicles/cell (right). The formation of congestion waves leads
to dense, compact jams containing stopped vehicles. Vehicles strive to decelerate smoothly, but
are allowed to accelerate instantaneously when exiting jams fronts.
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Figure 4.33: The (k,vs) (left) and (k,q) (right) diagrams for the HS-TCA, obtained by local
and global measurements. The local measurements tend to form clusters around certain space-
mean speeds, corresponding to the speeds dictated by the discretised optimal velocity function
of Table 4.1. These clusters are visible in the right diagram as branches with different slopes.
Remarkably, from a certain finite density k � 1 vehicle/cell on, all vehicles always come to a
full stop and the flow in the system becomes zero.

To conclude our discussion of the HS-TCA, we give the histograms of the distribu-
tions of the space and time gaps in the left and right parts, respectively, of Figure 4.34.
The most prominent features of these histograms, are that (i) there exist small clusters
of probability mass between certain space gaps (i.e., 15 – 20, 25 – 25, and 35 – 40
cells), corresponding to groups of vehicles, (ii) for higher densities, we can observe
a spread-out cluster of probability mass, corresponding to the lowest local measure-
ments in the left part of Figure 4.33, and (iii) in contrast to the previous TCA models,
the median of the time gap for the HS-TCA is already very small for densities k < 0.1.
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Figure 4.34: Histograms of the distributions of the vehicles’ space gaps gs (left) and time gaps
gt (right), as a function of the global density k in the HS-TCA. The thick solid lines denote the
mean space gap and median time gap, whereas the thin solid line shows the former’s standard
deviation. The grey regions denote the probability densities.

The HS-TCA might seem an interesting improvement, as it is being based on a
discretisation of the optimal velocity model. But although its authors state that it
“reproduces many of the empirically observed features” [Hel99b], Knospe et al.
showed several shortcomings in the model [Kno04]: care must be taken to avoid
collisions, and the model fails to reproduce the synchronised-flow regime entirely.
This latter can be understood by looking at the dense, compact structure of jams
in the time-space diagrams of Figure 4.32, and the occurrence of branches with
distinct speeds as in the right part of Figure 4.33.

4.4.2.2 Brake-light TCA (BL-TCA)

Recently, an interesting idea was pursued by Knospe et al.; their TCA model includes
anticipation effects (see also Section 4.3.3.5), introduced by equipping the vehicles
with brake lights [Kno00]. The focus of this (and the following) TCA model lies in a
correct reproduction of the three phases of traffic as introduced by Kerner et al. (see
Section 2.5.4). In a sense, the BL-TCA incorporates many of the features encountered
in previously discussed single-cell TCA models. First of all, the BL-TCA has ran-
domisation for spontaneous braking. Secondly, it has slow-to-start behaviour for the
capacity drop and hysteresis phenomena. Moreover, it incorporates anticipation which
can lead to a stabilisation of the free-flow branch. Finally, it includes elements for re-
producing synchronised traffic. These latter two aspects clearly go beyond the stand-
ard incentive for drivers to avoid collisions. As such, it is the desire for smooth and
comfortable driving (which resembles human behaviour), that is responsible for the
occurrence of traffic states like, e.g., synchronised traffic [Kno02b]. To achieve all
this, the rule set of the BL-TCA becomes quite complex, in comparison with some of
the more standard single-cell TCA models of Section 4.3:
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R0: determine stochastic noise





bi+1(t− 1) = 1 ∧ gti(t− 1) < tsi
(t− 1) =⇒ p(t)← pb,

vi(t− 1) = 0 =⇒ p(t)← p0,
else =⇒ p(t)← pd,
bi(t)← 0,

(4.67)

R1: acceleration

(bi(t− 1) = 0 ∧ bi+1(t− 1) = 0) ∨ gti(t) ≥ tsi
(t)

=⇒ vi(t)← min{vi(t + 1), vmax},
(4.68)

R2a: determine effective space gap

g∗si
(t)←
gsi

(t− 1)+
max{min{vi+1(t− 1), gsi+1(t− 1)}

︸ ︷︷ ︸
anticipated speed of leading vehicle

−gssecurity , 0}, (4.69)

R2b: braking

vi(t)← min{vi(t), g
∗
si
(t)},

vi(t) < vi(t− 1)
=⇒ bi(t)← 1,

(4.70)

R3: randomisation

ξ(t) < p(t) =⇒
p(t) = pb ∧ vi(t) = vi(t− 1) + 1 =⇒ bi(t)← 1,
vi(t)← max{0, vi(t)− 1},

(4.71)

R4: vehicle movement

xi(t)← xi(t− 1) + vi(t), (4.72)

where bi(t) denotes the state (0 or 1) of the brake light of the ith vehicle at time step
t, gti = gsi

/vi and tsi
= min{vi, h} with h the interaction range of the brake light.

As such, gti is the time to reach the leading vehicle, which gets compared with an
interaction horizon tsi

that depends on the speed vi and is constrained by h. If the
leading vehicle is far away, its brake light should not influence the following vehicle.
Furthermore, rule R0 also takes into account that drivers are more alert when they
are travelling at high speeds. The slowdown probability p in rule R0, equation (4.67),
corresponds to either the braking probability pb, the slow-to-start probability p0, or the
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classical slowdown probability pd for decelerations. Finally, g∗si
(t) in rules R2a and

R2b, equations (4.69) and (4.70), respectively, denotes the effective space gap, based
on the anticipated speed of the leading vehicle and taking into account a security
constraint gssecurity . Just as the previous TCA models, the BL-TCA is stochastic, in that
it introduces randomisation by means of rule R3, equation (4.71), with ξ(t) ∈ [0, 1[
a random number drawn from a uniform distribution. If a vehicle was in the process
of braking due to the previous rules, then its brake light bi is turned on. Note that
Knospe also extended the BL-TCA with rules that allow asymmetric lane changing
on a two-lane road (unidirectional), incorporating a right-lane preference as well as
an overtaking prohibition on the right lane. As such, the model correctly reflects the
density inversion phenomenon (see also Section 4.5.1) [Kno02b; Kno02a].

In the remainder of this discussion, we set pb = 0.94, p0 = 0.5, pd = 0.1, h = 6 time
steps, gssecurity = 7 cells, vmax = 20 cells/time step, with a vehicle length of l = 5 cells,
∆T = 1 s, and ∆X = 1.5 m [Kno00; Kno04]. With respect to the calibration of the
BL-TCA model’s parameters, Knospe et al. provide a nice overview, giving intuitive
analogies for each of these parameters (e.g., p0 is associated with the speed of the
backward propagating waves) [Kno04].

In Figure 4.35, we have given two time-space diagrams of the BL-TCA for global
densities k = 0.25 and k = 0.40 vehicles/cell. As can be seen in the time-space dia-
gram in the left part, the anticipation and synchronisation phenomena lead to forward
propagating density waves, where vehicles carry the density downstream. Going to
higher densities, we can see stable jams, indicative of the wide-moving jam phase (see
Section 2.5.4).

Figure 4.35: Typical time-space diagrams of the BL-TCA model (refer to the text for the used
parameter values). The shown closed-loop lattices each contain 300 ×5 = 1500 cells, with a
visible period of 580 time steps. The global density k was set to 0.25 vehicles/cell (left) and
0.40 vehicles/cell (right). The visible forward propagating density waves are a result of the
anticipation and synchronisation phenomena. At higher densities, stable jams occur, indicative
of the wide-moving jam phase.

Looking at the (k,vs) and (k,q) diagrams in Figure 4.36, we can use the local measure-
ments to discriminate between the free-flow (◦), synchronised-flow (·), and jammed
regimes (?). The synchronised regime is visible as a wide scatter in the data points,
having various speeds but relatively high flows. The data points in the wide-moving
jam correspond to Kerner’s line J in Figure 2.12 in Section 2.5.4.1. The use of a finer
discretisation can lead to metastable states (see Section 4.4.1), but as Knospe et al.
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note, the slow-to-start behaviour in rule R0, equation (4.67), is necessary in order to
produce the correct speed of the backward propagating wave, as a result of a reduced
outflow from a jam [Kno04].
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Figure 4.36: The (k,vs) (left) and (k,q) (right) diagrams for the BL-TCA model, obtained by
local and global measurements. The local measurements discriminate between the free-flow
(◦), synchronised-flow (·), and jammed regimes (?). The synchronised regime is visible as a
wide scatter in the data points, having various speeds but relatively high flows. The data points
in the wide-moving jam correspond to Kerner’s line J in Figure 2.12 in Section 2.5.4.1.

Finally, Figure 4.37 depicts the histograms of the distributions of the space and time
gaps in the left and right parts, respectively. In contrast to the HS-TCA, there are no
more clusters for the space gap (see left part of Figure 4.34), but rather a smooth region
of probability mass: as the global density of the system increases, the average space
gap diminishes continuously and monotonically. The observations for the distributions
of the time gaps correspond to those encountered in literature [Kno00; Kno04]: from
the right part of Figure 4.37, we can see a wide range of probability mass at low
densities (free-flow traffic), corresponding to a wide distribution of time gaps. At
intermediate densities (synchronised flow), the distribution tends to peak, leading to a
small dense cluster at approximately k = 0.15 vehicles/cell, with a median time gap
of 1 time step. Finally, at higher densities (jammed traffic), the distribution of the
time gaps gets more peaked, as is illustrated by the narrowing of the grey region of
probability mass.

4.4.2.3 The model of Kerner, Klenov, and Wolf (KKW-TCA)

Based upon the BL-TCA of Knospe et al., Kerner, Klenov, and Wolf (KKW) refined
this approach by extending it. As already mentioned in Section 2.5.4.4, their work
resulted in a family of models that incorporate the notion of a synchronisation distance
for individual vehicles [Ker03]. Derived from this model class, Kerner et al. proposed
discretised versions in the form of traffic cellular automata models. In this dissertation,
we consider the KKW-1 TCA model, of which the complex rule set is as follows
[Ker02]:
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Figure 4.37: Histograms of the distributions of the vehicles’ space gaps gs (left) and time gaps
gt (right), as a function of the global density k in the BL-TCA model. The thick solid lines
denote the mean space gap and median time gap, whereas the thin solid line shows the former’s
standard deviation. The grey regions denote the probability densities.

R1a: determine synchronisation distance

Di(t)← D0 + D1vi(t− 1), (4.73)

R1b: determine acceleration and deceleration





vi(t− 1) < vi+1(t− 1) =⇒ ∆acci
(t)← a,

vi(t− 1) = vi+1(t− 1) =⇒ ∆acci
(t)← 0,

vi(t− 1) > vi+1(t− 1) =⇒ ∆acci
(t)← −b,

(4.74)

R1c: determine desired speed

{
gsi

(t− 1) > (Di(t)− li) =⇒ vdesi
(t)← vi(t− 1) + a,

gsi
(t− 1) ≤ (Di(t)− li) =⇒ vdesi

(t)← vi(t− 1) + ∆acci
(t),

(4.75)

R1d: determine deterministic speed

vi(t)← max{0, min{vmax, gsi
(t), vdesi

(t)}}, (4.76)

R2a: determine acceleration probability

{
vi(t) < vp =⇒ pa(t)← pa1 ,
vi(t) ≥ vp =⇒ pa(t)← pa2 ,

(4.77)

R2b: determine braking probability

{
vi(t) = 0 =⇒ pb(t)← p0,
vi(t) > 0 =⇒ pb(t)← pd,

(4.78)
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R2c: determine stochastic noise




ξ(t) < pa(t) =⇒ ηi(t)← a,
pa(t) ≤ ξ(t) < pa(t) + pb(t) =⇒ ηi(t)← −b,
ξ(t) ≥ pa(t) + pb(t) =⇒ ηi(t)← 0,

(4.79)

R2d: determine stochastic speed

vi(t)← max{0, min{vmax, vi(t) + ηi(t), vi(t) + a}}, (4.80)

R3: vehicle movement

xi(t)← xi(t− 1) + vi(t). (4.81)

As can be seen from this overview, the KKW-TCA model’s rule set is mainly com-
posed of a deterministic part (rules R1a – R1d) and a stochastic part (rules R2a –
R2d). In the deterministic part, the synchronisation distance Di is computed first with
rule R1a, which uses a linear function (other forms, e.g., quadratic functions, are also
possible). The parameters D0 and D1 need to be estimated. Rule R1c determines the
desired speed vdesi

: the first part of the rule allows the vehicle to accelerate, whereas
the second part of the rule uses an acceleration ∆acci

defined by rule R1b (a and b
are parameters denoting the acceleration, and respectively braking, capabilities). As
such, a vehicle will tend to adapt its speed to that of its direct frontal leader, whenever
the vehicle is within a zone of interaction (i.e., the synchronisation distance). The
deterministic speed is then computed by means of rule R1d, which takes into account
the maximum speed vmax, the space gap gsi

to avoid a collision, and the previously
computed desired speed of rule R1c.

In the stochastic part for computing the speed, a randomisation is introduced in rule
R2d by means of a stochastic acceleration ηi. The values of ηi are obtained in rule
R2c with probability pa for accelerating, and probability pb for braking. The former
is dependent on the vehicles computed deterministic speed and the parameters vp, pa1 ,
and pa2 with pa1 > pa2 and pa1 + pa2 ≤ 1. The latter, pb is dependent on the vehicles
computed deterministic speed and the slowdown probability pd and the slow-to-start
probability p0 with p0 > pd.

In the remainder of this discussion, we set D0 = 60, D1 = 2.55, a = b = 1, vp = 28,
pa1 = 0.2, pa2 = 0.052, p0 = 0.425, pd = 0.04, vmax = 60 cells/time step, with a
vehicle length of l = 15 cells, ∆T = 1 s, and ∆X = 0.5 m [Kno04].

Considering the KKW-TCA models’ time-space diagrams in Figure 4.38, we can see
that, in contrast to the BL-TCA (see Section 4.4.2.2), there are less spontaneous form-
ations of small traffic jams. The forward propagating density waves in Figure 4.35 are
absent in the KKW-TCA model. However, the two models show good correspondence
with respect to the speed of the backward propagating waves.

Similar as in the BL-TCA model’s effective space gap g∗si
(t), the synchronisation dis-

tance D is responsible for producing the typical two-dimensional scatter in the (k,vs)
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Figure 4.38: Typical time-space diagrams of the KKW-TCA model (refer to the text for the
used parameter values). The shown closed-loop lattices each contain 300 ×15 = 4500 cells,
with a visible period of 580 time steps. The global density k was set to 0.25 vehicles/cell
(left) and 0.40 vehicles/cell (right). Note the stable flow of vehicles surrounding the dense and
compact superjams.

and (k,q) diagrams in Figure 4.39. When a driver who is within the synchronisation
distance adapts the vehicle’s speed, the only factors taken into account are the cur-
rent speed of the direct frontal leader and a safety criterion (in the form of the current
space gap); it is this effect that produces the scatter in the data, because the exact
specification of this speed is absent. In both diagrams of Figure 4.39, the local meas-
urements discriminate between the free-flow (◦), synchronised-flow (·), and jammed
regimes (?). One of the major differences between these two models, is that the flow
in the synchronised regime is almost a factor two larger for the KKW-TCA than the
BL-TCA. The KKW-TCA also experiences a capacity drop similar as in the BL-TCA,
but also undergoes an abrupt transition when going from the synchronised-flow to the
wide-moving jam regime around a global density of some 0.4 vehicles/cell (see the left
part of Figure 4.39). Because the model is built around the assumption that vehicles
tend to approximate the behaviour of their direct leader within a certain synchron-
isation distance, the resulting traffic regimes correspond well to Kerner’s empirical
observations of Section 2.5.4.1 (note that Nishimura et al. also seemed to achieve an
indication of these regimes, by using the classical STCA model of Section 4.3.2.1, but
in a multi-segment setup [Nis05]).

In Figure 4.40, we have depicted the histograms of the distributions of the space and
time gaps in the left and right parts, respectively. The distributions are similar to those
of the BL-TCA, but there are some important differences. With respect to the space
gaps in the left part of Figure 4.40, there is a high variance in the jammed regime, due
to the fact that there are vehicles in free-flow traffic, as well as inside the wide-moving
jams (although most of the probability mass is assigned to the zero space gap inside the
dense jams). Considering the time gaps in the right part of Figure 4.40, we can see that
they always form a tight cluster around the median of the distribution, indicating very
narrow distributions with an pronounced peak. This is completely different behaviour
than in the BL-TCA model (see the right part of Figure 4.40). The main reason is
probably due to the lack of an anticipation effect in the KKW-TCA model. Even more
severe, is the fact that the KKW-TCA model, despite its elaborate construction based
on a synchronisation distance, completely fails to describe the microscopic structure of
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Figure 4.39: The (k,vs) (left) and (k,q) (right) diagrams for the KKW-TCA model, obtained
by local and global measurements. The local measurements discriminate between the free-flow
(◦), synchronised-flow (·), and jammed regimes (?). The synchronised regime is visible as a
wide scatter in the data points, having various speeds but flows comparable to the capacity flow.

motorway traffic. The BL-TCA model however succeeds in having a good fit on both
macroscopic and macroscopic scales, as stated according to Knospe et al. [Kno02a;
Kno04].
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Figure 4.40: Histograms of the distributions of the vehicles’ space gaps gs (left) and time gaps
gt (right), as a function of the global density k in the KKW-TCA model. The thick solid lines
denote the mean space gap and median time gap, whereas the thin solid line shows the former’s
standard deviation. The grey regions denote the probability densities.

4.5 Multi-lane traffic, city traffic, and analytical res-
ults

In this final section on traffic cellular automata models, we take a look at some other
aspects related to TCA models. We first discuss some properties and methodologies
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for modelling multi-lane traffic in the context of a cellular automaton, after which we
briefly consider several approaches for dealing with city traffic. The final part of the
section concludes with an overview of different analytical treatments of TCA models.

4.5.1 Multi-lane traffic

In this section, we briefly discuss some properties and methodologies for modelling
multi-lane traffic in the context of a cellular automaton. To this end, we illustrate
the types of lane changes that are possible, then discuss the general setup for a lane-
changing model. We conclude with a short overview on the implementation of lane-
change rules and explain the phenomenon of ping-pong traffic, an artifact introduced
by an inferior implementation.

4.5.1.1 Types of lane changes

As has already been mentioned in Section 3.2.3.1, there are commonly two types
of lane changes identified: mandatory lane changes (MLC) and discretionary lane
changes (DLC). In the former case, a vehicle is obliged to execute a lane change, e.g.,
because it needs to exit the motorway at an off-ramp, or because the vehicle is by law
obliged to drive in the right shoulder lane. In the latter case, a vehicle changes a lane
at its own discretion, e.g., when approaching and overtaking a slow-moving leading
vehicle.

With respect to the rules for lane changing, there are also two approaches: symmetric
and asymmetric. In the US, the symmetric approach is more applicable: this is em-
bodied by the fact that motorways have a large number of lanes (i.e., more than three),
with vehicles driving at lower speeds (e.g., 60 miles/hour, corresponding to some 100
kilometres/hour), effectively using all lanes more homogeneously. Such a system is
typically called “keep-your-lane”, as frequent lane changes are discouraged. In con-
trast to this, people in most European countries are obliged by law to drive on the outer
right shoulder lane whenever possible. Motorways have fewer lanes (typically either
two or three, unidirectional), operating at higher speeds of, e.g., 120 kilometres/hour.
In addition, most of these countries have instituted an overtaking prohibition on the
right lane, with large trucks restricted to the two most right lanes.

With respect to this latter system of asymmetric lane changes, the phenomenon of
density or lane inversion plays an important role, especially on the numerous 2x2
motorways in Europe (see also the beginning of Section 4.3 for a discussion of this
phenomenon). Another aspect that has a significant influence, is the change of driver
behaviour, e.g., near on-ramps. Here, drivers might avoid the shoulder lane to al-
low traffic to enter, or because of their increased attention, they might induce a more
subtle effect such as the capacity funnel (see Section 2.5.5 for more details on this
phenomenon).
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4.5.1.2 General setup for lane changing

Deciding on whether or not to perform a lane change, is typically split in two separate
steps: first, a vehicle checks if it is desirable to change lanes, i.e., making the dis-
tinction between a mandatory or discretionary lane change. If a lane change is indeed
desirable, then the second step proceeds to check whether or not such a lane change
can be performed at all with respect to safety and collision avoidance. Thus, there is a
check for gap acceptance.

One of the first approaches to model such lane-changing behaviour an a two-lane road
in a TCA model, is due to Nagatani. His work was based on the deterministic CA-
184 model (see Section 4.3.1.1) [Nag93a]. One of the artifacts of his lane-changing
rules, was the existence of states in which blocks of vehicles alternated from one lane
to another, without moving at all. To circumvent this problem, Nagatani randomised
the lane-changing behaviour [Nag94a]. Rickert et al. later applied this lane-changing
methodology, by extending the STCA model (see Section 4.3.2.1) to handle two-lane
unidirectional traffic [Ric96a]. Wagner et al. later assessed the previous work of
Rickert et al., concluding that it did not capture certain aspects (e.g., density inver-
sion) of traffic flows very well [Wag97]. To this end, they built upon the previous
work, adding a more specialised security constraint that takes into account the fact
that vehicles should also consider the following vehicles in the target lane, thereby
avoiding severe disruptions. As a final comment, they state that the lane-changing
rules in a TCA model typically do not provide a realistic microscopic model, but they
rather lead to a good correspondence with respect to observed macroscopic features
(e.g., the frequency of lane changes).

In order to address the correct reproduction of the density inversion phenomenon,
Nagel et al. artificially introduced a slack parameter, capturing the inclination of a
driver to change back to the right lane. They furthermore also provided an extensive
classification of some 10 lane changing rules and criteria encountered in literature
[Nag98d]. Another excellent overview of multi-lane traffic is given by Chowdhury et
al. [Cho00].

As all the previous work dealt with unidirectional roads, it seems logical to consider
bidirectional traffic, i.e., traffic with adjacent but opposing lanes. Simon and Gutowitz
were among the first to consider a TCA model of such traffic, with vehicles driving on
two lanes [Sim98a]. Central to their approach, is the notion of a local density that each
driver must assess before attempting to complete an overtaking manoeuvre. When a
driver encounters a slower moving vehicle, a check is made whether or not there is
enough space in front of this leading vehicle (this is the local density). If the check is
positive, then a lane change can be performed (under the condition of course that there
is a safe gap in the opposing lane). With this scheme in mind, high density traffic thus
excludes such overtaking manoeuvres, due to the fact that the local density is too low
to complete them.
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Note that some authors, e.g., Gundaliya et al. [Gun04], Mallikarjuna and
Ramachandra Rao [Mal05], use a peculiar variant of a multi-lane setup. Their
models have essentially a multi-cell structure, but now the multi-cell concept is
extended in the lateral direction. So cells not only get smaller, but also ‘thinner’,
allowing variable-width vehicles, e.g., motor cycles that can more easily pass
other vehicles in the same lane. In our opinion, this leads to unnecessary complex-
ity, giving little benefits. In fact, we believe that such a scheme directly opposes
the idea behind a CA model, as explained at the introduction of this chapter. We
strongly feel that heterogeneity in a TCA model should only be incorporated by
means of different lengths, maximum speeds, acceleration characteristics, anti-
cipation levels, and stochastic noise for distinct classes of vehicles and/or drivers.
Any other approach would be better off with a continuous microscopic model.

4.5.1.3 Implementation of lane-changing rules and the phenomenon of ping-
pong traffic

The basic implementation of a lane-changing model in a TCA setting, leads to two
substeps that are consecutively executed at each time step of the CA:

• first, the lane-changing model is executed, exchanging vehicles between later-
ally adjacent lanes,

• then, all vehicles are moved forward (i.e., longitudinal) by applying the car-
following part of the TCA model’s rules.

One immediate result from this approach, is that a lane change in a TCA model is
completed within one time step (i.e., ∆T ). This is in contrast to real-life traffic, where
lane changes have a duration of several seconds [Nag98d].

For more than two lanes, care must be taken to avoid so-called scheduling conflicts
during the first substep. Consider for example three lanes, with two vehicles driving
in the outer left, respectively outer right, lane at the same longitudinal position. If the
cell in the middle lane is empty, then the vehicles may decide to move to this location,
resulting in a lateral collision. In order to compensate this, one possibility is to choose
a vehicle at random (or by preference), thereby allowing it to perform its requested
lane change. Another possibility is to perform left-to-right lane changes in even time
steps, and right-to-left lane changes in odd time steps.

As hinted earlier, the ‘correctness’ of a lane-change model should be judged on the
basis of certain macroscopic observations. Examples of these are the frequency of lane
changes with respect to different densities, the capacity flows for all lanes separately
and combined, the critical density at which a breakdown occurs in each of the lanes,
. . . Good indicators can be found in the many small fluctuations typically exhibited by
multi-lane TCA models, instead of the large jams in single-lane traffic. Traffic flows
get more fluid if vehicles are allowed to pass moving bottlenecks [Wag97; Nag98d].
However, under certain conditions, Helbing and Huberman have shown the existence
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of coherent states, where vehicles’ speeds are synchronised across adjacent lanes.
For heterogeneous traffic flows, this can lead to a moving ‘solid block’ of vehicles
[Hel98b].

When implementing lane-change rules in a TCA model, care must however be taken
that the implementation does not introduce any unrealistic artifacts. A prominent ex-
ample of this, plaguing many TCA models, is a phenomenon called ping-pong traffic.
Nagatani was among the first to observe this peculiar behaviour of vehicles in traffic
flows (see Section 4.5.1.2). In ping-pong traffic, vehicles typically alternate between
lanes during successive time steps. As explained earlier, one way to resolve this be-
haviour is by randomising the lane-change decision, thereby quickly destroying any
such artificial patterns [Nag94a; Ric96a].

4.5.2 City traffic and intersection modelling

When modelling city traffic, essentially two approaches can be followed: either the
entire road network is considered as a two-dimensional lattice (i.e., a grid), or each
road in the network is a single longitudinal lattice (single- or multi-lane) with expli-
citly modelled intersections. The former was historically used in the context of phase
transitions in a CA, whereas the latter is more applicable to describe real-life traffic
flows in populated cities.

In this section, we illustrate both approaches, starting with a classical grid layout
as embodied by the Biham-Middleton-Levin (BML) and Chowdhury-Schadschneider
(ChSch) TCA models, after which we briefly comment on explicit descriptions of
intersections in TCA models.

4.5.2.1 Grid traffic

The first model of ‘city traffic’ was proposed by Biham, Middleton, and Levine (BML).
It was developed around the same time Nagel and Schreckenberg presented their
STCA (see Section 4.3.2.1). The BML-TCA, is a two-dimensional model that de-
scribes traffic on a square grid in a toroidal setup (i.e., opposing sides are identified),
with vehicles distributed randomly over the lattice [Bih92]. The model is in fact a very
simplistic model, in that it assumes that all vehicles either move from the south to the
north direction, or from the west to the east. Each cell of the lattice is assumed to
contain a traffic light, in the sense that all west-east vehicles try to move during even
time steps, and all south-north vehicles during odd time steps (thus vmax = 1 cell/time
step for all vehicles). The BML-TCA constitutes a fully deterministic model, where
the only randomness is introduced through the initial conditions. Note that its one-
dimensional version corresponds to the CA-184 and the TASEP (see Sections 4.3.1.1
and 4.3.2.4).

Depending on the global density of vehicles in the lattice, the model results in two
distinct traffic regimes, with a sharp first-order phase transition between them. The
first regime, i.e., free-flow traffic, corresponds to a state with alternate moving vehicles
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(i.e., west-east and south-north moving); an example is depicted in the left part of Fig-
ure 4.41. In the congested regime, a self-organised global cluster emerges, completely
composed of blocked vehicles (see, e.g., the middle part of Figure 4.41). When the
phase transition between both regimes occurs, the space-mean speed changes abruptly
from one to zero cells/time step [Bih92; Ang05]. Cuesta et al. also showed that the
phase transition persists even when vehicles are allowed to turn [Cue93]. Fukui and
Ishibashi studied the repercussions of a local disruption in the lattice (e.g., a crashed
vehicle that remains stopped for an eternal period), and found that it provides the seed
of a growing global cluster [Fuk93]. Biham et al. also considered a less restrictive
version of the above model, in which now all vehicles try to move at each time step.
In case of conflicts between a west-east and a south-north vehicle, one of them is
chosen at random. Another variation considers also opposing traffic, which can lead
to gridlocked situations where no vehicles are able to move at all. A generalisation
of the BML-TCA, was provided by Freund and Poschel who consider a similar setup,
but now with traffic moving in all four directions [Fre95]. With respect to the critical
densities at which the previously mentioned phase transitions occur, Shi was able to
obtain analytical expressions for them [Shi99]. Finally, the recent work of D’Souza
showed that, contrary to the general belief in a sharp first-order phase transition, the
BML-TCA can exhibit intermediate stable phases that contain both free-flow and con-
gested regimes [D’S05].

Figure 4.41: Left: snapshot of the spatial structure in the BML-TCA for k = 0.25. In this free-
flow regime, all vehicles move alternatingly, with the right-oriented arrows denoting west-east
travelling vehicles, and the upward-oriented arrows denoting south-north travelling vehicles.
Middle: same setup as before, but now for k ≈ 0.4082. In this congested regime, a global cluster
emerges, completely composed of blocked vehicles. Right: an overview of the ChSch-TCA,
showing the street segments of finite length between the BML-TCA’s original intersections.
The first two images are reproduced after [Bih92], the third after [Bar03].

In the work of Chowdhury et al., a comprehensive overview is given, describing exten-
sions to the BML-framework [Cho00]. This overview includes asymmetric distribu-
tions of the west-east and south-north vehicles, unequal maximum speeds, two-level
crossings (where two vehicles can share the same cell), faulty traffic lights (here, either
a west-east or south-north vehicle is chosen at random to occupy a cell, irrespective
of the current time step), road blocks, line- and point-defects (i.e., a crowded ‘street’
of the model, corresponding to a dense horizontal or vertical row of cells), random
turning of vehicles, cut-off streets (similar to a row of two-level crossings), and so
forth and so on.
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Chowdhury and Schadschneider later extended the BML-TCA model to incorporate
randomisation effects like in the STCA model, having the result that jamming can now
occur spontaneously [Cho99b]. Their model furthermore contains street segments of
finite length between the cells, with vehicles driving according to the STCA’s rules
on these streets. The original cells in the BML-TCA model form the signallised in-
tersections of the Chowdhury-Schadschneider model (ChSch-TCA), as can be seen
in the right part of Figure 4.41. At sufficiently large densities, a transition can occur
that leads to a self-organising state of completely gridlocked traffic. Barlović later
provided a solution to this problem, making the model well-suited for assessing the
results of different traffic light control policies in a city [Bar03].

4.5.2.2 Explicit intersection modelling

In contrast to the previous section were all traffic operations were essentially defined
on a two-dimensional lattice, it is also possible to consider a complete road network,
consisting of separate links that are connected to each other by means of intersections.
These intersections can either be signallised, or unsignallised, turning priorities can be
defined, as well as different geometrical layouts (e.g., roundabouts).

Road networks based on the above assumptions, typically combine a set of basic build-
ing blocks. As such, the network is logically decomposed in a set of nodes and links.
The former denote the intersections, whereas the latter can, depending on the imple-
mentation, refer to individual lanes, a group of adjacent lanes, or even a road with
two-way traffic. In general, traffic operations on motorways are primarily influenced
by the behaviour of vehicles on links, i.e., their car-following and lane-changing beha-
viour. Conversely, traffic operations in cities and denser street networks, are primarily
defined by the behaviour of vehicles at intersections, i.e., queueing delays at traffic
lights, priority turns, . . . In many cases, the intersection logic is simplified, such that
all decisions (conflict resolving et cetera) are taken before a vehicle enters the inter-
section [Hel04].

Several non-exhaustive examples include the work of Esser and Schreckenberg with
applications to the city of Duisburg [Ess97], the work of Simon and Nagel who primar-
ily focussed on single-lane traffic in combination with several setups for controlling
traffic lights, applying their work to the city of Dallas (different links have different
slowdown probabilities associated with them, thus enabling to model different street
capacities) [Sim98b], the work of Diedrich et al. who consider the effects of various
implementations of on- and off-ramps in the classical STCA model [Die00], and all
the references on TRANSIMS, the travel behaviour in Switzerland, the region of Dal-
las, the city of Portland, and the city of Geneva (where all intersections are replaced
by generalised roundabouts), mentioned at the end of Section 3.1.3.3.
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All these examples have in common that they are based on simple building blocks.
Despite this elegance, most of them however, do not provide satisfactory inform-
ation regarding the calibration and validation of their underlying models (this for
example with respect to the correct observed queueing delays at intersections). A
popular technique is to use sources and sinks, where vehicles are added and re-
moved, allowing tuning of the simulator in order to agree with incoming on-line
measurements. Clearly, we feel that besides a need for elaborate descriptions of
the employed models, there is perhaps even a bigger need for correct information
with respect to these models’ fidelity and accuracy.

4.5.3 Analytical results

Because most studies based on TCA models heavily rely on numerical simulations,
this creates the danger of introducing artifacts (e.g., finite-size effects) that obscure
the true dynamics of the systems under consideration. Although most of these prob-
lems should resolve in the so-called thermodynamic limit where KL, Tmp → +∞ (i.e.,
a lattice with infinite length considered over an infinite time period), resorting to this
approach is computationally not feasible. As a result, researchers have focussed on
analytical methods. Except for the most trivial cases with a deterministic (i.e., noise-
less) TCA model, these analytical methods most of the time provide approximations
at best.

In this section, we illustrate several of these analytical methods encountered in liter-
ature. Our discussion focusses on the concept of a mean-field theory, after which we
elaborate on some of its improvements that lead to better agreement with numerical
results.

Note that other avenues for analytical treatments of CA models, and TCA models
in particular, are also explored. In this section, we will however not go into detail
about them. For more information, we refer the reader to the interesting work of
Fukś and Boccara [Fuk98; Fuk99; Boc00; Fuk01; Fuk04].

4.5.3.1 Mean-field theory

As mentioned in the introduction of this section, for the case of arbitrary vmax and p =
0 or p = 1, or for vmax = 1 cell/time step, the analytical solution of the resulting TCA
model is exactly known. This solution, expressed as its (k,q) diagram, corresponds to
the set of diagrams as depicted in Figure 4.11 (see Section 4.3.1.2) for the DFI-TCA.

The problem is to find an analytical description of how the system evolves in time
through the state space, i.e., what are the occurring configurations ? The evolution of
a system, can be described by what is called a master equation. For cellular automata,
this equation is a first-order differential equation, describing the change in probability
of a system’s lattice to be in a certain configuration. The downside is that, in general,
this master equation can not be solved exactly.
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For the TASEP model (see Section 4.3.2.4) with open boundary conditions and ran-
dom sequential update, the master equation can be solved exactly [Raj96; San99]. In a
first step, the master equation is elegantly written in vector form, comprising a transfer
matrix that contains the time-evolution of the probabilities. By assuming the matrix-
product ansatz (MPA) formalism, the transfer matrix can be rewritten as a product of
local transfer matrices, operating on sets of cells. This provides a algebra that can be
solved exactly, thereby solving the TASEP analytically. Note that for the TASEP with
a parallel update however, obtaining the exact solution is difficult, because no simple
MPA decomposition into local matrices is possible.

In contrast to this promising result, obtaining an analytical solution becomes harder
to even intractable for the STCA model (see Section 4.3.2.1) with vmax > 1 cell/time
step and 0 < p < 1. In the master equation, probabilities of cluster of cells will occur,
making its solution very hard [Sch02a]. One well-known method that is suitable for
dealing with many-particle systems in statistical mechanics, is the construction of a
mean-field theory (MFT) of the model. Such a MFT can provide an approximation of
the master equation; in some cases, the MFT turns out to be an exact solution.

The idea behind a MFT, is that all correlations between neighbouring cells are neg-
lected. For TCA models, such a site-oriented mean-field theory (SOMF) assumes that
all cluster probabilities are replaced by single cell probabilities. The MFT now re-
places the effects of these individual cells with an average effect (the ‘mean field’),
which simplifies computations considerably. When translating the STCA’s rules R1
– R3, i.e., equations (4.46) – (4.48), R1 is decoupled into separate acceleration and
braking rules R1a and R1b, after which their order is changed to R1b, R3, R4, R1a.
The upshot of this is that there are no stopped vehicles in the system, thereby reducing
the number of possible states for a cell by one. If vmax = 1 cell/time step, then the
system can be fully described by cell occupancies. Applying this SOMF theory to the
STCA model, results in considerably underestimation of the flow in the system (even
for the restricted case of vmax = 1 cell/time step) [Sch95; Sch99a; Sch02a]. Finally,
note that Wang et al. also applied the mean-field theory to the case of two-dimensional
traffic such as the BML-TCA (see Section 4.5.2.1) [Wan96].

4.5.3.2 Improving the SOMF theory

As mentioned in the previous section, setting vmax = 1 cell/time step leads to an
underestimation of the flow. However, when switching from a parallel update pro-
cedure to a random sequential one, the resulting SOMF theory becomes exact ! It
turns out that the reason for the underestimation, can be traced back to its neglect-
ing of all correlations between cells (which are a consequence of the parallel update
procedure). As explained in the beginning of Section 4.3.2.4, using a parallel update
excludes certain Garden of Eden states. However, the SOMF theory naively includes
these paradisiacal states. As a solution, these GoE states can be eliminated, resulting
in a paradisiacal mean-field theory (pMFT). In systems with higher maximum speeds,
more GoE states occur, making it difficult to derive a pMFT. Even then, the theory still
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remains an approximation (albeit a better one) when using a parallel update procedure
[Sch98; Sch99a; Sch02a].

Taking into account short-range correlations, can be done by considering a car-oriented
mean-field theory (COMF). Instead of dealing with cells and their occupancies, the
COMF theory computes the probabilities Pn(v) of finding a space gap of n cells for
a vehicle driving with speed v [Sch97b]. In a sense, the COMF theory approximates
the problem by neglecting the correlations between space gaps of successive vehicles
[Cho00]. As such, it gives qualitatively good approximations for p → 0; in all other
cases, the COMF theory starts to fail, because there are also correlations between the
space gaps [San99; Cho00]. Note that the COMF theory has also been applied to
the BJH-TCA and VDR-TCA models (see Sections 4.3.3.2 and 4.3.3.3, respectively)
[Sch97c].

Another approach to analytically solve the master equation, is to explicitly take into
account the correlations between neighbouring cells, by considering clusters com-
posed of n consecutive cells [Sch99a; Sch02a]. Such a site-oriented cluster-theoretic
approach proves to perform better than the COMF theory from the previous section
[Sch95]. The improvement of the approximation is even better when considering lar-
ger clusters; it is exact for n→ +∞ [Sch97a; San99; Cho00].

4.6 Conclusions

This chapter introduced all the necessary material for understanding traffic cellular
automata (TCA) models, which are a class of computationally efficient microscopic
traffic flow models. TCA models arise from the physics discipline of statistical mech-
anics, having the goal of reproducing the correct macroscopic behaviour based on a
minimal description of microscopic interactions.

We began with an overview of cellular automata (CA) models, their background and
physical setup. Applying this technique to the modelling of traffic flows, we discretise
a road into a number of small cells (a procedure called coarse graining), having a
width of, e.g., ∆X = 7.5 m. Time is also discretised into units of approximately
∆T = 1 s. After introducing the mathematical notations, we showed how to perform
measurements on a TCA model’s lattice of cells, and how to convert these quantities
into real-world units and vice versa.

Subsequently, we gave an extensive account of the behavioural aspects of several TCA
models encountered in literature. Already, several reviews of TCA models exist, but
none of them consider all the models exclusively from the behavioural point of view.
In this respect, our overview fills this void, as it focusses on the behaviour of the TCA
models, by means of time-space diagrams, (k,q) diagrams and the like, and histograms
showing the distributions of vehicles’ speeds, space, and time gaps. In this chapter,
we have distinguished between single-cell and multi-cell models, whereby in the latter
vehicles are allowed to span a number of consecutive cells. We concluded with a
concise overview of TCA models in a multi-lane setting, and some of the TCA models
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used to describe city traffic as a two-dimensional grid of cells, or as a road network
with explicitly modelled intersections. The final part of the chapter illustrated some
of the more common analytical approximations to single-cell TCA models.

Considering the state-of-the-art in using TCA models, our analysis indicates that the
field has evolved rapidly over the last decade. Starting from initial attempts based on
rather crude models, the past few years have seen an increase in the computational
complexity as well as the available computational power. More complex models are
developed, of which we believe the brake-light TCA model of Section 4.4.2.2 is the
most promising: it is able to faithfully reproduce the correct real-life empirical ob-
servations, and quite some work has been done at calibrating the model, see, e.g., the
recent work of Knospe et al. [Kno04], and the work of Chrobok et al. in their devel-
opment of the On-Line SIMulator (OLSIM) [Chr04; Pot04]. To conclude, we note an
evolving trend of using these TCA models as the physical models underlying multi-
agent systems, in part describing the behaviour of individual people in large-scale road
networks as explained in Section 3.1.3.3.

In the next chapter, we present a relation between the stochastic STCA model of Sec-
tion 4.3.2.1 and the macroscopic first-order LWR model of Section 3.2.1.2. Instead of
considering the classical angle of using, e.g., a mean-field theory, we take a different
approach at studying their relation. By considering a TCA model as a particle-based
discretisation scheme for macroscopic traffic flow models, we can address the com-
mon structure between both models. This allows us to provide a means for explicitly
incorporating the STCA’s stochasticity into the LWR model.
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Chapter 5

Relating the dynamics of the
STCA to the LWR model

Considering the existing relations between the stochastic TCA (STCA) model of Nagel
and Schreckenberg (see Section 4.3.2.1) [Nag92b; Nag95a] and the macroscopic first-
order LWR model of Lighthill, Whitham, and Richards (see Section 3.2.1.2) [Lig55;
Ric56], from traffic flow theory, there are already numerous links between both mod-
elling approaches. An example is the so-called totally asymmetric simple exclusion
process (TASEP) [Der92], which corresponds to the LWR model with a noisy and dif-
fusive conservation law if a random sequential update is assumed (see Section 4.3.2.4)
[Nag95a; Nag96]. Deriving an analytical treatment of the STCA proves to be quite
hard to even intractable. One standard way for dealing with this, is an approxima-
tion by a so-called mean field theory (MFT), and its successive refinements, such as
the site-oriented and car-oriented mean-field theories (SOMF and COMF), as well
as the recently developed site-oriented cluster-theoretic approach (see Section 4.5.3)
[Sch95; Sch97b; Sch98; San99; Sch99a; Cho00; Sch02a]. Except for the most trivial
cases with a deterministic (i.e., noiseless) TCA model, these analytical methods most
of the time provide approximations at best. In summary, we can say that there already
exist several methods for bridging both the microscopic STCA and the macroscopic
LWR model1.

In this chapter, we reconsider the STCA and LWR models, but we take a different
approach at studying their relation: we consider a TCA model as a particle-based
discretisation scheme for macroscopic traffic flow models. It is from this latter point
of view that our work addresses the common structure between both models. Our main
goal is therefore to provide a means for implicitly incorporating the STCA’s stochasti-
city into the LWR model, which is in fact deterministic in nature [Mae03a].

1Note that we do not consider the hybrid models of Section 3.2.5, as we are only interested in direct
analogies between both microscopic and macroscopic models.
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220 Chapter 5 – Relating the dynamics of the STCA to the LWR model

Note that we use the term implicit to denote the fact that the STCA’s stochasticity
is not introduced in the equations by means of explicit noise terms. Rather, our
methodology implies that the stochasticity is introduced through the shape of the
LWR’s fundamental diagram. At the heart of our procedure, lies a transformation
of the STCA’s rules into a deterministic fundamental diagram that is specified to
the LWR model.

In the remainder of this chapter, we first consider a methodology for implicitly incor-
porating the STCA’s stochasticity into the LWR’s triangular fundamental diagram. We
then apply this technique to a small case study, which points us to some discrepancies
between both modelling approaches. We then highlight some of the resulting artifacts,
after which we investigate the main reason for the difference in behaviour. Continuing
this train of thought, we present an alternate derivation of the fundamental diagram.
The chapter concludes with a summary of our findings.

5.1 Implicitly incorporating the STCA’s stochasticity

As mentioned in the introduction, we reconsider the STCA and LWR models, taking a
different approach at studying their relation. Our main goal is to provide a means for
implicitly incorporating the STCA’s stochasticity into the LWR model. To this end,
we provide a practical methodology for specifying the fundamental diagram to the
LWR model. Assuming that a stationarity condition holds on the STCA’s rules, we
incorporate the STCA’s stochasticity directly into the LWR’s fundamental diagram.

Relating both the STCA and the LWR models is now done using a simple two-step
approach, in which we first rewrite the STCA’s rules into a single rule, leading to a set
of linear inequalities. These constraints can be considered as a vse(hs) fundamental
diagram (see, e.g., Figure 2.7). This latter diagram can then be converted into an
equivalent triangular flow versus density qe(k) fundamental diagram.

5.1.1 Rewriting the STCA’s rule set

Considering a vehicle’s average speed, the STCA’s rules R1 and R2, equations (4.46)
and (4.47) respectively, state that a vehicle slows down with probability p, and that it
does not slow down with probability 1 − p. As such, they can be rewritten into the
following single rule that is expressed in continuous speeds and space gaps:

vi(t) ← p ·min{vi(t− 1)��+1 ��−1, gsi
(t− 1)− 1, vmax − 1}+

(1− p) ·min{vi(t− 1) + 1, gsi
(t− 1), vmax}, (5.1)

with vi(t) ← max{0, vi(t)}. Furthermore, the following two algebraic relations al-
ways hold:
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a ·min{b, c} = min{ab, ac}, (5.2)

min{a, b}+ min{c, d} = min{a + c, a + d, b + c, b + d}. (5.3)

Applying relation (5.2) to our rule (5.1), yields the following result:

vi(t) ← min{pvi(t− 1), p(gsi
(t− 1)− 1), p(vmax − 1)}+

min{(1− p)(vi(t− 1) + 1), (1− p)gsi
(t− 1), (1− p)vmax}. (5.4)

Using relation (5.3) to this result, allows us to obtain a formulation with a single
minimum-operator:

vi(t)← min{ pvi(t− 1) + (1− p)(vi(t− 1) + 1),

pvi(t− 1) + (1− p)gsi
(t− 1),

pvi(t− 1) + (1− p)vmax,

p(gsi
(t− 1)− 1) + (1− p)(vi(t− 1) + 1),

p(gsi
(t− 1)− 1) + (1− p)gsi

(t− 1),

p(gsi
(t− 1)− 1) + (1− p)vmax,

p(vmax − 1) + (1− p)(vi(t− 1) + 1),

p(vmax − 1) + (1− p)gsi
(t− 1),

p(vmax − 1) + (1− p)vmax}. (5.5)

Expanding all the terms between parentheses gives the following result:

vi(t)← min{ �����pvi(t− 1) + vi(t− 1) + 1−�����pvi(t− 1)− p,

pvi(t− 1) + gsi
(t− 1)− pgsi

(t− 1),

pvi(t− 1) + vmax − pvmax,

pgsi
(t− 1)− p + vi(t− 1) + 1− pvi(t− 1)− p,

�����
pgsi

(t− 1)− p + gsi
(t− 1)−�����

pgsi
(t− 1),

pgsi
(t− 1)− p + vmax − pvmax,

pvmax − p + vi(t− 1) + 1− pvi(t− 1)− p,

pvmax − p + gsi
(t− 1)− pgsi

(t− 1),

���pvmax − p + vmax −���pvmax}. (5.6)
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And finally, regrouping for p yields:

vi(t)← min{ vi(t− 1) + 1− p,

p(vi(t− 1)− gsi
(t− 1)) + gsi

(t− 1),

p(vi(t− 1)− vmax) + vmax,

p(gsi
(t− 1)− vi(t− 1)− 2) + vi(t− 1) + 1,

gsi
(t− 1)− p,

p(gsi
(t− 1)− vmax − 1) + vmax,

p(vmax − vi(t− 1)− 2) + vi(t− 1) + 1,

p(vmax − gsi
(t− 1)− 1) + gsi

(t− 1),

vmax − p}. (5.7)

If we now assume traffic is stationary (see, e.g., Daganzo’s description of stationary
traffic in Section 2.3.4.2), then we can assert that the state of a vehicle at time t is the
same as its state at time t − 1, i.e., vi(t) = vi(t − 1) and gsi

(t) = gsi
(t − 1). As a

result, equation (5.7) gets transformed into the following set of linear inequalities that
express constraints on the relations between vi(t), gsi

(t), p, and vmax:

�
��vi(t) + 1− p ≥�

��vi(t) (C1),

p(vi(t)− gsi
(t)) + gsi

(t) ≥ vi(t) (C2),

p(vi(t)− vmax) + vmax ≥ vi(t) (C3),

p(gsi
(t)− vi(t)− 2) +�

��vi(t) + 1 ≥�
��vi(t) (C4),

gsi
(t)− p ≥ vi(t) (C5),

p(gsi
(t)− vmax − 1) + vmax ≥ vi(t) (C6),

p(vmax − vi(t)− 2) +�
��vi(t) + 1 ≥�

��vi(t) (C7),

p(vmax − gsi
(t)− 1) + gsi

(t) ≥ vi(t) (C8),

vmax − p ≥ vi(t) (C9).

Let us now examine each of these nine constraints C1 – C9.

• Constraint C1 states that 1− p ≥ 0, i.e., p ≤ 1. This logically follows from the
STCA’s condition that p ∈ [0, 1].

• Constraint C2 states that p(vi(t)− gsi
(t))+ gsi

(t) ≥ vi(t), i.e., gsi
(t)����(1− p) ≥

vi(t)����(1− p). This corresponds to vi(t) ≤ gsi
(t), which states that vehicles

strive for collision-free driving.

• Constraint C3 states that p(vi(t) − vmax) + vmax ≥ vi(t), i.e., vmax����(1− p) ≥
vi(t)����(1− p). This corresponds to vi(t) ≤ vmax, which logically follows from
the STCA’s condition that vi(t) ∈ {0, . . . , vmax}.
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• Constraint C4 states that p(gsi
(t)−vi(t)−2)+1 ≥ 0, i.e., vi(t) ≤ gsi

(t)−2+ 1
p

(for p 6= 0).

• Constraint C5 states that gsi
(t)− p ≥ vi(t), i.e., vi(t) ≤ gsi

(t)− p, which is a
more stringent constraint than C2 and C4.

• Constraint C6 states that p(gsi
(t) − vmax − 1) + vmax ≥ vi(t), i.e., vi(t) ≤

vmax(1− p) + p(gsi
(t)− 1).

• Constraint C7 states that p(vmax− vi(t)− 2)+ 1 ≥ 0, i.e., vi(t) ≤ vmax− 2 + 1
p

(for p 6= 0).

• Constraint C8 states that p(vmax − gsi
(t) − 1) + gsi

(t) ≥ vi(t), i.e., vi(t) ≤
gsi

(t)(1− p) + p(vmax − 1).

• Constraint C9 states that vmax − p ≥ vi(t), i.e., vi(t) ≤ vmax − p, which is a
more stringent constraint than C3 and C7.

Taking the previous considerations into account, we can see that constraints C1, C2,
and C3 are always satisfied. The remaining three pairs of similar constraints on the
relations between vi(t), gsi

(t), p, and vmax, are the following: constraints C5 and C9,
C4 and C7, and C6 and C8.

In order to gain insight into the more difficult constraints C6 and C8, we first rewrite
them as follows:

(C6) vi(t) ≤ p︸︷︷︸
slope

gsi
(t) + (1− p)vmax − p︸ ︷︷ ︸

intercept

,

(C8) vi(t) ≤ (1− p)︸ ︷︷ ︸
slope

gsi
(t) + p(vmax − 1)︸ ︷︷ ︸

intercept

,

where we have separated the terms containing gsi
(t). Plotting the speed vi(t) versus

the space gap gsi
(t) in Figure 5.1, allows us to more easily interpret the combined

effects of these two constraints. On the one hand, if we continuously change p =
0 → 1, then constraint C6 goes from a horizontal line at vi(t) = vmax, to a slanted
line with a slope of +1, intercepting the horizontal and vertical axes at +1 and −1,
respectively. In all cases, the point at (vmax + 1,vmax) remains invariant. On the other
hand, changing p = 0→ 1 turns constraint C8 from a slanted line with a slope of +1,
passing through the origin, into a horizontal line at vi(t) = vmax − 1. In all cases, the
point at (vmax − 1,vmax − 1) remains invariant.

5.1.2 Deriving the fundamental diagram

The next step of our approach, considers the most determining linear inequalities C5,
C6, C8, and C9 as boundaries in a vse(gs) fundamental diagram. As such, we note the
following observations:
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PSfrag replacements
vi(t) vi(t)

gsi(t) gsi(t)

1

1

1

vmax

vmax − 1

vmax − 1vmax + 1

C6

C8

Figure 5.1: A visual representation of the constraints C6 and C8. Left: as p = 0 → 1, C6
changes from a horizontal line at vi(t) = vmax, to a slanted line with a slope of +1, intercepting
the horizontal and vertical axes at +1 and −1, respectively. Right: at the same time, constraint
C8 changes from a slanted line with a slope of +1, passing through the origin, into a horizontal
line at vi(t) = vmax − 1.

• Increasing the slowdown probability p, holding vmax constant:

– The average speed vff in the free-flow regime decreases towards vmax − p.

– The transition point at the critical space gap gsc remains invariant.

– The space gap gsj , corresponding to the jam density, increases.

• Decreasing the maximum speed vmax, holding p constant:

– The average speed vff in the free-flow regime decreases towards vmax − p.

– The transition point at the critical space gap gsc decreases.

– The space gap gsj , corresponding to the jam density, remains invariant.

Using equation (2.1) from Section 2.2.2, i.e., hs = gs + l, the derived vse
(gs) fun-

damental diagram can be converted into a vse(hs) fundamental diagram. Because we
originally started from a single-cell TCA model (i.e., the STCA), we can use our con-
vention which states that a vehicle’s length li ≥ 1 cell ∝ ∆X (see Section 4.2.4 for
more details).

Based on equation (2.11) from Section 2.3.1.1, we note that hs = k−1. This allows
us to effectively transform the vse(hs) fundamental diagram into a vse(k) fundamental
diagram. As can be seen in the left part of Figure 5.2, increasing the stochasticity
while holding vmax constant, leads to the same observations that we previously men-
tioned. Finally, using the fundamental relation of traffic flow theory (2.33) (see Sec-
tion 2.3.4.2), our constraints are transformed into an equivalent triangular qe(k) fun-
damental diagram. Applying this technique results in the following analytical expres-
sions for the parameters of the LWR’s fundamental diagram (based on the conversions
in Section 4.2.4.1):
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vff = (vmax − p)
∆X

∆T
3.6, (5.8)

kcrit =
1000

(vmax + l) ∆X
, (5.9)

kjam =
1000

(l + p) ∆X
, (5.10)

with l = 1 cell as the length of all vehicles in the single-cell STCA model. Note that
equations (5.8) – (5.10) contain expressions for transforming the STCA’s units into
their LWR real-world equivalents, i.e., from cells/time step to km/h (× 3.6 ∆X/∆T )
and from vehicles/cell to vehicles/km (× 1000/∆X). Equation (5.10) deserves special
attention: from the linear inequality C6 it follows that an increase of the stochasticity p
leads to a larger space gap in a jam, i.e., gsjam = l + p with l the vehicle length taken to
be 1 cell, i.e., ∆X . As such, the jam density (proportional to (l + p)−1) decreases for
higher p. Because of our specific transformation of the rule set, two important things
are noticed: firstly, the jam density is different for the transformed LWR deterministic
and stochastic systems (in contrast to this, they are taken to be the same in the STCA
model, i.e., 1 vehicle per cell). And secondly, the LWR model is a strictly determ-
inistic system: jams can occur only due to the imposed boundary conditions (e.g.,
an increased demand, a narrowing of the road, . . . ). So the phenomenon of spontan-
eous emergence of jams in the STCA model is not carried over when transforming
its rules into a fundamental diagram for the LWR model (this corresponds with our
notion of implicitly introducing the stochasticity to the LWR model, as mentioned in
the introduction of this chapter).

The capacity flow is calculated using the fundamental relation (2.33), resulting in the
following expression that is automatically expressed in vehicles/hour:

qcap = kcrit vff. (5.11)

As is visible in the right part of Figure 5.2, an increase of the stochasticity leads to
a lower capacity flow qcap, an invariant critical density kc, and a smaller jam density kj.

In conclusion, we note how rewriting the STCA’s rule set allowed us to obtain
a stationary triangular qe(k) fundamental diagram. This fundamental diagram,
which implicitly incorporates the STCA’s stochasticity, can then be specified as a
parameter to the macroscopic first-order LWR model of Section 3.2.1.2. Finally
note that the shape of the derived fundamental diagram is dictated by the inequal-
ity constraints C1 – C9. As such, it actually represents an ‘outer envelope’, that is
to say, all possible fundamental diagrams lie beneath this envelope. This includes
curved fundamental diagrams, more generally piecewise-linear fundamental dia-
grams, et cetera.
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Figure 5.2: Left: deriving a stationary vse(hs) fundamental diagram from the STCA’s con-
straints C1 – C9. The stochastic diagram has a higher inverse jam density, but the same inverse
critical density as its deterministic counterpart (for the same vmax). Right: an equivalent trian-
gular qe(k) fundamental diagram.

5.2 Application to an illustrative case study

After deriving a relation between the STCA and LWR models by means of the process
explained in the previous Section 5.1, we now apply our methodology to a small case
study. We first describe the setup of the test scenario, after which we interpret and
discuss our obtained results.

5.2.1 Description of the case study

The case study we consider, is modelled as a single-lane road that has a middle section
with a reduced maximum speed (corresponding to, e.g., an elevation, a speed limit,
. . . ). This road consists of three consecutive segments A, B, and C, as depicted in
Figure 5.3, whereby vehicles enter the road at segment A, travel through segment B,
and exit it at the end of segment C. For the STCA, we assume a temporal and spatial
discretisation of ∆T = 1 s and ∆X = 7.5 m, respectively. The first road segment A
then consists of 1500 cells (11.25 km), while the second and third segments B and C
each consist of 750 cells (i.e., each approximately 5.6 km long). The maximum speed
for segments A and C is vA,C

max = 5 cells/time step, whereas it is vB
max = 1 cell/time

step for segment B. The capacity flows for all three segments are denoted as qA,C
cap and

qB
cap.

This road is simulated using both the STCA and the LWR model, each time for 3000
time steps. As for the boundary conditions, we assume an overall inflow of qB

cap/2,
except from time step 200 until time step 600, where we have created a short traffic
burst of increased demand, with an inflow of (qA,C

cap +qB
cap)/2. Figure 5.4 shows a close

up of the individual vehicle trajectories for the STCA in a time-space diagram, near
the border between segments A and B. As can be seen from the trajectories, heavy
congestion sets in and flows upstream into segment A, where it starts to dissolve at
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Figure 5.3: The single-lane road of the case study we consider, consisting of three consecutive
segments A, B, and C. Assuming temporal and spatial discretisations of ∆T = 1 s and
∆X = 7.5 m, respectively, segment A is composed of 1500 cells, while segments B and C are
each composed of 750 cells. The maximum speed for segments A and C is vmax = 5 cells/time
step, whereas it is vmax = 1 cell/time step for segment B.

the end of the traffic burst. The result is a typical triangular-shaped region that con-
tains a queue of slow-moving vehicles (the backward propagating waves are clearly
distinguished as the pattern of parallel black and white stripes).

Figure 5.4: A close up of the individual vehicle trajectories for the STCA in a time-space
diagram, near the border between segments A (vA,C

max = 5 cells/time step) and B (vB
max = 1

cell/time step), for p = 0.1 everywhere in the system. We can see the formation and dissolution
of an upstream growing congested region at the end of segment A, related to the short traffic
burst.

Applying our previously discussed methodology, we construct a stationary triangular
qe(k) fundamental diagram. Its parameters are calculated by means of equations (5.8)
– (5.11). The results are listed in Table 5.1, with the TCA’s parameters expressed
in cells/time step, vehicles/cell, and vehicles/time step, respectively, and the LWR’s
parameters expressed in kilometres/hour, vehicles/kilometre, and vehicles/hour, re-
spectively.
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vmax = 1 (p = 0.1) vmax = 5 (p = 0.1)

STCA LWR STCA LWR
vff 0.90 24.30 vff 4.90 132.30
kcrit 0.50 66.67 kcrit 0.17 22.22
kjam 0.91 121.20 kjam 0.91 121.20
qcap 0.45 1620.08 qcap 0.83 2939.71

vmax = 1 (p = 0.5) vmax = 5 (p = 0.5)

STCA LWR STCA LWR
vff 0.50 13.50 vff 4.50 121.50
kcrit 0.50 66.67 kcrit 0.17 22.22
kjam 0.67 88.89 kjam 0.67 88.89
qcap 0.25 900.05 qcap 0.77 2699.73

Table 5.1: The resulting parameters for the triangular fundamental diagrams, as calculated
by means of equations (5.8) – (5.11). The STCA’s parameters are expressed in cells/time step,
vehicles/cell, and vehicles/time step, respectively, whereas the LWR’s parameters are expressed
in kilometres/hour, vehicles/kilometre, and vehicles/hour, respectively.

5.2.2 Results and discussion

The result of numerically solving the LWR model for the case of p = 0.1 using the
Godunov method [Dag95b; Leb96] (see Section 3.2.1.4 for more details), is depicted
in the right part of Figure 5.5. Note that for the LWR model, each cell in the Godunov
scheme corresponds to 5 (i.e., vA,C

max ) consecutive cells of the STCA model. Compar-
ing the tempo-spatial behaviour of the LWR model to that of the microscopic system
dynamics of the STCA model (i.e., the left part of Figure 5.5), we find a good qual-
itative agreement between the two approaches. The time-space diagram of the STCA
is an average taken over 100 stochastic realisations of the system; in contrast to this,
the diagrams of the LWR model are always deterministic in nature. With respect to
the first-order traffic flow characteristics, we note that the buildup and dissolution of
congestion queues are fairly analogous for both techniques.

In Figure 5.6, we show the results when repeating the same experiment, but this time
with the stochastic noise p set to 0.5 for all three segments. As revealed by the shape
of the dark triangular region in the LWR model (right part), the buildup and dissolu-
tion of congestion queues seems to be exaggerated, especially in the upstream flowing
queue of segment A.

It is interesting to note that the STCA model reveals a higher-order effect that is
not visible in the LWR model: there exists a fan of forward propagating density
waves in segment B (see the left parts of Figure 5.5 and Figure 5.6). As such, in its
tempo-spatial diagram, the STCA seems to be able to visualise the characteristics
that constitute the solution of the LWR model (as was visualised in Figure 3.7 in
Section 3.2.1.3).
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Figure 5.5: Time-space diagrams showing the propagation of densities during 3000 time steps
for the road in the case study. Left: the microscopic system dynamics of the STCA model (the
resulting diagram is an average taken over 100 stochastic realisations). Right: the results for
the LWR model. In both cases, p = 0.1, with darker regions corresponding to more congested
traffic conditions. There is a qualitatively good agreement between the two approaches on the
level of first-order traffic flow characteristics: the buildup and dissolution of congestion queues
are fairly analogous for both techniques.

Figure 5.6: Time-space diagrams showing the propagation of densities during 3000 time steps
for the road in the case study. Left: the microscopic system dynamics of the STCA model (the
resulting diagram is an average taken over 100 stochastic realisations). Right: the results for
the LWR model. In both cases, p = 0.5, with darker regions corresponding to more congested
traffic conditions. As revealed by the shape of the dark triangular region in the LWR model
(right part), the buildup and dissolution of congestion queues is exaggerated, especially in the
upstream flowing queue of segment A.

In order to more rigourously quantify the discrepancies between the time-space dia-
grams of both STCA and LWR models, we provide their absolute differences in Fig-
ure 5.7 (i.e., we compute and plot the differences between the average densities of
100 stochastic realisations of the STCA model and the densities of the LWR model,
at each grid point in the time-space diagrams). The left part shows the differences for
p = 0.1, whereas the right part shows the differences for p = 0.5. The most import-
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ant features to look at, are the dark coloured regions which indicate larger differences
between both modelling approaches. We can clearly see that there is a problem with
respect to a quantitative agreement between both STCA and LWR models. It appears
as though the LWR model overestimates the STCA’s capacity flows. As a result, it
dissolves its jams more quickly in segment B, and it predicts a more severe onset of
congestion in segment A (i.e., the triangular-shaped region containing the spill-back
queue is more pronounced in the LWR’s case). The sharply pronounced darker re-
gions in the tempo-spatial left part of segment B, are due to the fact that the LWR
model does not visualise the characteristics of its solution, in contrast to the STCA
model which is able to give a clear indication of them.

Figure 5.7: Time-space diagrams showing the differences in densities for the STCA and LWR
models, during 3000 time steps for the road in the case study. Darker regions indicate large
differences between both modelling approaches. Left: the differences for p = 0.1 are less
pronounced, showing only a dark edge at the bottom triangular-shaped region in segment A.
Right: the differences for p = 0.5, showing significant discrepancies in the bottom of the
triangular-shaped region in segment A.

One of the main reasons for this discrepancy between both modelling approaches, lies
in the derivation of a triangular qe(k) fundamental diagram for the LWR model, as was
explained in Section 5.1. Because we assumed a stationarity condition on the STCA’s
rule set, the resulting constraints implied an invariant critical density, and always over-
estimated the STCA’s capacity flows. In our opinion, the different behaviour of both
models, mainly stems from this artifact. As a result, the discrepancies will become
more articulated when increasing the stochastic noise p.

5.3 Alternate derivation of the fundamental diagram

Considering the results of the previous approach, i.e., deriving the LWR’s fundamental
diagram based on the STCA’s rule set, and the problems related to it, the next step
is to specify the fundamental diagram directly, based on the empirically observed
behaviour of the STCA model. In the following two sections, we first discuss the
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effects of explicitly adding noise to the LWR’s fundamental diagram, after which we
discuss our obtained results when specifying the fundamental diagram directly.

5.3.1 The effect of adding noise to the LWR’s fundamental dia-
gram

Adding noise to the LWR model can mainly be accomplished via two ways: either
by explicitly incorporating noise terms in the LWR equations (e.g., the conservation
equation), or as a noise term in the qe(k) relation (i.e., the fundamental diagram).
We refrain from changing the LWR’s conservation equation, because this amounts to
introducing some form of numerical diffusion, similar to the viscosity terms in the
conservation equation’s right-hand side as explained in Section 3.2.1.3.

In Figure 5.8, we show the results of supplying uniformly distributed additive noise
of 0.1 (left part) and 0.5 (right part). As can be seen, the introduction of noise in the
fundamental diagram, leads to a ‘spreading’ of the solution. For small noise levels,
some of the characteristics are revealed; for larger noise levels, the characteristics are
clearly pronounced, including long jam dissolution times.

Figure 5.8: Time-space diagrams showing the propagation of densities during 3000 time steps
for the road in the case study. Depicted are the results for the LWR model, with noise levels
of 0.1 (left) and 0.5 (right). Higher noise levels clearly reveal the typical characteristics of the
solution, and introduce longer jam dissolution times.

5.3.2 Specifying the fundamental diagram directly

Instead of deriving the fundamental diagram based on the approach taken in Section
5.1, we now try to obtain the values for the critical densities and capacity flows dir-
ectly, by looking at the STCA’s (k,q) diagrams in Figure 5.9 (an equivalent procedure
would be to measure the capacity flows directly from the time-space diagram in Fig-
ure 5.4). Considering the STCA’s (k,q) diagrams in Figure 5.9, we can estimate its
capacities at approximately qB

cap = 0.34 vehicles/time step ≈ 1220 vehicles/hour, and
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qA,C
cap = 0.67 vehicles/time step ≈ 2400 vehicles/hour for vB

max = 1 and vA,C
max = 5

cells/time step, respectively. The stochastic noise p was set to 0.1 for all three seg-
ments. Changing p to 0.5 for these segments, we can estimate the capacities at ap-
proximately qB

cap = 0.15 vehicles/time step ≈ 540 vehicles/hour, and qA,C
cap = 0.34

vehicles/time step ≈ 1220 vehicles/hour for vmax = 1 and vmax = 5 cells/time step,
respectively.
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Figure 5.9: The (k,q) fundamental diagrams for the STCA model. Left: two diagrams for
vB

max = 1 cells/time step. Right: two diagrams for v
A,C
max = 5 cells/time step. Each time,

the slowdown probability p ∈ {0.1, 0.5}. Small dots and crosses denote short-term averages
taken over one-minute intervals, while the thick solid white lines denote long-term averages.
Note how a slower maximum speed makes the diagrams more curved, and how an increasing
slowdown probability leads to both a lower critical density and capacity flow.

Instead of calculating the capacity flows from the average free-flow speeds and the
critical densities, as was done by means of equation (5.11), we now specify these
capacity flows directly to the LWR’s fundamental diagrams and calculate the crit-
ical densities from them. The results we obtained, are visualised in the time-space
diagrams of Figure 5.10. Because the STCA’s capacity flows are now better approx-
imated, and not overestimated as with the previous methodology, there seems to be
a better qualitative agreement for both noise levels with the STCA’s time-space dia-
grams in the left parts of Figure 5.5 and Figure 5.6.

In Figure 5.11 we have depicted the absolute differences between this approach and
the STCA’s time-space diagrams. Comparing this to the previous results of Figure 5.7,
we can see that in both cases the buildup and dissolution of congestion queues is in
good qualitative agreement for both noise levels. As such, we come the conclusion that
it is vital to correctly capture the capacity flows of the STCA model. Neglecting this
property, can result in severe distortion of the system dynamics for higher noise levels.
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Figure 5.10: Time-space diagrams showing the propagation of densities during 3000 time
steps for the road in the case study. Left: the results for the LWR model with p = 0.1. Right:
the results for the LWR model with p = 0.5. In both diagrams, the fundamental diagram was
specified directly to the LWR model, by explicitly stipulating the capacity flows of the STCA
model. As a result, there seems to be a better qualitative agreement for both noise levels with
the STCA’s time-space diagrams in the left parts of Figure 5.5 and Figure 5.6.

Figure 5.11: Time-space diagrams showing the differences in densities for the STCA and
LWR models, during 3000 time steps for the road in the case study. Darker regions indicate
large differences between both modelling approaches. Left: the differences for p = 0.1. Right:
the differences for p = 0.5. In both cases, the differences are less pronounced, showing only
dark edges at the bottom of the triangular-shaped region in segment A.

Note that the LWR model is able to correctly capture the first-order effects of
jam buildup and dissolution, and that, due to its microscopic treatment, the STCA
model allows us to visualise the higher-order effects inside jam. However, as is
evidenced by this and the previous section, it is very important to correctly capture
the capacity flows in the STCA model, otherwise a growing discrepancy between
the LWR and STCA model is introduced with higher noise levels.
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5.4 Conclusions

In this chapter, we presented an alternate methodology for implicitly incorporating the
STCA’s stochasticity into the macroscopic first-order LWR model. The innovative as-
pect of our approach, is that we derive the LWR’s fundamental diagram directly from
the STCA’s rule set, by assuming a stationarity condition that converts the STCA’s
rules into a set of linear inequalities. In turn, these constraints define the shape of the
fundamental diagram that is then specified to the LWR model.

For noise-free systems, our method is exact. In the presence of noise, however, the
capacity flows in the derived fundamental diagram are overestimates of those of the
STCA model. This discrepancy can be explained as follows: the underlying assump-
tion for the LWR model, is that the fundamental diagram is assumed to be exact, and
implicitly obeyed, i.e., the existing equilibrium relation is representative for the real
traffic situation. In the original LWR formulation, this relation was also assumed to
hold also for non-stationary traffic (which is a more or less reasonable assumption
if we consider long and crowded roads). Our calculations have shown that a direct
translation of the STCA’s rule set into the LWR’s fundamental diagram, does not al-
ways result in a valid fundamental diagram, especially for higher noise levels. As
such, there can be a significant difference between an average fundamental diagram
(STCA) and a stationary fundamental diagram (LWR). As a result, the STCA model
is able to temporarily operate under larger flows and densities than those possible
for the LWR’s stationary fundamental diagram. A logical course of action would be
to better approximate the STCA’s fundamental diagram. By doing so however, we
lose the advantage gained through an explicit derivation of the fundamental diagrams’
outer envelope, almost certainly leading to extra conditions that need to make further
assumptions about its shape. Directly specifying the STCA’s capacity flows to the
triangular LWR fundamental diagram, effectively remedies most of the mismatches
between both STCA and LWR models.

Our methodology sees the STCA complementary to the LWR model and vice versa,
so the results can be of great assistance when interpreting the traffic dynamics in both
models. Especially appealing, is the fact that the STCA can visualise the higher-
order characteristics of traffic stream dynamics, e.g., the fans of rarefaction waves.
Nevertheless, because the LWR model is only a coarse representation of reality, there
are still some mismatches between the two approaches. One of the main concerns the
authors discovered, is as hinted at earlier, the fact that using a stationary fundamental
diagram (i.e., an equilibrium relation between density and flow), always overestimates
the practical capacity of a stochastic cellular automaton model. As such, it is vital to
correctly capture the capacity flows in both STCA and LWR models, a remark that we
feel is valid for all case studies.
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Chapter 6

Data quality, travel time
estimation, and reliability

We now turn our attention towards what is called exploratory data analysis (EDA) of
all traffic flow measurements gathered on Flanders’ motorways. In a first section, we
describe how all these measurements are obtained by detectors either embedded in
the concrete, or by cameras positioned alongside the road, how they are stored in a
central database, and how we can query this database, e.g., to give a visualisation of
weekly patterns.

We then discuss the quality of the measurements, from a statistical point of view. To
this end, we both give a technique that tracks outliers and some pointers for dealing
with missing values. Subsequently, we provide a methodology for quickly assessing
structural and incidental detector malfunctioning; this is done by creating maps that
give a clear visual indication of when and where the problems occurred.

The final section of this chapter provides a methodology for the off-line estimation
of travel times, based on flow measurements (as opposed to the much used technique
based on speed measurements). To conclude, we provide some reliability and robust-
ness properties related to travel times and traffic flow dynamics, which establishes an
extra instrument for the analysis of recurrent congestion.

6.1 Acquisition of traffic flow measurements

Since the last decade, a tremendous amount of traffic data is being gathered by de-
tectors in Flanders’ motorway road network (see Table 6.1 for a summary of the total
length of all roads in Flanders); this data stems from over 1600 sensors in total (see
Figure 6.1) [VVC03]. Until now, only data collection has been performed, but recently
the Flemish government expressed interest in analysing this data. More specifically,

237
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due to the presumed high level of data corruption, it becomes worthwhile to perform
quality assessments of the available data and provide corrections if possible. This will
allow the Flemish motorway operating agency to use the detector data for fine tuning
certain control measures pertaining to optimal flows and incident avoidance, as well
as on- and off-line travel time prediction and the assessment of network reliability.

Province Motorways On-/Off-ramps Normal roads Total

Antwerpen 230 km 98 km 970 km 1298 km
Oost-Vlaanderen 203 km 80 km 1030 km 1313 km
West-Vlaanderen 187 km 94 km 1286 km 1567 km
Vlaams-Brabant 194 km 104 km 604 km 902 km
Limburg 102 km 44 km 1062 km 1208 km

Total 916 km 420 km 4952 km 6288 km

Table 6.1: The total length of all roads in Flanders, the Dutch-speaking northern part of Bel-
gium (information cited from [AWV04]).

Figure 6.1: Flanders’ motorway road network and its underlying secondary network of na-
tional roads, located in the northern part of Belgium. All motorways are equipped with more
than 1600 sensors in total, as indicated by the locations of the gray circles (mostly single in-
ductive loop detectors and some cameras), each minute measuring local flows, occupancies and
time-mean speeds (for all lanes separately).

6.1.1 Aggregation procedures

In Belgium, there are mainly two types of detectors employed: single inductive loop
detectors (SLD) embedded in the concrete and cameras positioned above or alongside
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the road. In the following two sections, we briefly discuss each of these devices. The
third section and fourth section deal with the operational characteristics of single in-
ductive loop detectors, and some remarks on the traditional way of estimating speeds,
respectively.

6.1.1.1 Single inductive loop detectors

These are inductive loops of copper wire embedded in the concrete, typically in a rect-
angular setup (see the left part of Figure 6.3); they create an induced electromagnetic
field that changes whenever a vehicle passes over the loop. Comparing the change in a
loop’s total inductance against a calibrated threshold, allows the associated controller
logic, which energises the physical loop with a periodic signal, to count vehicles each
time the current settles again to its stationary state. Counting the number of success-
ive pulses corresponds to a vehicle’s on-time (see the left part of Figure 6.2) [Sie]. In
Belgium, the SLDs are provided by the company Macq électronique1.

An SLD is sometimes called a presence-type detector, and is therefore only able to
measure flows and occupancies. In order to get a reliable estimation of a vehicle’s
speed, a double inductive loop detector (DLD), consisting of two closely spaced single
inductive loop detectors, can be used. The vehicle’s speed is computed based on the
distance between both loops and the time needed for the vehicle to travel this distance.
As such, these DLDs are also called speed traps. Typical dimensions for an SLD
are a width of 1.8 metres (i.e., half the width of a typical lane in Belgium and The
Netherlands), with a length of 1.5 metres. The width assures that a typical vehicle can
not avoid a detector when changing lanes. The length is taken large enough such that
a small truck is considered as a single vehicle, and at the same time it is assumed to
be small enough such that the individual vehicles are still counted under congested
conditions. Double inductive loop detectors are spaced 1 metre apart [Bov00]. Each
loop detector is connected to a circuit board that contains the controller logic which
processes the changes in the coils’ inductances as vehicles drive by (see the right part
of Figure 6.2).

6.1.1.2 Cameras

These are mounted above or alongside the road and record all traffic that drives over
a certain section of the road (see the middle part of Figure 6.3). As vehicles pass
by, the image processing algorithms embedded in the camera’s software detect and
count these vehicles in real-time. Cameras are able to easily outperform inductive
loop detectors in terms of quality of the measurements (which is of course dependent
on the capability of the software to deal with varying road and weather conditions). In
Belgium, there are some 200 cameras in use and all of them (as well as their accom-
panying software) are provided by Traficon2. Traficon essentially provides a detector

1http://www.macqel.be
2http://www.traficon.be

http://www.macqel.be
http://www.traficon.be
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Figure 6.2: Left: each time a vehicle i passes over the area of a single inductive loop detector,
the controller logic records the vehicle’s on-time oti as a consecutive number of pulses. The
detector aggregates these on-times (see Section 2.3.3 for more details) during measurement
periods of length Tmp. Right: two single inductive loop detectors (marked as SLD) embedded
in a road; the coils are connected to the controller logic (marked as CTRL) which processes the
changes in the coils’ inductances as vehicles drive by.

board that contains a video image processor (VIP); this processor detects vehicles that
cross lines that are superposed on the camera’s picture (see the right part of Figure 6.3).

Figure 6.3: Some images of traffic detectors typically encountered in the Belgian road net-
work. Left: two single inductive loop detectors embedded in the concrete. Middle: a traffic
camera mounted on top of a traffic light. Right: an image sequence of a camera that is pro-
cessed by a Traficon video image processor to extract local traffic data.

Considering the measurement regions from Section 2.3 (see Figure 2.3), we note
that an SLD corresponds to region Rt, a DLD corresponds to two such successive
regions, whereas a camera corresponds to region Rt,s (put more correctly, it re-
sembles sequences of Rs regions that correspond to the video’s individual frames).

Other possible detectors are pneumatic tubes which detect changes in pressure, de-
tectors based on infrared beams, radar devices using the Doppler effect, . . . Different
detection schemes require different installation and maintenance costs. Nowadays,
the Belgian government chooses to replace faulty single inductive loop detectors with
cameras, as these latter can quickly be installed without having to completely block
one or more lanes of the road.
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6.1.1.3 Operational characteristics of single inductive loop detectors

Most of the detectors are located right before and after each complex of on- and off-
ramps at motorways. This clearly gives a very sparse spatial distribution because there
are many kilometres of road compared to the kilometres spanned by these complexes.
In total, the number of detectors present in Flanders’ motorway network amounts to
1654 for the year 2001 and 1800 for the year 2003: each detector is responsible for a
single lane that can be located on the main road of the motorway, or on an on- or off-
ramp. Measurements for each detector are aggregated every minute, i.e., Tmp = 60 s.
Noting that traffic flows vary in time and space, the operations of the detectors can
be seen as the stochastic sampling of these traffic flows. So we should always keep
in mind that the obtained measurements are not absolute values, but samples from a
stochastic distribution.

There are four macroscopic variables3 that each detector i in the motorway network
outputs after the elapse of each measurement period t:

• qci
(t), the number of cars driving by,

• qti(t), the number of trucks driving by,

• ρi(t), the occupancy of the detector,

• and vti(t), the time-mean speed of all vehicles driving by.

It is important to realise that an SLD is not capable of measuring the speed of a single
vehicle. This stems from the fundamental fact that the measurements are taken at a
single point in space (i.e., measurement region Rt). And without knowing a vehicle’s
length, its speed can not be derived. So either the length or the speed can be calculated
(provided one of the two is known), but not both. As such, only qci

(t), qti(t), and ρi(t)
are measured directly; an estimate of the time-mean speed is v ti(t) is derived from
these values. The detectors operate with a resolution of 50 Hz, so each 1÷50 = 0.02 s
the detectors record pulses due to the changing current in the loop. All detectors within
one complex are connected to a counting station that contains a microprocessor to
handle the signals of at most 20 SLDs (one such station controls 4 groups of at most
5 SLDs). We now explain the operation of a single inductive loop detector i that is
installed in the Belgian motorway network since 1980 [Sie; Sie92].

1. All vehicles are assumed to have the same mean speed vti(t − 1), calculated
during the previous measurement period.

2. When the j th vehicle passes over the loop, its on-time otj is recorded as a number
of pulses (see the left part of Figure 6.2 for a schematic overview). As such, this
on-time corresponds to an integer multiple of the sampling period, i.e., 2 ms.

3Note that in contrast to some other countries such as The Netherlands and Germany, our sensors do not
measure microscopic variables such as time and space headways, . . . [Neu99; Kno02c].
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3. The j th vehicle is then classified as being either a car or a truck, based on its
recorded on-time otj and a threshold τi(t − 1) that was calculated during the
previous measurement period:

if otj ≤ τi(t− 1) =⇒ car

else otj > τi(t− 1) =⇒ truck

This threshold essentially is the ‘trick’ that the counting stations for SLDs use
to discriminate between cars and trucks. Because no vehicle lengths and speeds
are known (they can not be measured by an SLD), the vehicles’ on-times are
used in comparison with a dynamic threshold, in order to obtain a vehicle type
classification.

4. At the end of the measurement period t + Tmp, the detector’s controller logic
has determined the number of cars qci

(t) and trucks qti(t) counted, and the
occupancy ρi(t) according to equation (2.21) from Section 2.3.3. Furthermore,
it has also calculated the average on-time for a car:

otci
(t) =

1

qci
(t)

qci (t)∑

j=1

otj . (6.1)

5. Based on the average on-time for a car, the controller logic then determines
the dynamic threshold, using a so-called control curve, as shown in Figure 6.4.
This new threshold is to be used during the next measurement period. As such,
there is a lag of 1 minute before the measurements can adapt to changing traffic
conditions, which change the threshold.

PSfrag replacements

Threshold τldi
(t)

τldmin

τldmax

αld

otci
(t)otcmin

otcmax

Figure 6.4: An illustration of the control curve used to calculate the dynamic
threshold τldi

(t) for SLD i at measurement period t. The curve is assumed to have
lower and upper boundaries, as well as a linear part that relates the threshold to
the average on-time otci

(t) for a car.
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The parameters otcmin
, otcmax

, τldmin , τldmax , and the slope αld of the linear function,
are received from a central computer that sends these values every measurement
period Tmp to all the single loop detectors in the motorway network. In Belgium,
their values are set by an operator at respectively 9, 72, 18 and 144 (expressed in
pulses of 2 ms, i.e., multiples of the sampling period). For a typical car length of
4.5 m, the values 9 and 72 correspond to speeds of approximately 120 km/h and
15 km/h, respectively. An important consequence of this, is that the detector’s
logic is insensitive at detecting speeds below 15 km/h. Filling in the values for
the four parameters of the linear control function, the slope αld becomes equal
to 2, thus giving the following equation for the function:

τldi
(t) = τldmin + 2 (otci

(t)− otcmin
). (6.2)

As indicated, the calculation of the new threshold is purely based on the number
of cars, as it is assumed that the majority of the vehicles are cars, and that their
individual lengths are more or less constant with an average of lc = 4.5 m. In
case the number of counted cars qci

(t) is strictly less than a predefined lower
bound (in Belgium, this bound is set at 6 cars), then the calculation of a new
threshold value (as shown by equation (6.2) and in Figure 6.4) is omitted and
the previous value is maintained, i.e., τldi

(t) = τldi
(t− 1).

6. Once the car and truck counts and the detector’s occupancy are known, only
one variable is missing in order to calculate the time-mean speed v ti(t): the
average vehicle length l(t) needs to be known. The effective vehicle length, as
seen by the detector, is actually the sum of the vehicle’s length lj , and the length
Kld of the loop detector. This corresponds to the following equation, similar to
equation (2.22):

lj + Kld = otj vj , (6.3)

with as previously stated, Kld ≈ 1.5 m for SLDs in Belgium.

Just as the threshold τldi
(t) for the on-time is used for the classification of cars

and trucks, we can look at the equivalent threshold λldi
(t) related to the vehicle

length:

λldi
(t) + Kld = τldi

(t) vti(t). (6.4)

Multiplying both sides of equation (6.2) with the time-mean speed vti(t), apply-
ing equation (6.4), and filling in the values for the control function’s parameters
yields:

λldi
(t) + Kld = αld otci

(t) vti(t), (6.5)



i

i

i

i

i

i

i

i

244 Chapter 6 – Data quality, travel time estimation, and reliability

which is by equation (6.3) equivalent to:

λldi
(t) + Kld = αld (lc + Kld), (6.6)

or:

λldi
(t) = 2 lc + 1.5 m. (6.7)

In other words: the calculated threshold for the classification, based on the per-
ceived vehicle length, corresponds to trucks which have a minimum length lt of
2 × 4.5 m + 1.5 m = 10.5 m. These values can now be used to determine the
average vehicle length l(t), which is a mixture of the proportions of the counted
cars and trucks, and is expressed as the following weighted average, with the
flows now expressed as hourly counts:

l(t) =
(qci

(t) lc) + (qti(t) lt)

qci
(t) + qti(t)

. (6.8)

7. The final step now estimates the time-mean speed of the vehicles. It is assumed
that individual vehicle lengths and speeds are uncorrelated, and that all vehicles
passing the SLD during one minute have the same speed. Applying the relation
between occupancy, flow, and density as expressed by equation (2.24) from
Section 2.3.3, to the fundamental relation of traffic flow theory as expressed by
equation (2.33) from Section 2.3.4.2, results in the following estimation for the
time-mean speed4:

vti(t) =
(((((((
(qci

(t) + qti(t))
(qci

(t) lc) + (qti(t) lt)

(((((((
(qci

(t) + qti(t))

ρi(t)
(6.9)

6.1.1.4 Some remarks on speed estimation techniques

As mentioned in the previous section, the estimation of the mean speed is based on
an assumed average vehicle length. The inverse of this length is called the g-factor,
which converts occupancy to density [Hal89; Pus94]:

space-mean speed =
flow

occupancy× g
. (6.10)

It is now possible to tune the SLD’s processor by estimating this g-factor, so it can
be used for the calculation of the mean speed. The algorithm elaborated upon in
Section 6.1.1.3 assumes constant average vehicle lengths, which implies the use of a

4The estimation stems from the fact that the fundamental relation is based on the space-mean speed,
whereas these single inductive loop detectors are only capable of dealing with time-mean speeds.
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fixed g-factor. However, it is considered bad practice to use a constant for this critical
parameter, e.g., setting the mean speed fixed during free-flow conditions and estim-
ating the g-factor, while using this fixed g-factor during congested conditions (for
the latter, the fleetmix, e.g., the percentage of long vehicles, plays an important role)
[Coi01; Coi03b; Kwo03]. The use of a constant g-factor can lead to flawed results, as
examined by Mikhalkin et al. [Mik72], Hall and Persaud [Hal89], and Pushkar et al.
[Pus94; AD94]; Dailey addresses this problem by explicitly taking into account the
statistical nature of the measurements, thereby providing criteria that help to evaluate
their reliability [Dai97; Dai99]. Other possible approaches are those elaborated by
Coifman et al., who provide better estimations for the average vehicle length and the
speed, e.g., by tuning it with estimations coming from double loop detectors [Coi01],
or try to estimate the median speed instead of the mean speed at SLDs [Coi03b]. It
is important to realise that flawed measurements due to a wrong g-factor can and will
lead to faulty predictions of travel times based on the measured speeds [Jia01]. In light
of the algorithm elaborated in the previous section, Kwon et al. describe a methodo-
logy for the real-time estimation of the portion of truck traffic on motorways, based
on data from single inductive loop detectors; they assume the existence of a truck-free
lane and a high lane-to-lane speed correlation [Kwo03].

Note that the operation of the single inductive loop detectors as described above,
has a negative side effect: when the average length l(t) of a vehicle is calculated,
it is done using information collected during the previous minute. This leads
to the fact that the implemented algorithm shows incorrect behaviour when the
mean speed fluctuates abruptly, as the newly calculated threshold has a lag of one
minute. This results in an overestimation of the number of trucks counted when
the speed suddenly drops. This can be seen in Figure 6.5, where the upper part
shows the mean speed and the lower part shows the percentage of detected trucks
in the traffic stream: we observe a strong correlation between these two at times
when the speed drops to very low values (e.g., in congestion periods). Currently,
the only way to resolve this problem is to post-process the data (excluding the
application of real-time corrections), as for example elaborated in the work of De
Ceuster and Immers, who recalculate the average vehicle length using an expo-
nentially weighted moving average, taken over a longer averaging period that one
minute [Ceu01]. Regardless of the problem here indicated, it can be assumed that
the total vehicle count, i.e., qci

(t) + qti(t), can be considered as the most reliable
measurement from a single inductive loop detector.

6.1.2 Storage of the measurements in a central database

As already mentioned in the introduction of this section, there are over 1600 sensors
located in Flanders’ motorway road network (see Figure 6.1); they are mostly single
inductive loop detectors, with some 200 Traficon cameras (each sensor accounts for
one lane). All these sensors are grouped into measurement posts; these posts group
sensors at a single location over all lanes in the same driving direction. They are
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Figure 6.5: The algorithm implemented in Flanders’ single inductive loop detectors shows
incorrect behaviour: each time the mean speed suddenly drops, the percentage of detected trucks
in the traffic stream increases (data taken from loop detectors 810 – 812 at Ternat near Brussel,
during September 12, 2001 between 04:00 and 12:00).

typically located right before and right after motorway on-ramps, off-ramps, merges,
and diverges. A collection of measurements posts is called a measurement complex
[VVC03].

Several front-end computers query these sensor complexes each minute, after which
the measurements are relayed to a central computer in Flanders’ traffic centre (loc-
ated in Antwerp). This central processor creates exchange files that get sent to the
traffic centres in the Flemish and Walloon5 regions in Belgium. These files have a
lifetime of one hour, after which they get overwritten; at regular intervals they are
stored into a central database that is kept at the traffic centre. As such, this database
(called MINDAT) contains raw, unprocessed, and unvalidated data (note that no dis-
tinction is made between measurements coming from single inductive loop detectors
and cameras) [VVC03]. With respect to the ranges of all stored measurements, we
note that qci

(t), qti(t), ρi(t) ∈ {0, . . . , 127}, and vti(t) ∈ {0 . . . , 255}. As an excep-
tion, a value of 127 for either the car flow, truck flow, or occupancy measurement is
used as a sentinel value that is automatically placed in the database in case of a trans-
mission failure. When such a failure occurs at the level of a measurement complex, all
results stemming from the sensors corresponding to the measurement posts will have
this value.

5The traffic centre in the Walloon region is located in Perex, Daussoulx.
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From the above description, we know that each detector collects a measurement quad-
ruple each minute. For one year, this corresponds to 60 minutes/hour× 24 minutes/day
× 365 days/year, i.e., 525,600 measurements. Given the fact that each quadruple com-
prises 4 bytes, this corresponds to 2,102,400 bytes, or 2.01 MB. In the database, there
are 1654 (for the year 2001), respectively 1800 (for the year 2003) sensors stored,
resulting in a grand total of 869,342,400, respectively 946,080,000 measurements,
corresponding to 3,477,369,600, respectively 3,784,320,000 bytes, or 3.24, respect-
ively 3.52 GB. Compare this to another system, e.g., the famous California Freeway
Performance Measurement System (PeMS), which has some 26,000 loop detectors,
aggregating data at 30 second intervals into a database of 2 GB per day [Var05].

For our study, we were able to obtain a database containing all the measurements
of the SLDs and camera’s in Flanders’ motorway network (as depicted in Fig-
ure 6.1) for the years 2001 and 2003. It is interesting to note that it took nearly
six months of extensive lobbying before the bureaucratic administration was able
to handle and grant our request.

6.1.3 Visualising weekly patterns

Depending on the day of the week, the transportation demand will vary from location
to location and time period to time period. In order to have a quick look at these
phenomena, we have provided several three-dimensional charts in Figure 6.6 and
Figure 6.7, plotting the total flows (cars plus trucks) for all days in 2001 and 2003,
grouped together by the day of the week. As such, we pooled together all similar
weekdays for both years, each time resulting in seven different data sets that contain
all Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, and Sundays,
with holidays filtered from them [Chr00]. A blind-box approach would be to cluster
these weekdays automatically based on the data itself, but in this case we know each
day of the year a priori, so the clustering could be done manually6.

In both figures, the flows during each day of a year are represented for all week-
days separately. For each of these days, the shown flows are an average taken over
all detectors in Flanders’ motorway road network; as such, they represent an average
travel behaviour over the complete network. Looking at Figure 6.6, we can see that
Mondays, Tuesdays, Wednesdays, and Thursdays have very similar patterns. Fridays
however are a bit different, in that the evening rush hour starts earlier and has a broad
peak. Considering the weekends, we note that Saturdays and Sundays are character-
ised by the absence of a morning rush hour. Furthermore, Saturdays have an evenly
distributed afternoon peak, starting at approximately 10:00, lasting until 20:00; the
peak for Sundays starts a bit later and is more intense towards the end. Comparing the
weekly patterns of 2001 in Figure 6.6 and those of 2003 in Figure 6.7, we note that
weekdays exhibit a slightly lower traffic demand, as opposed to the weekends where
the traffic demand is more or less the same.

6Note that we did not take into account special events (e.g., concerts, sports, . . . ) or different weather
conditions (e.g., summers versus winters).
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Figure 6.6: Three-dimensional charts that show the total flows (cars plus trucks) for all days in
2001; each day of the week is represented separately, with holidays filtered from them. For each
of these days, the shown flows are an average taken over all detectors in Flanders’ motorway
road network, represent an average travel behaviour over the complete network.
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Figure 6.7: Three-dimensional charts that show the total flows (cars plus trucks) for all days in
2003; each day of the week is represented separately, with holidays filtered from them. For each
of these days, the shown flows are an average taken over all detectors in Flanders’ motorway
road network, represent an average travel behaviour over the complete network.
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In order to more rigourously assess the differences between the different days of
the week, and the evolution from 2001 to 2003, we have provided contour plots of
the standard deviations of the flows as they are averaged over all existing detectors
in Flanders’ motorway road network. In Figure 6.8 we show the results for 2001,
whereas Figure 6.9 shows the results for 2003; each time, we plot the standard de-
viations for Mondays, Fridays, Saturdays, and Sundays (because Tuesdays, Wednes-
days, and Thursdays are quite similar to the Mondays). Note that the white ‘streaks’
in the images are due to missing values, as we are working with the raw data.

Looking at the information contained in the top left (Mondays) and right parts (Fri-
days) of Figure 6.8 and Figure 6.9, we can see that the standard deviation is the highest
during the morning and evening rush hours; it can also be seen that the peak of the
evening rush hour is more spread. Furthermore, from the darker regions it can be seen
that the standard deviation for 2003 lies higher than the one for 2001, implying more
diversity in the mean flows recorded by the different detectors.

Figure 6.8: Contour plots of the standard deviations of the flows for 2001 as they are averaged
over all existing detectors in Flanders’ motorway road network (see also Figure 6.6). Top-left:
Mondays. Top-right: Fridays. Bottom-left: Saturdays. Bottom-right: Sundays.
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Figure 6.9: Contour plots of the standard deviations of the flows for 2003 as they are averaged
over all existing detectors in Flanders’ motorway road network (see also Figure 6.7). Top-left:
Mondays. Top-right: Fridays. Bottom-left: Saturdays. Bottom-right: Sundays.

6.2 Quality assessment of the measurements

With respect to quality of the measurements, it is well known that single inductive
loop detectors are notorious for their errors. These errors are caused by factors such
as external influences by a change in the environmental temperature, faulty calibra-
tions, detector cross talk, chattering, transmission failures, . . . Some of them cause
high values for the flow to be reported, and in some cases a detector blanks com-
pletely resulting in no measurements at all. When transmission errors to the front-end
computers occur (see Section 6.1.2), typically the measurements of a whole detector
station complex (grouping several SLDs) are lost, resulting in large gaps in the stored
time series.

In this section, we first compare estimations of the mean speeds obtained from the
algorithm explained in the previous section with those recorded by the detectors. We
then take a look at the kinds of measurement errors that occur and the automatic
detection of statistical outliers, after which we provide a methodology for quickly
assessing area-wide detector malfunctioning.
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6.2.1 Comparing estimations of mean speeds

During our investigation of the measurements stored in the database, we uncovered
to our surprise a significant discrepancy between the mean speeds as estimated by the
single inductive loop detectors and those explicitly calculated by the algorithm elabor-
ated in Section 6.1.1.3; instead of what we expected, i.e., the same results, we obtained
different estimations. In the remainder of this section, ‘estimated mean speed’ refers
to the mean speed obtained by the SLD, whereas ‘calculated mean speed’ refers to the
mean speed corresponding to the algorithm.

To illustrate this, we considered a sequence of SLDs (810 – 815), each of which
belonged to a single measurement complex (at the E40 motorway near Ternat, two
directions each consisting of three lanes). For each of these detectors, we calculated
the mean speeds based on the algorithm from Section 6.1.1.3, and compared them
with those as estimated by the SLDs. The results are shown in the scatter plots in
Figure 6.10; all measurements were taken from the month November (30 days ×
24 hours/days × 60 minutes/hour = 43,200 measurements), with black data points
corresponding to the year 2001, and the gray data points to the year 2003.

Figure 6.10: Scatter plots showing the differences between mean speeds as estimated by the
single inductive loop detectors and those calculated by the algorithm from Section 6.1.1.3. The
detectors belong to a single measurement complex (at the E40 motorway near Ternat, two dir-
ections each consisting of three lanes); all measurements were taken from the month November
(30 days × 24 hours/days × 60 minutes/hour = 43,200 measurements), with black data points
corresponding to the year 2001, and the gray data points to the year 2003 (the bissectrice is
shown as the thick black/white line). As can be seen, there is good agreement for low speeds,
but at moderately to high speeds the discrepancy between estimated and calculated speeds starts
to grow. It is clear that the estimations in 2003 differ significantly from those of 2001, indicating
a possible recalibration.
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Considering the results in these scatter plots, we can see that there is good agreement
for low speeds, corresponding to either low flows or high occupancies (i.e., conges-
ted conditions). However, at moderately high speeds (i.e., free-flow conditions), the
discrepancy between estimated and calculated speeds starts to grow. Looking at the
differences between the black and gray data points, it is clear that the estimations in
2003 differ significantly from those of 2001, indicating a possible recalibration; there
is less scatter as the points are located in a more densely packed area. Furthermore,
it would seem that the calculated speeds typically lie lower than the estimated speeds,
especially in 2003.

In Figure 6.11, we show the same type of scatter plot, but now for detector 668 (which
actually is a camera called CLOF, i.e., an acronym for ‘Camera Linkeroever’; F stands
for the hexadecimal numbering scheme used, i.e., the 15th camera), located at the E17
Gent-Antwerpen near Kruibeke. The scatter plot in the left part of the figure exhibits
the same type of behaviour for low and moderately high speeds as explained in the
previous paragraph. There is however one more visible artefact: at a relatively low
estimated mean speed of 40 km/h, there is cluster of black data points (highlighted by
the thick black ellipse). For these points, the estimated mean speed is fixed whereas
the calculated mean speed differs significantly. After explicit investigation of the time
series corresponding to these data points, it seems that the estimated mean speed fluc-
tuates smoothly around the fixed value of 40 km/h, whereas the algorithm of Section
6.1.1.3 is better able to track the changes in occupancies (which carry more weight
than the changes in car and truck flows).
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Figure 6.11: Left: a scatter plot showing the differences between mean speeds as estimated by
the single inductive loop detectors and those calculated by the algorithm from Section 6.1.1.3.
The shown detector is located at the E17 Gent-Antwerpen near Kruibeke; black data points
correspond to the year 2001, the gray data points to the year 2003 (the bissectrice is shown
as the thick black/white line). Note that at a relatively low estimated mean speed of 40 km/h,
there is cluster of black data points (highlighted by the thick black ellipse); for these points, the
estimated mean speed is fixed whereas the calculated mean speed differs significantly. Right:
four histograms corresponding to the estimated and calculated mean speeds for 2001 and 2003.
The former have a wider distribution than their latter counterparts.
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For a more quantitative comparison, the right part of Figure 6.11 provides histograms
of the estimated and calculated mean speeds. It can immediately be seen that for 2001,
the calculated mean speeds have a wider distribution than their estimated counterparts
(see also Table 6.2). As expected from the results of the scatter plots, the differences
between all four distributions are more pronounced for higher than for lower mean
speeds.

Est. v (2001) Calc. v (2001) Est. v (2003) Calc. v (2003)

Mean 102 74 114 80
Std.dev 15 33 38 34

Table 6.2: The means and standard deviations of the histograms from Figure 6.11, correspond-
ing to the estimated and calculated mean speeds. For 2001, the calculated mean speeds have a
wider distribution than their estimated counterparts. Furthermore, the differences between all
four distributions are more pronounced for higher than for lower mean speeds.

6.2.2 Measurement errors and outlier detection

Faulty measurements and the like are a plague for single inductive loop detectors; as
such, we take a look at what causes these errors, giving an automatic detection of
statistical outliers. We first describe what is meant by these kinds of outliers, after
which we explain our methodology, discuss the results and provide some pointers for
dealing with missing values in the data sets.

6.2.2.1 Outliers in a statistical sense

When considering faulty measurements from detectors, we can in general distinguish
between structural failures versus occasional errors. The former can be due to a mis-
calibration, resulting in consistently faulty data (e.g., over- and underestimations of
flows, detectors that get stuck in an on-/off-position, . . . ). Spotting and correcting
these failures is not a difficult task (it requires, e.g., a recalibration), in comparison
with the latter class of occasional errors. These can have very different causes, such
as detector cross talk, chattering, transmission failures, . . . As a result, the detector
logic can report incorrect data, for example, values that can easily be spotted are the
sentinel values that get stored in the central database due to transmission failures.

Considering these ‘strange values’, we can look at them from a statistical perspective;
as such, they are called outliers. From this point of view, “outliers are observations
that appear to be inconsistent with the remainder of the collected data” according to
Iglewicz and Hoaglin [Igl93]. The phrase “being inconsistent with the remainder” can
be given a more mathematical characterisation by taking into account the distributions
of the measurements. Values that fall outside these distributions, or those that occur in
the tails of them, can then be considered as outliers. Note that from a statistical point
of view, outliers are not necessarily bad values, as it is possible that these data points
might come from another population/distribution [Ver05a].
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6.2.2.2 Explanation of the methodology

As mentioned at the end of Section 6.2.2.1, we consider outliers to be values that
are not conforming to the distribution of the measurements. In statistics, the process
of automatically identifying outliers in univariate data is typically done based on the
assumption that the measurements are normally distributed, with known mean and
variance. The outliers are detected by comparing z-scores, which are measures that
indicate how far a sample is located from the distribution’s mean [Rou87]:

zi =
xi − µ

σ
, (6.11)

with xi a sample taken from a distribution with mean µ and standard deviation σ.
Outliers are then samples for which the z-score (expressed in units of the standard
deviation) is greater than 3. Another method for assessing whether or not a sample is
considered as an outlier, is by drawing a box-plot [Rou87].

The above methods might seem fine, but they are insufficient when dealing with mul-
tivariate data, consisting of n data points (observations) in p dimensions (variables):
xi = (xi1, . . . , xip). Each of these observations can be stored as a row in a n× p mat-
rix X = (x1, . . . ,xp)

T with mean µ and covariance matrix Σ. So in order to tackle the
problem of detecting outliers, we follow a similar methodology as with the z-score:
for each point xi in a multivariate data set, its so-called Mahalanobis distance (MD)
is calculated [Mah36; Rou87]:

MDi =
√

(xi − µ)T Σ−1 (xi − µ). (6.12)

However, outliers contaminating a data set can introduce a severe bias of the mean
and variance. To take care of this problem, we use a robust estimator, called the
minimum covariance determinant (MCD) estimator, for which a computationally fast
algorithm is available [Rou84; Rou99]. Note that it is assumed that n > 2p, i.e.,
low-dimensional data. Although the Mahalanobis distance measure explicitly takes
into account the correlations of the data set, it still exhibits the bias attributed to the
classical mean and variance. To this end, we now replace the standard mean µ and
covariance matrix Σ by their robustly-estimated counterparts µ̂MCD and Σ̂MCD. The
resulting robust distance (RD) is thus written as follows:

RDi =

√
(xi − µ̂MCD)T Σ̂−1

MCD (xi − µ̂MCD) (6.13)

Detection of outliers is now based on comparing this distance against some specified
threshold. Under the assumption that the data is normally distributed, the Mahalanobis
distance is χ2 distributed; thus,we say that an observation xi is considered to be an

outlier when its robust distance exceeds a specified threshold, i.e., RDi ≥
√

χ2
p,0.975

(corresponding to a significance level α =5%).
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Applying this methodology to the traffic flow measurements, we consider a data set
that is bivariate (p = 2) in nature: each data point consists of the occupancy and
the total flow, i.e., xi = (ρi, qi) with qi = qci

+ qti . Note that even though we are
working with the raw data, no correction for the number of trucks is needed as the total
count is the most reliable measurement an SLD can give (it is the classification that
gives problems, as mentioned at the end of Section 6.1.1.3). We used the following
procedure to calculate the percentages of outliers in MATLAB:

1. For both years 2001 and 2003, we pooled together all similar weekdays, each
time resulting in seven different data sets that contain all Mondays, Tuesdays,
Wednesdays, Thursdays, Fridays, Saturdays, and Sundays, with holidays filtered
from them [Chr00].

2. Out of these seven data sets, we constructed seven bivariate data matrices con-
taining the occupancies and total flows xi = (ρi, qi). In order to reduce the data
size, we removed all duplicate data points. Knowing that the detectors’ speed
estimations are the least reliable measurements, we furthermore explicitly cal-
culated the space-mean speeds based on the detector’s recorded occupancy and
flow measurements using equation (6.10) from Section 6.1.1.4.

3. Because outliers in the free-flow traffic regime should not be compared to those
in the congested traffic regime (due to the different distributions), we split
all data sets into two non-overlapping parts. The criterion for discriminating
between them was based on a combination of the free-flow speed and the critical
occupancy; their respective threshold were set at vff = 85 km/h and ρc = 35%,
respectively. Measurements below both threshold were classified as being in the
free-flow traffic regime, all other measurements are assumed to belong to the
congested traffic regime. Note that some part of the synchronised flow traffic
regime (see Section 2.5.4.1) also belongs to our classification into a free-flow
traffic regime, as this corresponds to a state of high flows at a relatively high
speed.

4. For all these data sets, we now calculate a robust mean and covariance by means
of the MCD estimator; to this end, we used the Library for Robust Analysis
(LIBRA) [Ver05a]. Calculation of the MCD automatically gave us a classifica-
tion for each data point as being either a regular observation or an outlier.

As an example of this methodology, we show the results for one detector in Fig-
ure 6.12. The small dots denote measurements belonging to the free-flow traffic re-
gime; the small crosses belong to the congested traffic regime. For this particular
example, the data set consisted of 49 Mondays, with 44 and 451 unique points in the
free-flow and congested traffic regimes, respectively. The thick solid and dashed el-
lipses denote the 97.5% tolerance boundaries for both regimes, based on the results
of the MCD estimator. This means that for the selected significance level, there is
a probability of 5% that data points out of a large sample from a bivariate normal
distribution, are misclassified as outliers outside the ellipse.



i

i

i

i

i

i

i

i

6.2 Quality assessment of the measurements 257

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

Occupancy [%]

T
ot

al
 fl

ow
 [v

eh
ic

le
s/

ho
ur

]

#samples = 49; #ff = 54; #cong = 451

Figure 6.12: Detecting outliers in the bivariate data from the (ρ,q) diagram. The small dots
denote measurements belonging to the free-flow traffic regime; the small crosses belong to the
congested traffic regime. For this particular example, the data set consisted of 49 Mondays,
with 44 and 451 unique points in the free-flow and congested traffic regimes, respectively. The
thick solid and dashed ellipses denote the 97.5% tolerance boundaries for both regimes, based
on the results of the MCD estimator.

6.2.2.3 Discussion of the results

In order to interpret our results, we constructed illustrative gray-scale images. Because
there are over 1500 detectors in each year present, and only seven weekdays, the
resulting images are very thin. In order to increase the visual clarity of the images,
we enlarged them vertically using a rescaling factor. The results for the year 2001
can be seen in Figure 6.13, those for the year 2003 in Figure 6.14; each time, the top
part shows the percentages in the free-flow traffic regime, the middle part shows the
percentages in the congested traffic regime, and the bottom part shows the average of
both regimes. Lighter colours denote lower percentages, whereas a complete black
colour denotes an upper bound of 32% and 28.7% outliers for that detector at that
weekday in the years 2001 and 2003, respectively. The detectors are arranged from
left to right, with each ‘column’ in the image containing seven thin bars, one for each
day of the week.
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Looking at the resulting images, we can already spot errors that occurred when storing
the measurements to the central database: in both Figure 6.13 and Figure 6.14 there
exist ‘white vertical gaps’, denoting several detectors that malfunctioned at all week-
days, probably due to transmission failures. At these gaps, the percentage of outliers
is zero, indicating that the corresponding detectors remained stuck in an on- or off-
position during the entire measurement period. Furthermore, comparing the bottom
parts of both figures, it seems that there were more outliers in 2003 than 2001; note
that this can be an indication of an area-wide change in the calibration of the detect-
ors. Another observation we can make is that for both years, the number of outliers
in the congested traffic regime during Saturdays and Sundays is different from the
other weekdays. This can be seen in the middle parts as the darker intensities in the
two lower bands. There are also more outliers in the congested regime than in the
free-flow regime, as can be expected.

Figure 6.13: The percentages of outliers in the free-flow traffic regime (top), the congested
traffic regime (middle), and the average of both regimes (bottom); the small thin rectangles
correspond to the 1654 detectors for the year 2001, whereas the seven rows correspond to the
different days of the week. Lighter colours denote lower percentages, whereas a complete black
colour denotes an upper bound of 32% outliers for that detector at that weekday

6.2.2.4 Dealing with missing values

To conclude this section about measurement errors, we provide some pointers with
respect to dealing with missing values. When working with contaminated data, a fre-
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Figure 6.14: The percentages of outliers in the free-flow traffic regime (top), the congested
traffic regime (middle), and the average of both regimes (bottom); the small thin rectangles
correspond to the 1800 detectors for the year 2003, whereas the seven rows correspond to the
different days of the week. Lighter colours denote lower percentages, whereas a complete black
colour denotes an upper bound of 28.7% outliers for that detector at that weekday.

quently followed scheme is to first find all invalid data points (i.e., outlier detection),
after which all these points are removed from the data set. As such, they are converted
into missing values and the preprocessing problem now becomes one of filling in all
these missing values. We highlight a few of the many possible approaches:

• Using reference days
As opposed to the use of classical interpolation schemes (based on, e.g., linear
or polynomial functions, splines, . . . ), Bellemans et al. proposed a method
that is based on a reference day. In their work, they assumed the existence
of an a priori known reference day that is representative of the day for which
missing values have to be estimated. Based on the measurements x(t − 1) and
xref(t − 1) at the previous time step, and the reference measurement xref(t)
at the current time step, the new measurement x(t) is estimated as follows7

7Smith et al. later used a similar technique, called a naive forecast which served as a worst-case approach
for predicting traffic flows [Smi02].
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[Bel99; Bel00; Bel03]:

x(t) =
x(t− 1)

xref(t− 1)
xref(t). (6.14)

The fraction in the previous equation plays the role for scaling the reference
measurement such that it corresponds to the traffic dynamics of the day under
study.

• Multiple imputation
One popular way for dealing with missing values is by means of imputation,
i.e., ‘filling them in’ based from samples drawn from a probability distribu-
tion [Lit87]. In principle, using Bayesian methods is a suited methodology for
obtaining valid estimates for these missing values: once their distributions are
known or estimated, the sought-after posterior probability can be calculated as
the ratio between the likelihood times the prior and a normalising constant. In
practice however, it is not always feasible to carry out such a full Bayesian ana-
lysis due to complexity issues, normality assumptions, . . .

In short, multiple imputation (MI) can be summarised as follows: given an in-
complete data set, the first step is to detect and fill in the missing values based
on an imputation model that gives values drawn from a distribution. This is
done not once but m times (hence the name ‘multiple’ imputation), resulting
in m different complete data sets. Each data set is then analysed separately,
after which the m results can easily be combined. A nice advantage of the MI
method is that the value for m does not need to be large, e.g., m = 10 is typic-
ally sufficient [Rub87]. In the first step, the small number of imputed values can
be drawn from predictive distributions by, e.g., a Markov chain Monte Carlo8

(MCMC) method [Sch99b].

Alternate approaches would be to use maximum likelihood estimations (MLE),
which can be iteratively computed by a technique such as expectation-maximi-
sation (EM) [Dem77; Myu03]. Advantages of using MI compared to MLE, are
that it can work better with smaller sample sizes, and the fact that model used
for analysing the results can be different than the imputing model that was used
to obtain values. The main difference between both approaches, is that missing
values are dealt with implicitly in the MLE method, whereas they are dealt with
prior to the analysis in the case of MI [Sch02b].

• Time series analysis
Probably the most employed methodology in classical time series analysis (TSA)
is the approach towards forecasting known as Box-Jenkins analysis. Simply put,
the analysis is based on what is known as a autoregressive integrated moving av-
erage (ARIMA) model. Box et al. provided a complete method for removing
trends and seasonal effects, by means of differencing the time series. As such,

8In MCMC methods, the values are drawn from probability distributions based on Markov chains. These
latter are discrete-time stochastic processes, in which the past is irrelevant for predicting the future.
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an ARIMA(p,d,q) model expresses a time series as a combination of current
and past observations, with p, d, and q the orders of the autoregression, integ-
ration (the differencing), and the moving average, respectively. Autoregression
determines the relevance of previous values with respect to the current value, in-
tegration takes care of detrending the time series to make it stationary (i.e., the
mean and variance remain constant over time), and the moving average allows
smoothing of the time series [Box76; Box94].

The previously outlined methodology works well for finite-dimensional lin-
ear models; however, when considering, e.g., chaotic processes, the technique
fails due to the inherent chaotic transitions and the presence of a continuous
Fourier spectrum. To cope with this, we can look in another way at time
series analysis, i.e., by means of non-parametric models that rely on the state
space of the underlying dynamical system. Because a mathematical model
of such a system is not always available, the state space can be constructed
from a single time series by means of a process called attractor reconstruc-
tion. The principal method to this end is called delay coordinate embedding
(DCE); it was derived by Packard et al. and put into a rigid mathematical
formulation by Takens [Pac80; Tak81]. The idea behind DCE is that from
the single time series, a set of new time series is constructed; each of these
series is a time-shifted version of the original one9. If we assume that the time
series is expressed as a sequence of observations x(t) = {x1(t), . . . , xn(t)},
belonging to an n-dimensional space, then the DCE method results in a vector
r(t) = {x(t),x(t−τDCE), . . . ,x(t−(mDCE−1)τDCE)}. In this derivation, τDCE

is called the delay and mDCE the embedding dimension. The powerful result of
Takens proves that if both the embedding dimension mDCE and the delay τDCE

are selected in an optimal fashion, then the dynamics of both the reconstruc-
ted state space and the system’s original state space are topologically identical
[Tak81; Sau93; Par98]. The search for the optimal values for both parameters is
guided by techniques such as average mutual information (AMI) for the delay,
and the false nearest neighbours (FNN) algorithm for the embedding dimen-
sion [Fra86; Ken92]. Practical implementations for this kind of analyses can be
performed using, e.g., the TISEAN package [Heg99].

If the embedding dimension gets larger than 2 or 3, then a visualisation of this
high-dimensional data becomes problematic. One way of dealing with this is by
means of so-called recurrence plots (RP), invented by Eckmann et al. [Eck85;
Eck87]. In this kind of plot, all information from the trajectory of the time
series that was constructed by applying the DCE method is converted into a two-
dimensional image: each point (i,j) in such a plot is then shaded according to
the distance between two corresponding trajectory points r(i) and r(j). If each
point in such a recurrence plot is compared to a predefined threshold, then the
resulting black-and-white image is called a thresholded recurrence plot (TRP).

9It is also possible to use derivative coordinates instead of delay coordinates, as was done in the original
work of Packard et al. However, these derivatives have proven to be susceptible to noise and are therefore
not generally useful [Par98].
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As an example, we show three RPs in Figure 6.15. The left part is obtained from
a time series that essentially is generated from uniformly distributed noise; there
are no clearly delineated structures present. The middle part shows a TRP of
a sinusoidal time series; as can be seen, the image exhibits a large degree of
periodicity in its structures. The right part shows the results for a time series
that contained a drift due to slowly varying parameters.

Figure 6.15: Left: a recurrence plot obtained from a time series that essentially is generated
from uniformly distributed noise; there are no clearly delineated structures present. Middle: a
thresholded recurrence plot obtained from a sinusoidal time series; as can be seen, the image
exhibits a large degree of periodicity in its structures. Right: a recurrence plot obtained from a
time series that contained a drift due to slowly varying parameters.

Assessing the structures in these RPs remains a somewhat ‘visual discipline’;
to cope with this, Zbilut and Webber extended a techniques called recurrence
quantification analysis (RQA) that allowed a more quantitative treatment of
RPs. Their technique is based on five statistics that describe phenomena such
as recurrence, determinism, entropy, trend, and the largest positive Lyapunov
exponent (which is a measure for the chaoticity of a system) [Zbi92; Web94].
Intuitively, these measures are related to visual features such as the percentage
of lines to the main diagonal, the distribution of the lengths of diagonal lines,
. . . In light of the difficulties encountered by selecting the optimal embedding
dimension, a promising result was obtained by Iwanski and Bradley, who state
that it is possible to get the same RQA results without embedding [Iwa98].

With respect to the application of time series analysis to traffic flow data, we note
the interesting result from Smith et al. In their work, they compared the use of
classical ARIMA modelling to non-parametric modelling based on DCE. Their
results indicate that the latter did not approach the performance of the former; this
leads them to the belief that traffic data is rather stochastic as opposed to chaotic
[Smi02].

6.2.3 Assessing detector malfunctioning

As already hinted at in the introduction of this section, most single inductive loop
detectors exhibit a large degree of errors, missing and/or incorrect values, . . . In or-
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der to provide a more qualitative assessment of these errors, we adopt a screening
methodology that has been used in the PeMS project (see the end of Section 6.1.2 for
more information); this allows us to provide clearly structured maps that allow a quick
visual inspection of all detectors in Flanders’ motorway network and their operations
during the years 2001 and 2003. As a first part of this section, we explain the meth-
odology behind the screening of the detector data, after which we provide and discuss
the detector maps.

6.2.3.1 Explanation of the methodology

When a detector malfunctions (or even an entire measurement complex), its errors
typically result in under- or overestimations of the flow, high occupancy values, blank
data, . . . Early methods for screening the measurements are based on acceptance
and rejection regions in the scatter plots of a (k,q) diagram. For example, Payne et
al. created tests on the bounds of minimum and maximum flows, occupancies, and
mean speeds, in order to discriminate between good and bad 20-second and 5-minute
samples of detector data [Pay76]. Another algorithm was constructed by Jacobson et
al. at the University of Washington; their Washington Algorithm provides an explicit
acceptance region within the (k,q) diagram [Jac90].

A more recent approach was followed by Chen et al., which resulted in the Daily
Statistics Algorithm (DSA), currently used in the PeMS project [Che03; Bic04]. The
idea behind this algorithm is to consider all measurement samples of a loop detector
for one day, calculating four different scores based on these samples, and then, by
comparison with some predefined thresholds, deciding whether or not the detector is
considered to be malfunctioning. These scores check (1) for zero occupancy samples,
(2) strictly positive occupancy samples with zero flow, (3) high occupancy samples,
and (4) the entropy of these occupancy samples. The main strength of this algorithm
is that it allows to test for detectors that continuously report faulty data, e.g., being
stuck in the on/off position (although it is also possible that no vehicles crossed the
detectors at all). For our study, we used the following scores:

S1(i, TDSA) = number of samples during TDSA with ρi = 0, (6.15)

S2(i, TDSA) = number of samples during TDSA with ρi > ρ∗, (6.16)

S3(i, TDSA) = entropy of the occupancy samples during TDSA, (6.17)

with TDSA the time period over which the statistics are computed for detector i. The
sentinel values in the database (typically denoting transmission failures), are automat-
ically caught by S2(i, TDSA). The entropy S3(i, TDSA) is calculated as follows:

S3(i, TDSA) = −
∑

ρi∈p(ρi)>0

p(ρi) log(p(ρi)), (6.18)
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with p(ρi) the estimated probability density function, defined as the histogram of the
occupancies ρi (we selected 100 bins for the estimation). The entropy provides a
measure for the randomness of a stochastic variable, i.e., constant values will res-
ult in a zero entropy. In their work, Chen et al. also discuss several shortcomings
of the DSA approach, most importantly the lack of exploiting spatial and temporal
correlations between measurements stemming from neighbouring detectors [Che03].
As previously mentioned, in the original DSA, the daily decision on a detector being
good or bad hinged on the scores that were compared to some predefined thresholds.
Instead of adopting this methodology, we discard this binary classification and allow
the complete range of results.

Note that we are working with the raw unprocessed vehicle counts from the de-
tectors, instead of converting them to passenger car equivalents. The reason is that
the latter introduces an incorrect percentage of trucks, due to the problems with
misclassification as mentioned at the end of Section 6.1.1.3.

6.2.3.2 Illustrative detector maps

Based on the scores S1, S2, and S3 as explained in the previous section, we now
provide charts of all detectors in the Flanders’ region (as already mentioned in Section
6.1.2, the available data spans 1654 detectors for the year 2001, and 1800 detectors
for the year 2003). To this end, we calculate these scores for each hour in both years;
they are stored in matrices that have 24 hours × 365 days = 8760 columns (i.e., TDSA

= 60 minutes). All matrices are then normalised, after which they are converted to
gray-scale images with each matrix element corresponding to one pixel in the image.
We have chosen ρ∗ = 35% as the predefined threshold for S2, we chose, like done in
the work of Chen et al. [Che03].

In Figure 6.16 we show the results after calculating the scores for all detectors during
the entire year 2001, aggregated for each hour. The top, middle, and bottom row
indicate the S1, S2, and S3 scores, respectively. The darker a pixel is coloured, the
higher the specific score is (black meaning that all samples during TDSA contribute to
the score). Figure 6.17 gives the same results, but for the year 2003.

Before we discuss both these detector maps, it is worthwhile to take a look at some
general patterns that seem to occur. As these maps are highly detailed (i.e., spanning
a width of some 8760 pixels), we provide two close-ups in Figure 6.18. As can be
seen in the close-up to the left, there seem to be some slanted ‘streaks’; these may
indicate detector malfunctions at successive detectors at successive time periods. The
close-up to the right reveals another more frequently occurring phenomenon, namely
vertical and horizontal lines: a darker horizontal line may indicate detector failure
during a certain time period; a darker vertical line may indicate several (probably
neighbouring) detectors (i.e., at a measurement post or complex) that are failing. The
wider a vertical line, the more extended the time period of failure. A vertical line
that runs completely from top to bottom on the map, typically indicates a problem
during transmission or archival of measurements to the central database; as it is highly
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unlikely that an area-wide malfunctioning seems to occur, it is more logical to assume
that an error occurred at the database level. Note that the regular grouping of short
lines in the right close-up is related to the fact that at night time, the occupancy is very
low as few vehicles cross the detectors; as a result, a high number of zero occupancies
is reported and shown as darker segments.

Figure 6.16: Illustrative detector maps of the S1 (top), S2 (middle), and S3 (bottom) scores,
for all 1654 detectors in the year 2001. The scores were calculated for each hour; the darker a
pixel is coloured, the higher the specific score is (black meaning that all samples during TDSA

contribute to the score).

Returning to the detailed detector maps provided in Figure 6.16 and Figure 6.17, we
can see that from 2001 to 2003, the number of detector malfunctions seems to have
decreased, based on the occurrence of darker regions in score S2 (i.e., high occupancy
values). Still, as can be seen from the middle part of Figure 6.17, there are numerous
detectors that seem to be malfunctioning during the entire year 2003, as is indicated by
the frequent occurring of darker horizontal lines in the map. There were also several
problems during transmission or archival to the central database, as is evidenced by
the dark vertical lines. Finally, with respect to the entropy of the occupancy samples,
we note that there seem to slightly less stuck detectors, as the white empty regions
(indicating zero entropy) diminish from 2001 to 2003.

In order to consider these detector maps more quantitatively, Figure 6.19 presents his-
tograms showing the distributions of all scores. The top row displays the results for
the year 2001, the bottom row for the year 2003; the left, middle, and right histograms
correspond to scores S1, S2, and S3, respectively. The distinct bars in both left histo-
grams correspond to an increasing number of zero occupancy samples, representative
of traffic at night time. Furthermore, as already highlighted in the previous paragraph,
the number of high occupancy values has decreased (see both middle parts). Finally,
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the probability of a low entropy (around 0.5) seems to have diminished from 2001 to
2003 (see both right parts).

Figure 6.17: Illustrative detector maps of the S1 (top), S2 (middle), and S3 (bottom) scores,
for all 1800 detectors in the year 2003. The scores were calculated for each hour; the darker a
pixel is coloured, the higher the specific score is (black meaning that all samples during TDSA

contribute to the score).
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Figure 6.18: Some close-up examples of general patterns that occur in the detector maps. Left:
the presence of slanted ‘streaks’ may indicate detector malfunctions at successive detectors at
successive time periods. Right: a more frequently occurring phenomenon, namely vertical and
horizontal lines: a darker horizontal line may indicate detector failure during a certain time
period; a darker vertical line may indicate several (probably neighbouring) detectors (i.e., at a
measurement post or complex) that are failing. The wider a vertical line, the more extended the
time period of failure.
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Figure 6.19: Histograms showing the distributions of all scores for the years 2001 (top row)
and 2003 (bottom row). Each time the left, middle, and right histograms correspond to scores
S1, S2, and S3, respectively.

To conclude, we provide six more detector maps in Figure 6.20 for 2001 and Fig-
ure 6.21 for 2003. The difference between the previous maps, is that these ones show
aggregated scores for whole days instead of every hour (i.e., TDSA = 60 × 24 = 1440
minutes). As such, they are smaller in width, spanning only 365 pixels. In a sense,
they convey the same information as presented in Figure 6.16 and Figure 6.17. Note
the big black and white regions near the bottom of all six maps; they are most likely in-
dicative of place holders in the central database for new detectors, resulting in default
values for the flow and occupancies and correspondingly giving high scores.
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Figure 6.20: Illustrative detector maps of the S1 (top), S2 (middle), and S3 (bottom) scores,
for all 1654 detectors in the year 2001. The scores were calculated for each day; the darker a
pixel is coloured, the higher the specific score is (black meaning that all samples during TDSA

contribute to the score). Note the big black and white regions near the bottom of all six maps;
they are most likely indicative of place holders in the central database for new detectors.



i

i

i

i

i

i

i

i

270 Chapter 6 – Data quality, travel time estimation, and reliability

Figure 6.21: Illustrative detector maps of the S1 (top), S2 (middle), and S3 (bottom) scores,
for all 1800 detectors in the year 2003. The scores were calculated for each day; the darker a
pixel is coloured, the higher the specific score is (black meaning that all samples during TDSA

contribute to the score). Note the big black and white regions near the bottom of all six maps;
they are most likely indicative of place holders in the central database for new detectors.
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6.3 Off-line travel time estimation and reliability in-
dicators

The final section of this chapter is concerned with reliable estimations of the travel
time in an off-line setting. As such, we are not predicting the travel times for unknown
future traffic conditions. The methodology elaborated in this section can be classified
according to Van Lint’s taxonomy as a data-driven modelling approach using a short-
term prediction horizon; it constitutes indirect pre-trip estimation using a flow-based
technique, having individual motorway sections as its spatial scope [Lin04].

The first part of this section discusses some of the techniques that are commonly ap-
plied when estimating travel times based on historical traffic flow measurements. In
the subsequent part we present our methodology for estimating travel times between
measurement posts, after which we present an application to real-world measurements
stemming from single inductive loop detectors. The final part discusses some reliabil-
ity and robustness properties related to travel times and traffic flow dynamics.

Note that we exclude a large part of the literature dealing with predictions; for an
example of this approach we refer the reader to, e.g., the work done by Tampère
et al. in the PredicTime project that mainly focusses on the use of Kalman fil-
tering [Klu03; Ver03b], and the doctoral dissertation of Van Lint who employs
state-space neural networks (SSNN) for reliable on-line predictions of travel times
[Lin04].

6.3.1 Common approaches towards travel time estimation

The most prominent technique employed, is by deriving the travel time based on the
inverse of the measured mean speed10. Briefly recapitulating Section 2.4.3.1, we make
the distinction between the experienced dynamic travel time, starting at a certain time
t0, over a road section of length K [Bov00]:

T (t0) =

∫ K

0

1
v(t, x)

dx ∀ t ≥ t0. (6.19)

If not all local instantaneous vehicle speeds v(t, x) are known at all points along the
route, a simplification can be used, resulting in the experienced instantaneous travel
time:

T̃ (t0) =

∫ K

0

1
v(t0, x)

dx. (6.20)

10Note that we do not cover another popular approach, i.e., using floating car data (FCD) to directly
measure travel times; see Section 2.3.5 for more information.
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As an example, the following relation gives the experienced instantaneous travel time
for a section, based on the mean speed measurements from an upstream and down-
stream detector post:

T̃Dup→Ddown(t0) =
K

2

(
1

vsDup
(t0)

+
1

vsDdown
(t0)

)
. (6.21)

In the previous equation, it is assumed that the measured mean speeds at both de-
tector posts correspond to the traffic situation within the section; during congested
conditions, this assumption can lead to an underestimation of the travel time if both
detectors are still registering free-flow traffic.

In practice, the travel times are based on the consideration of all vehicle trajectories
(see, e.g., Figure 2.3); to this end, it is necessary to estimate the mean speed of each
trajectory. When performing this step, a possible approach is to estimate the trajector-
ies’ speeds as piece-wise linear functions. This latter can be done by sampling them
at discrete distances using, e.g., single inductive loop detectors [Bov00].

Some examples of this type of travel time estimation are the work of Dailey who
uses volume and occupancy measurements from SLDs, incorporating the stochastic
nature of these quantities in order to derive the travel time; a Kalman filter is included
to address the variability of the observations [Dai97], Petty et al. who adopt a sim-
ilar methodology by using a stochastic model to accurately estimate the distribution
of travel times, based on the measured upstream and downstream arrivals at SLDs
[Pet98], Coifman who provides a methodology for estimating vehicle trajectories, and
hence also link travel times, from the measurements at DLDs, based on a triangular
(k,q) fundamental diagram [Coi02a], and Coifman and Cassidy who adopt a vehicle
reidentification algorithm that matches vehicle measurements made at a downstream
detector to those made at an upstream detector; as such, it is possible to derive the link
travel time [Coi00; Coi02b].

6.3.2 Estimating travel times based on flow measurements

As previously noted, many travel time estimation techniques are based on the inverse
of the measured mean speed. In our work, we are dealing with single inductive loop
detectors, of which the mean speed estimations are notoriously known to be unreliable.
However, as mentioned at the end of Section 6.1.1.4, the vehicle counts measured by
these SLDs are quite reliable (for which we ignore the misclassification issues between
cars and trucks, as only the total vehicle counts matter). As such, our methodology is
based on the use of flows, i.e., the cumulative curves as explained in Section 2.3.2.2.

Briefly recapitulating, these cumulative curves represent the cumulative number of
passing vehicles (denoted by N ) with respect to time at different locations. Consider
now a closed section of the road that conserves the number of vehicles (i.e., no on- or
off-ramps); this section is demarcated by two measurement posts which measure its
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inflow, respectively outflow of vehicles. The result is a pair of monotonically increas-
ing functions Nup(t) and Ndown(t), which increase each time a vehicle passes by (see
the left part of Figure 2.4 on page 24 for an example of these curves).

The time needed to travel from one post to another can now easily be measured
as the horizontal distance between the respective cumulative curves. Similarly,
the vertical distance between these curves allows us to derive the accumulation of
vehicles on the road section, which gives an excellent indication of growing and
dissipating queues (i.e., congestion). Finally, at each time instant t the slope of
this function corresponds to the flow q(t).

In the remainder of this section we outline our methodology by first discussing how
we extract the cumulative curves from the data, then how we deal with synchronisation
issues and systematic errors, and finally how we estimate the distribution of the travel
time.

6.3.2.1 Constructing the cumulative curves

The first step in the estimation of travel times, is to create the cumulative curves, by
extracting the total flow measurements qup(t) and qdown(t) from both upstream and
downstream measurement posts, respectively. The underlying assumption we make
is that all vehicles in the total inflow upstream to and outflow downstream from the
section are accounted for by both measurement posts. Note that because we are deal-
ing with multi-lane traffic, vehicles are allowed to overtake each other, and as such
the first-in, first-out (FIFO) condition (see the end of Section 2.2.2) no longer holds
[Dag95a]. However, this is not a significant problem because we are measuring the
total flows at both detector posts.

Once the total flows are extracted, the cumulative curves Nup(t) and Ndown(t) are
constructed as follows11:

N(t) =

t∑

t′=t0

q(t′) = N(t− 1) + q(t). (6.22)

In this equation, N(t) thus represents the number of the last vehicle that passed the
measurement post at time t. Because the original flow measurements were aggregated
at periods of one minute, the resulting N(t) increases each time from t −→ t+1 with
the total number of vehicles that passed the measurement post.

6.3.2.2 Dealing with synchronisation issues and systematic errors

When plotting both cumulative curves Nup(t) and Ndown(t) in a single diagram, it is
necessary to make them comparable. This entails the following two tasks:

11Note that we dropped the functional dependency on space, as for each cumulative curve its location is
explicitly mentioned by the ‘up’ and ‘down’ subscripts.
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• For starters, when both curves are reporting the same number of counted vehicles,
they need to be synchronised with each other. To understand this, suppose a ref-
erence vehicle passes the upstream measurement post at a certain time instant
tup; after a certain time period ∆t, the vehicle reaches the downstream meas-
urement post at a later time instant tdown. The amount ∆t = tdown − tup is the
time it takes to cross the distance between both measurement posts, allowing the
synchronisation mechanism to shift the respective cumulative curves over this
time period (i.e., initialising them with the passing of the reference vehicle). As
a result, both curves are synchronised such that Ndown(tdown) = Nup(tup + ∆t)
for the reference vehicle (with ∆t being the horizontal separation of both curves
at time instant tup).

• Secondly, all lane detectors in both measurement posts can be differentially
tuned, or their measurements can be obtained by SLDs at one post and cam-
eras at the other post. As a result, they can be systematically biased towards
lower or higher vehicle counts (note that this is not related to the internal vehicle
classification by the local controller).

Synchronising both cumulative curves
The first method we tried for synchronising both cumulative curves and obtaining
∆t, was to estimate the experienced instantaneous travel time T̃ff(tup) under free-flow
conditions, according to equation (6.20):

∆t = T̃ff(tup) =
K

vff
, (6.23)

with K the distance between both upstream and downstream measurement posts and
vff the mean speed of all vehicles in free-flow traffic. However, due to the nature
of the original flow measurements that are aggregated at periods of one minute, it
is necessary that T̃ff(tup) ≥ 1 minute. A further complication is the fact that this
travel time should be an integral value because the flow measurements are equidistant
in time. As a consequence, the synchronisation methodology can only be applied
to detector posts for which the travel time under free-flow conditions is at least one
minute; e.g., when travelling at vff = 100 km/h, then the minimal distance between
both measurement posts should be (100 ÷ 3.6) m/s × 60 seconds ≈ 1.6 km. Further
problems arise due to the rounding of the travel time towards the nearest whole minute.
As a result, it is possible that both cumulative curves intersect each other, which is
physically impossible as this would mean that the total number of vehicles contained
in the section becomes negative, which can even lead to negative travel times.

In order to tackle the previous problem, and to be able to work with measurement
posts that are separated at arbitrary distances, we derived a new methodology. The key
idea is to ‘undo’ the aggregation of the flow measurements. To this end, we convert
the N(t) curves to equivalent t(N) curves. The conversion is done by constructing
a new curve, such that all N vehicles at time instant t are distributed over the time
interval t −→ t + 1. Note that the vehicles’ detector passing times are now expressed
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in seconds (which are allowed to be fractional values). The original N(t) curves
were equidistant in time t, the corresponding t(N) curves are now equidistant in the
vehicle number N . Furthermore, whereas we assumed that Nup(t) > Ndown(t), we
now assume that tup(N) < tdown(N).

At this stage, we have for each individual vehicle that passed both measurement posts,
its corresponding tup and tdown time instants. With this knowledge, we can now again
compute T̃ff(tup). Instead of using equation (6.23) which is explicitly based on the
mean speed vff of all vehicles in free-flow traffic, we adopt another strategy. Abandon-
ing the mean speed in free-flow traffic, we directly work with the ‘history of the traffic
stream’, i.e., its characteristic properties that travel downstream. These undulations in
both the tup(N) and tdown(N) curves propagate freely and allow us to achieve a better
and more stable synchronisation.

One way to achieve this, is by looking at the respective shapes of both curves
during light traffic conditions (e.g., the early morning period when free-flow con-
ditions are prevailing). The idea now is to shift one curve such that the difference
between the two curves’ shapes is minimal. This approach for finding the correct
time lag T̃ff(tup) loosely corresponds to the concept of platoon matching where
the characteristic features of groups of vehicles are compared and matched, as
described in the Travel Time Data Collection Handbook of Turner et al. [Tur98].
Our method also corresponds to what Bovy and Thijs call travel time estimation
based on mass-balance, where the inflow of a section is compared to its outflow
[Bov00]. And finally, as explained by Muñoz and Daganzo, finding the minimal
difference in shapes between the two cumulative curves is also analogous to the
maximisation of the cross-correlation of both curves [Muñ03a].

In practice, we adjust the t(N) curves, not by looking for the correct time difference
∆t, but instead by finding the equivalent difference ∆N :

1. Choose a morning time tmorning with prevailing free-flow traffic.

2. Find the corresponding number of the first vehicle that passes the upstream
measurement post during this morning time period, i.e., Nup,morningBegin.

3. Choose the length NmorningLength (expressed in vehicles) of the morning time
period (e.g., 400 vehicles, which corresponds to some 10 minutes on a three-
lane motorway); this allows us to retrieve the number of the last vehicle that
passes the upstream measurement post, i.e., Nup,morningEnd = Nup,morningBegin +
NmorningLength − 1.

4. Setup a region in which we will synchronise the cumulative curves:

NsyncRegionBegin = Nup,morningBegin −
NsyncRegionLength

2
, (6.24)

NsyncRegionEnd = Nup,morningEnd +
NsyncRegionLength

2
. (6.25)
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If we set NmorningLength = 400 vehicles, then we choose the length of the syn-
chronisation region slightly higher, e.g., 500 vehicles. Note that these values
should not be taken too large, as this will introduce a systematic error due to
the possibly differential tuning of both upstream and downstream measurement
posts.

5. Define the following objective function that represents the total squared differ-
ence of the travel time and the average time difference between both curves
tup(N) and tdown(N):

f(n) =

∫ NmorningLength

i=1

[
tdown(n + i)− tup(i)−∆t(n)

]2
dN, (6.26)

with the ∆t(n) being the average time difference, defined as follows:

∆t(n) =
1

NmorningLength

NmorningLength∑

i=1

[tdown(n + i)− tup(i)] . (6.27)

Within the region [NsyncRegionBegin, NsyncRegionEnd], we now search for the value
of nmin at which the objective function is minimal (note that during the optim-
isation, we approximate the integral with a discrete sum over N ):

min
n∈[NsyncRegionBegin,NsyncRegionEnd]

f(n). (6.28)

In Figure 6.22 we graphically illustrate how the synchronisation mechanism
works: the tdown(N) curve is shifted with respect to the tup(N) curve within the
synchronisation region until the objective function becomes minimal.

Finally, if we assume that all vehicles are driving with the same mean speed
(i.e., the free-flow traffic regime), then the shapes of the curves are qualitatively
the same. As such, the difference ∆N for which the two shapes differ the least
is defined as follows:

∆N = Nup,morningBegin − (NsyncRegionBegin + nmin − 1). (6.29)

The two curves are now synchronised, because tdown(N) = tup(N−∆N) holds
for the selected morning period.

Correcting for systematic errors
When comparing cumulative curves from both upstream and downstream measure-
ment posts, it is possible that they exhibit a bias towards under- or overcounting of
vehicles, e.g., the downstream post consistently counts more vehicles than the up-
stream post. In order to compensate for these systematic errors, we apply the same
synchronisation mechanism, but this time for an evening period with free-flow traffic.
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PSfrag replacements

N

t(N)

Nup,morningBegin Nup,morningEnd

NmorningLength

NsyncRegionBegin NsyncRegionEnd

tdown(N)

tup(N)
tmorning

∆t(n)

Figure 6.22: A graphical illustration of the synchronisation mechanism: the
tdown(N) curve is shifted with respect to the tup(N) curve within the synchron-
isation region until the objective function becomes minimal; ∆t(n) represents
the average time difference between the two curves. After the minimisation, the
shapes of both curves are qualitatively the same.

After this step, we now have ∆Nmorning and ∆Nevening available. In the case of bias,
∆Nmorning 6= ∆Nevening, so the idea is to adjust the counts of tdown(N) so that it counts
the same number of vehicles as tup(N) does. There are two possibilities:

• |tdown(N)| > |tup(N)| =⇒ we shorten tdown(N) as follows:

∀n ∈ |tup(N)| : tdown(n)← tdown(

[
n
|tdown(N)|

|tup(N)|

]
) (6.30)

• |tdown(N)| < |tup(N)| =⇒ we enlarge tdown(N) by means of interpolation. Let
us define the following index:

nnew = n
|tdown(N)|

|tup(N)|
, (6.31)

then the interpolation assigns the new indices as follows:

∀n ∈ |tup(N)| : tdown(n)← tdown(bnnewc) +

(tdown(dnnewe)− tdown(bnnewc)) · |[nnew]− nnew|. (6.32)

An underlying assumption in the previous derivation is that the measurement error of
the posts occurs uniform in time, and is not related to the current traffic regime (e.g.,
free-flow versus congested traffic). Note that in a similar spirit, Muñoz and Daganzo
correct for bias by explicitly multiplying the cumulative curves of each measurement
post with a detector-specific correction factor, such that both posts count the same
number of vehicles [Muñ03a].
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6.3.2.3 Estimating the distribution of the travel time

After synchronising both upstream and downstream cumulative curves and correcting
for systematic errors, the travel time is now equal to:

T (N) = tdown(N)− tup(N). (6.33)

It is also possible to derive the space-mean speed, which is in accordance with equa-
tion (2.27) equal to the ratio of the distance K between both measurement posts and
the average experienced dynamic travel time T of all the vehicles:

vs =
K

T
. (6.34)

Once all travel times are known for all vehicles during the measurement period, we
can estimate the empirical distribution of the travel time by creating histograms (for
more information, see the example in Section 2.4.3.3 at page 38).

6.3.3 Indicators of reliability

Considering the methodology elaborated upon in the previous section, we now give
some examples of estimating the travel time for a real-world example. To this end, we
first give an overview of the area that encompasses our case study. We then estimate
the travel time for a motorway within this case study, indicating what the expected
travel time will be, as well as its deviation. Finally, we construct several reliability
maps that show for a complete motorway the locations of recurrent congestion, as
well as the encountered fluctuations which give indications of stop-and-go traffic.

6.3.3.1 Overview of the case study area

The area of our case study encompasses what we call “Flanders’ Triangle” (see also
Figure 6.23); its corners are formed by three major cities, called Antwerpen, Gent,
and Brussel (which is the capital of Belgium). Three bidirectional motorways are
connecting these cities, i.e., the E17 (having a length of approximately 2 × 54 km
between Antwerpen and Gent), the E40 (having a length of approximately 2 × 43 km
between Gent and Brussel), and the E19 (having a length of approximately 2× 34 km
between Brussel and Antwerpen). These motorways connect to the cities via ring
roads; the R0 around Brussel, the R1 around Antwerpen, and the R4 around Gent.

All motorways are composed of three lanes in each direction, with some exceptions
such as the E19 which has a part where there are four lanes (separated in two) in each
direction. The small grey filled circles represent the locations of the single loop de-
tectors (a minority of the detectors are cameras). We collect traffic flow measurements
for the year 2003, based on data stemming from 288 detectors (clockwise around the
Triangle) and 264 detectors (counter-clockwise around the Triangle), which gives a
grand total of 552 detectors.



i

i

i

i

i

i

i

i

6.3 Off-line travel time estimation and reliability indicators 279

Figure 6.23: The area of our case study, encompassing what we call “Flanders’ Triangle”; its
corners are formed by the three major cities Antwerpen, Gent, and Brussel, which are connec-
ted by the three bidirectional motorways, i.e., the E17 between Antwerpen and Gent, the E40
between Gent and Brussel, and the E19 between Brussel and Antwerpen. These motorways
connect to the cities via ring roads; the R0 around Brussel, the R1 around Antwerpen, and the
R4 around Gent. Within our case study, we collect traffic flow measurements for the year 2003,
based on data stemming from 552 detectors in total (represented by the grey filled circles).

6.3.3.2 Travel time reliability

We now apply our methodology for off-line travel time estimation as explained in
Section 6.3.2, to a small real-world example. To this end, we take the following steps:

1. We chose two measurement posts that demarcate a road section with no interme-
diate on- or off-ramps (hence we have conservation of the number of vehicles).
For convenience, we set all sentinel values of the flows, occupancies, and mean
speeds equal to zero (see Section 6.1.2 for an explanation of these sentinel val-
ues in the database).

2. Next, the flows, occupancies, and mean speeds of all individual lanes at all
measurement posts are aggregated together according to equations (2.13), (2.25),
and (2.37), respectively. Note that we normalise the occupancy to obtain the av-
erage occupancy across all lanes, as described in Section 2.3.3.

3. We then collect all groups of similar weekdays (e.g., all Mondays, Tuesdays,
. . . ), as described in Section 6.1.3.
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4. For each individual day in each group of these weekdays, we consider all 60× 24
= 1440 measurements for each lane detector. Using equation (6.22), we then
construct the cumulative curves Nup(t) and Ndown(t) for both measurement
posts, convert them to equivalent tup(N) and tdown(N) curves while synchron-
ising them using the methodology explained in Section 6.3.2.2. Finally, we
derive the travel times according to equation (6.33).

5. Based on these travel times, we construct histograms that represent the distribu-
tions of the travel times for the road section on the specified days, including the
means and standard deviations of these travel times, as well as the 90% percent-
ile. We also consider the medians and the median absolute deviations (MAD)12.
Note that we include these latter robust estimators, in order to eliminate outliers
such as special occasions, accidents and incidents, . . .

6. Finally, all histograms belonging to the same day of the week (e.g., all Mondays)
are averaged to obtain an estimate of the distribution of travel times on a typical
day.

As a real-world example, we consider a three-lane section of the E40 motorway
between Brussel and Gent (in the direction of Gent), located between the detector
posts at Erpe-Mere and Wetteren; the distance K between these two measurement
posts is 8.1 kilometres. For this section, we estimate the travel times on a typical
Monday and a typical Friday in 2003, each time during the morning (08:00 – 10:00)
and evening rush hours (17:00 – 20:00). The resulting histograms are shown in Fig-
ure 6.24; Table 6.3 summarises the resulting statistics.

Whereas the mean and the median tell us what the expected travel time on the section
will be, the standard deviation and the median absolute deviation give a clue about
the expected fluctuations around this travel time [War05]. The more reliable a road
section is, the smaller the fluctuations will be. The histograms show that for a typical
Friday, the distribution of the travel time is in general narrower than on a Monday.
From the statistics, we can see that the mean and median values of the travel times
lie close to each other; their deviations however show a difference. The reason for
this is that our methodology is quite capable of estimating a qualitatively good travel
time. Furthermore, there is no real difference between the expected travel time during
the evening rush hours on a Monday and a Friday; there is however an increase in the
deviation for a Monday.

With respect to the reliability of the travel time, we also note the evolution of the 90%
and 95% percentiles; they indicate that a traveller can expect, with a probability of
90, respectively 95 percent, a travel time less than the percentiles. As can be seen in
Table 6.3 and the histograms in Figure 6.24, the section has more robustness against
congestion (both recurrent and non-recurrent due to incidents) on a Friday than on

12The median absolute deviation is defined as: MAD = med |xi − xmed|, with xmed the median of
the data. Note that we can scale the MAD to make it unbiased with respect to the normal distribution:
MADE = 1.4826 ×MAD. The factor 1.4826 corresponds to the inverse of the 3rd quartile for the cumu-
lative distribution function of the normal distribution, i.e., 1/Φ−1( 3

4 ).
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a Monday. Furthermore, we can also spot an asymmetry between the morning and
evening rush hours on a Friday. Further investigation of this phenomenon revealed
that it was caused by some outliers (they could be caused by accidents, but this was
not confirmed), which led to an increase in the calculated travel times. These outliers
also cause the small the peaks in the histograms near higher travel times.
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Figure 6.24: Histograms of the estimated travel time for the E40 motorway example from
the case study for a typical Monday (top) and a typical Friday (bottom) in 2003, each time for
the morning (left) and evening (right) periods. The dotted line indicates the 90% percentile,
whereas the dashed line indicates the 95% percentile. Note how the distribution of the travel
time is more narrow for a typical Friday then a typical Monday.

Period Mean Median Std. Dev. MAD 90% 95%

Monday morning 5.1734 5.1661 0.5390 0.4295 7.2335 7.6579
Monday evening 4.9795 4.9712 0.5631 0.4546 7.4946 8.9535
Friday morning 4.7165 4.6630 0.4815 0.4029 6.1798 7.1738
Friday evening 4.9540 4.9743 0.4037 0.3281 5.7519 5.7519

Table 6.3: The means and medians of the travel times, the corresponding standard deviations
and median absolute deviations (MAD), as well as the 90% and 95% percentiles for the E40
motorway example from the case study.
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6.3.3.3 Constructing reliability maps

Another aspect related to reliability of a transportation system, is expressed by on the
one hand the expected mean speed a traveller will encounter, and on the other hand
how the mean speed varies from one day of the week to another. To this end, we
provide a methodology that allows us to construct time-space diagrams of all similar
weekdays. As such, these containing ‘typical days’ clearly show the locations where
recurrent congestion occurs. After explaining our technique, we apply it to some of
our roads in the case study, i.e., the E19 between Antwerpen and Brussel and the R0
ring road around Brussel.

Our methodology encompasses the following steps:

1. For all motorways and ring roads in the case study, we consider all lane detectors
at all measurement posts. For convenience, we set all sentinel values of the
flows, occupancies, and mean speeds equal to zero (see Section 6.1.2 for an
explanation of these sentinel values in the database).

2. We then collect all groups of similar weekdays (e.g., all Mondays, Tuesdays,
. . . ), as described in Section 6.1.3.

3. For each individual day in each group of these weekdays, we consider all 60× 24
= 1440 measurements for each lane detector; we then calculate the median over
all days for each measurement separately, as well as the median absolute de-
viation (MAD). See also Figure 6.25 for a graphical depiction of this process.
Note that we use these robust estimators instead of the classical mean, in order
to eliminate outliers such as special occasions, accidents and incidents, . . .

4. Next, the flows, occupancies, and mean speeds of all individual lanes at all
measurement posts are aggregated together according to equations (2.13), (2.25),
and (2.37), respectively. Note that we normalise the occupancy to obtain the av-
erage occupancy across all lanes, as described in Section 2.3.3.

5. Once all aggregated measurements are available, we collect them in time-space
diagrams that each contain the medians and MADs of either the flows, the oc-
cupancies, or the speeds.

6. Finally, we apply Treiber and Helbing’s tempo-spatial filter to the previously
constructed time-space diagrams containing the medians; this filter reduces the
noise in the measurements as it essentially is a low-pass filter (LPF), whilst in-
terpolating locations and times between measurement posts in the time-space
plane. The filter is also adaptive, in the sense that it keeps track of the current
traffic conditions surrounding a measurement point: instead of just considering
a point’s nearest Euclidean neighbours, the filter takes into account the direc-
tion of information flow (i.e., forward moving in free-flow traffic and backward
moving in congested traffic) [Tre02]. As a result, the traffic flow characteristics
are more clearly pronounced, increasing the visibility of the resulting diagrams.
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Figure 6.25: For each individual day in each group of similar weekdays (e.g., all
Mondays), we consider all 60 × 24 = 1440 measurements for each lane detector;
we then calculate the median over all days for each measurement separately, as
well as the median absolute deviation (MAD). Note that the graph shows the
calculation for one detector; we for purposes of illustration, we plot the daily
profiles of four distinct weekdays.

Applying the previously explained methodology to some of our roads in the case study,
we obtain the filtered time-space diagrams in Figure 6.26 and Figure 6.28 for the E19
between Antwerpen and Brussel and the R0 ring road around Brussel (extended with
a part of the E19 between Brussel and Mons), respectively. In all maps, the driving
direction is upwards, while time advances to the right. Note that due to the spatial
sparseness of the detectors in the Flanders’ region (they are only located right before
and right after an on- and off-ramp), it is possible that we miss certain jams that ori-
ginate and dissolve in a motorway section without ever being recorded by an upstream
or downstream detector.

In practice, a good indicator for congestion can be found in the occupancy. How-
ever, because the mean speed is tied uniquely to the density, and hence also to the
occupancy, we use its median and variance as the main macroscopic characterist-
ics in our reliability maps.

In these maps, dark spots represent regions where the mean speed is rather low, which
is indicative of congestion: jams start at the top part of these structures, they grow
downwards and recede upwards. Because the mean speed is considered over all sim-
ilar weekdays, the maps of these ‘typical days’ clearly show the locations where re-
current congestion occurs. The information contained in these charts thus gives an
indication of the expected mean speed a traveller will encounter at a certain moment
and location in the time-space diagram of a motorway. Anyone who wants to avoid
traffic congestion, should therefore try to stay clear of the dark spots; this can be
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accomplished by not entering the motorway and thus choosing an alternative route,
and/or by selecting another departure time.

Another interesting quantity to consider is the variance, as plotted in the maps in
Figure 6.27 and Figure 6.29. These maps represent how the mean speed varies from
one day of the week to another; dark spots now represent regions where a traveller
can expect strong fluctuations in the traffic pattern (note that no filtering was applied
to these maps).

We now discuss the results of our case study; in Figures 6.26, 6.27, 6.28, and 6.29,
the left parts each time relate to a typical Monday, whereas the right parts relate to a
typical Friday.

Figure 6.26: Time-space diagrams showing the evolution of the mean speed and recurrent
congestion on a typical Monday (left) and a typical Friday (right) in 2003, for the E19 motorway
in the direction of Brussel (top) and the direction of Antwerpen (bottom). Note the region of
severe congestion during the Monday morning rush hour near Brussel (top parts) between posts
D1 and D6; in contrast, the Friday morning rush hour is less pronounced. There is also a band
of slower traffic between posts D6 and D7, where the complex near Mechelen, a major city
located right next to the motorway, is located.
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E19 motorway between Antwerpen and Brussel

• The morning rush hour when entering Brussel on a Monday (top-left part of
Figure 6.26), exhibits severe congestion over a length of some 16 kilometres
(ending between posts D6 and D7, located at the complex near Mechelen-Zuid
and Mechelen-Noord), during from 07:00 until 09:30. For a Friday (top-right
part of Figure 6.26), the length is reduced to some 13 kilometres (ending at
post D6, located at Mechelen-Zuid). In both cases, the congestion starts at the
connection of the E19 with the R0 ring road near Vilvoorde (post D1). Note
that there is no evening rush hour for traffic in the direction of Brussel.

Figure 6.27: Time-space diagrams showing the evolution of the median absolute deviation
(MAD) of the mean speed on a typical Monday (left) and a typical Friday (right) in 2003, for
the E19 motorway in the direction of Brussel (top) and the direction of Antwerpen (bottom).
Note how the fluctuations in the top parts have a magnitude of approximately 30 to 35 km/h,
probably indicating heavy stop-and-go traffic during the morning rush hour.

Within this congested region, the mean speed drops to some 50 km/h; the fluctu-
ations in the top-left and top-right parts of Figure 6.27 have a magnitude of ap-
proximately 30 to 35 km/h, which leads us to the conclusion that there probably
is heavy stop-and-go traffic during the morning rush hour. Note the increased
fluctuations near post D10, located at Kontich: right before this point, the E19
was split up into 2×2 lanes, separated by a verge. Post D10 lies right after an
on- and off-ramp where the 2×2 lanes join together again.
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Outside the congested region, the mean speed of traffic is approximately 90 km/h,
with a small speed-up to some 100 km/h between posts D7 (Mechelen-Noord)
and D10 (Kontich). The darker region between posts D6 and D7 represents
traffic at the complex near Mechelen, which is a major city located right next to
the motorway.

• Considering the E19 in the direction of Antwerpen (bottom-left and bottom-
right parts of Figure 6.26), we note that there is no associated morning or even-
ing rush hour present. Instead, we observe that the mean speed approximately
lies between 90 and 100 km/h. A mild slowdown towards some 95 km/h is
spotted from post D7 (Mechelen-Noord) on when entering Antwerpen.

An interestingly observation is the light band in both parts: this band represents
an increase in the mean speed to some 110 km/h. At this point, traffic enters the
Craeybeckx tunnel which has four lanes; in this tunnel, traffic is neatly split up
for the three outgoing directions towards the city centre of Antwerpen, the R1
ring road around Antwerpen in the direction towards Gent, and the R1 in the
direction towards The Netherlands.

Considering the bottom-left and bottom-right maps in Figure 6.27, we note that
there are no clearly visible large fluctuations, except for a small increase from
post D7 (Mechelen-Noord) on when entering Antwerpen, corresponding to the
previously mentioned area where mild congestion occurs in the morning.

R0 ring road around Brussel

• During the morning rush hour, we can spot a region of severe congestion on
the inner-ring road (i.e., the top-left and top-right parts of Figure 6.28) between
posts D15 and D21; this corresponds to the region at the viaduct over Vilvoorde
(see the satellite image in the top-right part of Figure 6.30), spanning the R0
near Strombeek-Bever until the detectors at Wemmel and Merchtem where the
A1213 between Antwerpen and Brussel joins the R0 (see the satellite image in
the top-left part of Figure 6.30). The mean speed here lies around 30 km/h. The
congested area covers some 8 kilometres, during a period between 07:00 and
10:00.

Right above and below this congested location, there are two regions in which
the mean speed is approximately 80 km/h; the upper region is located near
post D14 (Machelen) where the E19 motorway between Antwerpen and Brus-
sel joins the R0 (see the satellite image in the bottom-left part of Figure 6.30).
The lower region is located near post D22 (Merchtem) where the E40 motorway
between Gent and Brussel joins the R0. There is also a small region of slower
traffic (60 km/h) between posts D31 (Beersel) and D34 (Huizingen), where the
R0 blends into the E19 between Brussel and Mons in the Walloon region of
Belgium.

13Note that the A12 road is considered as an alternative that lies parallel to the E19 motorway between
Antwerpen and Brussel. However, it does not constitute a full-fledged motorway, as it contains traffic lights
and road crossings at the part located in Antwerpen.



i

i

i

i

i

i

i

i

6.3 Off-line travel time estimation and reliability indicators 287

Figure 6.28: Time-space diagrams showing the evolution of the mean speed and recurrent
congestion on a typical Monday (left) and a typical Friday (right) in 2003, for the R0 clockwise
inner ring road around Brussel (top) and the counter-clockwise outer ring road (bottom). Note
the area of severe congestion during the morning rush hour between posts D15 and D21 (i.e., the
viaduct over Vilvoorde, spanning the R0 near Strombeek-Bever until the detectors at Wemmel
and Merchtem where the A12 joins the R0), as well as the congestion during the evening rush
hour between posts D3 and D12 (i.e., Vierarmenkruispunt, Tervuren, Wezembeek-Oppem near
the junction with the E40 motorway in the direction of Luik).

The evening rush hour is clearly visible between 15:30 and 19:00; within it,
the mean speed drops to some 40 km/h between posts D3 and D4 (Vierarmen-
kruispunt, see the satellite image in the bottom-right part of Figure 6.30), D5
and D10 (Tervuren), and D11 and D12 (Wezembeek-Oppem near the junction
with the E40 motorway in the direction of Luik). Note that we can see a darker
band in the maps between posts D2 and D9 (Vierarmenkruispunt and Tervuren)
during the entire day, indicating slower traffic. Finally, there are also two small
areas of congestion near posts D29 (Anderlecht) and D20 (Wemmel), where the
mean speed drops to some 60 km/h.
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Figure 6.29: Time-space diagrams showing the evolution of the median absolute deviation
(MAD) of the mean speed on a typical Monday (left) and a typical Friday (right) in 2003, for
the R0 clockwise inner ring road around Brussel (top) and the counter-clockwise outer ring road
(bottom). Note the fluctuations in the top parts near post D10; for Mondays, there appear to be
more fluctuations in the morning period than for Fridays; conversely, the evening rush hour is
more sensitive to disturbances on a Friday then on a Monday.

Comparing the left and right parts of the maps, we can see that in general the
congestion is worse on a Friday then on a Monday; the evening rush hour pre-
viously discussed now already starts at the early time of 14:00, lasting until
20:00. Note that with respect to the mean speed, the congestion also results in
low measurements of some 20 km/h. Furthermore, during the entire day, the
darker band in the maps between posts D2 and D9 (Vierarmenkruispunt and
Tervuren) is more pronounced, indicative of slower traffic (60 km/h).

Looking at the top-left and top-right parts of Figure 6.29, we note an important
observation with respect to the reliability of the mean speed: on a Friday, there
occur a lot of fluctuations near post D10 (Tervuren), starting already at 12:00,
lasting until 15:00. They reprise at 18:00, lasting until 20:30. Considering both
parts, we can also see that for Mondays, there appear to be more fluctuations in
the morning period than for Fridays; conversely, the evening rush hour is more
sensitive to disturbances on a Friday then on a Monday.
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Figure 6.30: Some satellite images of the more severely congested locations on the R0 ring
road around Brussel. Top-left: the junction between the A12 (between Antwerpen and Brussel)
and the R0. Top-Right: the R0 on the large bridge over the city Vilvoorde and the Renault
factory. Bottom-left: the junctions between the E19 (between Antwerpen and Brussel), the
E40 (between Brussel and Luik) and the R0. Bottom-Right: the junction Vierarmenkruispunt
(‘4-arms crossing’) between the E411 (between Brussel and Namen) and the R0 (all images
reproduced after [Goo06]).

• Considering the outer-ring road (i.e., the bottom-left and bottom-right parts
of Figure 6.28), we note that most congestion during the morning rush hour
between 07:00 and 10:00 occurs between posts D1 (Groenendaal) and D9 (Ter-
vuren), where the junction of the R0 and the E411 (between Brussel and Na-
men) at the Vierarmenkruispunt (‘4-arms crossing’) is located. Here, the mean
speed drops to some 30 km/h, indicating severe congestion. The outer ring also
exhibits a slower speed of some 50 km/h near post D19 (Strombeek-Bever).
The same darker band of slower traffic is also visible between posts D2 and D9
(Vierarmenkruispunt and Tervuren) during the entire day.

With respect to the evening rush hour, we can see some congestion (60 km/h)
at post D19 (Strombeek-Bever), between 16:00 and 18:00 approximately. Also
note the same level of congestion near post D14 (Machelen) where the E19 mo-
torway between Antwerpen and Brussel joins the R0. Looking at the difference
between Monday and Fridays, we can see that on a Friday, the morning rush
hours has a smaller duration than on a Monday. The opposite is true for the
evening rush hour, which now lasts from 15:00 until 19:00.
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Looking at the fluctuations of the mean speed in the bottom-left and bottom-
right parts of Figure 6.29, we can make the same remarks as for the inner-ring
road.

Note that with respect to the locations of congestion, we find a close match
between those discussed in our research, and the ones reported in the “Belgium’s
Congestion Top-25” of Logghe and Vanhove [Log04].

6.4 Conclusions

This chapter provided several techniques which can assist in the analysis of traffic
flow measurements gathered on Flanders’ motorways. We described how all these
measurements are obtained and how they are stored in a central database. We then
discussed the quality of the measurements, from a statistical point of view by giving a
technique that tracks outliers. We also provided a methodology for quickly assessing
structural and incidental detector malfunctioning, by means of creating maps that give
a clear visual indication of when and where the problems occurred. We also gave clues
as to which methods are suitable for dealing with missing values. Subsequently, we
elaborated on a methodology for the off-line estimation of travel times, based on flow
measurements (as opposed to the much used technique based on speed measurements).
Finally, we gave some reliability and robustness properties related to travel times and
traffic flow dynamics, which gives us an extra instrument for the analysis of recurrent
congestion.

With respect to the tackling of congestion on Flanders’ road network, the current
policy is to keep the congestion on the motorways, avoiding its spreading towards
the underlying secondary road network. At the moment, Flanders’ government has a
plan of action to investigate 25 ‘missing links’ and bottlenecks in the road network
(see the left part of Figure 6.31 for an overview). At the current rate of progress,
the government hopes by 2009 to have accomplished one third of its goal [AWV06].
One important remark that needs to be made here, is the fact that the underlying prin-
ciples for the identification of these 25 points of interest are based on not-so-rigidly
defined measures such as accessibility, throughput, safety, viability, . . . [Des01]. A
better method for selecting these points, is by applying a structured methodology that
assesses their properties with respect to their reliability and response to incidents. A
recent example in this latter direction is the work of Tampère et al.; they first create a
list of candidate links that have a high probability of an incidident occurring on them,
after which this list is shortened using criteria based on expert knowledge. In a final
stage, they simulate incidents on the links in the list and compute the impact of each
incident on, e.g., the travel time. An example of their selection of 12 vulnerable links
for a case study on the E40 motorway corridor between Gent and Brussel can be seen
in the right part of Figure 6.31 [Tam06].

In light of the socio-economic use of traffic data in Flanders, we note that at the
moment, many information with respect to incidents is distributed by radio, mobile
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Figure 6.31: Left: an overview of the plan of action to investigate 25 ‘missing links’ and
bottlenecks in Flanders’ road network; at the current rate of progress, the Flemish government
hopes by 2009 to have accomplished one third of its goal. Right: a selection of 12 vulnerable
links for a case study on the E40 motorway corridor between Gent and Brussel, based on the
structured methodology of Tampère et al. (images reproduced after [AWV06] and [Tam06]).

phone, Internet, ... to the individual road traveller. However, most of the informa-
tion has a low quality, especially when it comes to structural congestion: everybody
already knows where the congestion occurs (and in the case of incidental congestion,
there is often a large time lag involved). In this respect, there is a clear market avail-
able for supplying qualitative traffic information towards the road travellers; this is
especially useful for individual people that have a high value-of-time.

Providing useful information to the road traveller is of paramount importance.
With respect to important quantities such as travel times that get advertised on
VMS/DRIPS systems, the agencies and corporations engaged in this business,
should therefore not neglect the fact that the human interpretation of probability
most likely fails. People tend to assign too high probabilities to extreme events
(e.g., incidents). Furthermore, it is also important to mention the cause of a delay,
as humans want to know why they are entering congestion; this fact should not be
neglected as it is important for a driver’s perception and peace of mind. Given a
good enough reason, people get less annoyed by non-recurrent congestion; espe-
cially when they are supposed to take an alternative route in order to reach their
destination.
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Chapter 7

Dynamic traffic assignment
based on cellular automata

Within the framework of transportation demand modelling, we are left with three ma-
jor approaches, being trip-based, activity-based, and equilibrium-based as put for-
ward by Boyce (see also Sections 3.1.2 and 3.1.3). This diversification in the scientific
field is a clear sign that different techniques are considered, based on distinct ideas.
All techniques nevertheless borrow certain elements from one another, implying some
generality between the models. As such, a travel forecasting model will most cer-
tainly be a give-and-take between requirements/desires and the current state-of-the-
art [Boy98].

Looking at the structure behind these methodologies, it is known that a core compon-
ent in each of them is the concept of traffic assignment [Boy04a]. In this part of the
dissertation, we propose a method for performing dynamic traffic assignment, whereby
we integrate departure time choice (leading to the phenomenon of peak spreading) and
dynamic route choice, coupled with a dynamic network loading model. The method
is built around a traffic flow model that is represented as a computationally efficient
cellular automaton. The chapter ends with a brief overview of some possible applica-
tions.

7.1 Integrated dynamic traffic assignment

As already mentioned in Section 3.1.2.2.IV, the four step model of transportation de-
mand modelling, contains a step called traffic assignment, in which all traffic demand
is assigned to the network: the routes vehicles will follow are calculated, such that
the load on the road network is evenly distributed over all links. This distribution is
governed by Wardrop’s criterion, i.e., the user equilibrium W1 which states that “the
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journey times on all the routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route”.

With respect to the assignment of vehicles to the available routes, there are mainly two
different approaches that can be followed: static (STA) or dynamic traffic assignment
(DTA), as explained in Sections 3.1.2.3 and 3.1.2.4, respectively. When discussing the
DTA approach, we hitherto mainly focused on the route choice and dynamic network
loading components. In this section, we introduce integrated dynamic traffic assign-
ment, by which we mean that our modelling framework consists of three components:

• departure time choice (DTC),

• dynamic route choice (DRC),

• and dynamic network loading (DNL).

The first part of this section discusses two approaches towards DTA, namely ana-
lytical DTA and simulation-based DTA. In a second part, we explain our modelling
framework that encapsulates the previously mentioned three components. The DNL
component is expanded upon separately in Section 7.2.

7.1.1 Approaches to dynamic traffic assignment

As noted in Section 3.1.2.4, it is important to capture the temporal character of con-
gestion: the buildup and dissolution play an important role. As such, travel times
depend on the history of the system, which should not be neglected. The ‘dynamic’
part in DTA refers to this dependency, implying that two fundamental components are
considered, i.e., route choice and dynamic network loading. The former calculates the
routes that vehicles take, by assuming that an equilibrium condition holds; the latter is
responsible for loading all the vehicles onto the network, by explicitly simulating the
physical propagation of the time-varying traffic flows1. The last two decades, a third
fundamental component is considered, i.e., departure time choice, which is typically
associated with the route choice behaviour: the choice of which route to take now
becomes time-dependent.

In this section, we briefly describe the two main approaches towards DTA, being ana-
lytical DTA and simulation-based DTA. Note that some of the models described in
this overview constitute more than a simple DTA procedure; they are embodied as
complete travel forecasting models.

1The DNL component in a DTA approach has also received special attention, e.g., in the work of Wu
et al. who discuss it as a system of functional equations [Wu98]. In this sense, the DNL model can be
considered as a within-day model, as explained by Cascetta and Cantarella [Cas91].
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7.1.1.1 Analytical dynamic traffic assignment

The attractiveness of analytical DTA is that it can build on a long line of previous
research, starting in the 1950s with the work of Beckmann et al. [Bec55] (see also
the introduction of Section 3.1.2, as well as Section 3.1.2.3 for more information re-
garding the implications of their work). According to the overview of Joksimovic
and Bliemer, we can distinguish between three categories of analytical DTA models2

[Jok02]:

• Mathematical programming
The root of this technique can be traced back to the seminal work of Beckmann
et al. in 1955, who reformulated the Wardrop equilibrium as a convex optimisa-
tion problem [Bec55] (see also Section 3.1.2.3 for more information). Closely
related to this work, is the approach taken in static traffic assignment; more in-
formation can be found in the work of Patriksson [Pat94]. A major drawback
of mathematical programming, is that it is not able to fully capture the time-
varying interactions of traffic flows and travel times.

• Optimal control theory
Around 1989, a number of researchers proposed to describe the temporal evol-
ution of traffic flows in the framework of optimal control theory (OCT), which
deals with dynamic systems. Due to some of the severe limitations of this ap-
proach, the OCT research in the context of traffic flow modelling has not re-
ceived much attention nowadays. For an overview of the OTC approach, we
refer the reader to the work of Peeta and Ziliaskopoulos [Pee01].

• Variational inequalities
The most promising approach to tackle analytical DTA models, is based on a
variational inequality (VI), which allows a natural incorporation of flow propaga-
tion constraints that explicitly contain link travel times. From the early nineties
on, the VI technique has been applied to the DTA problem, fuelled by its ability
to include certain measures in the models, e.g., the integration of road pricing
policies. More information can be found in the works of Nagurney [Nag93c]
and Patriksson [Pat99].

Some recent examples of this class of analytical DTA models include the work
of Lo and Szeto who propose a formulation that is based on a dynamic user
equilibrium and an encapsulation of the cell-transmission model3 (CTM) [Lo99;
Lo02], the work of Bliemer et al. who propose a multi-class DTA model (i.e.,
different vehicle types) called INteractive DYnamic traffic assignment (INDY)
[Bli01; Bli; Mal03; Bli04], and the work of Liu et al. who introduce a probab-
ilistic framework for travel times with random perception errors [Liu02].

2More information can be found in the overviews of Bliemer [Bli01], Boyce et al. [Boy01], and Peeta
and Ziliaskopoulos [Pee01].

3See Section 3.2.1.4 for more details regarding the LWR first-order macroscopic model and one of its
numerical schemes, i.e., the CTM.
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Three of the more appealing aspects of this modelling class, are (i) the fact that due
to their analytical nature, the solutions can be readily evaluated, (ii) the existence of
well-defined algorithms that can lead to stable convergence, and (iii) their construc-
tion implies that computational complexity does not increase with a raise in traffic
demand. A drawback however, is the fact that with respect to the current state-of-the-
art, these analytical DTA models are not capable of handling large-scale road networks
due to the computational complexity of the models themselves. Notwithstanding this
critique, the aforementioned work by Bliemer et al. seems promising in this direction
[Bli01; Bli].

7.1.1.2 Simulation-based dynamic traffic assignment

In order to address the problems associated with the application of analytical DTA
techniques to large-scale road networks, simulation-based DTA can provide a solution.
The iterative approach taken by this model class can largely be stated as follows:

1. Traffic demand is specified to a dynamic route choice model.

2. Based on the current travel times, the dynamic route choice model is executed,
specifying the routes for all vehicles.

3. The dynamic network loading model is executed (note that the DNL model can
be micro-, meso-, or macroscopic in nature).

4. The experienced travel times on all routes are extracted from the last simulation,
and fed back to the route choice model in step 2. The iterations terminate when
the algorithm converges.

Whereas the analytical expression of a DNL model is in general too cumbersome to
include detailed traffic operations such as traffic lights, certain control measures, . . . ,
the simulation-based DTA methodology can easily incorporate these effects (e.g., in
a microscopic model). And although it can deal with large networks, there exists a
subtle but major caveat, i.e., it uses a heuristic approach with respect to convergence.
To state it more clearly, convergence is not guaranteed. An often employed method
is a relaxation procedure that performs iterations until all travel times in the road net-
work are stationary [Gaw97; Gaw98a; Gaw98b; Bar02b]. In this context, because the
concept of mathematical convergence is too strict, researchers then refer to the ter-
minology of ‘relaxation’. Note that the question as to whether or not the simulation
relaxes, or when it does, if it then relaxes to a unique equilibrium or instead exhib-
its oscillations, still remains an open debate; in some worst cases, even a gridlock
situation can occur [Ric97; Nag98a; Nag98b].
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Some examples of simulation-based DTA models include the following:

• Microscopic models: AIMSUN2 [Bar02a; Bar02b], MITSIM [Yan97], Param-
ics [Cam94; Lim00], TRANSIMS [Nag98c], VISSIM [PTV05]; see also Sec-
tion 3.2.3.6.

• Mesoscopic models: CONTRAM [Tay03], DynaMIT [BA96; BA98; Sun02],
DynaSMART [DYN03], METROPOLIS [Pal02; Mar03]; see also Section 3.2.2.1.

• Macroscopic models: METANET [Mes90]; see also the beginning of Section
3.2.1.7.

7.1.2 Integrated dynamic traffic assignment

As already highlighted in the introduction of Section 7.1, our transportation demand
modelling framework encapsulates three components, i.e., departure time choice (DTC),
dynamic route choice (DRC), and dynamic network loading (DNL). Our framework
is constructed with the following points in mind: we would like to be able to incorpor-
ate a given synthetic population on a rather low level (i.e., represented as individual
drivers or agents). Furthermore, traffic is considered unimodal, in the sense that each
agent only uses one mode of travel, and does not change modes (i.e., an agent’s itinery
does not constitute trip legs by means of different transportation types). The agents
themselves are not strictly considered as intelligent particles, by which we mean that
an agent in general does not change his/her route choice in an en-route fashion (al-
though we allow for the possibility of en-route choice, it is not explicitly taken into
account in this dissertation). The goal of our DTA framework is to obtain an equi-
librium on the road network, with respect to the choice of the departure time and the
choice of the routes, and this over one time period that encompasses either the morning
or evening rush hour.

In the first part of this section, we give an overview of the framework, the second part
then goes into more detail with respect to the modelling of traffic demand, after which
the following two parts describe the DTC and DRC components. The section ends
with some remarks on convergence criteria.
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With respect to the issue of solving the combined DTC-DRC problem, we briefly
mention some of the existing research approaches in literature: Yang and Meng
consider optimal pricing strategies (i.e., a congestion toll) by solving a system
optimisation problem that combines the DTC and DRC models, as well as the
optimal tolls of bottlenecks [Yan98b], Stada et al. use the existing concept of
‘shadow networks’ to combine on-peak and off-peak travel (the latter occurs in
the shadow network) by assuming a fixed transfer penalty between both time
periods [Sta01], de Palma and Marchal present the METROPOLIS toolbox who
directly use the DTC model to assign a static OD matrix to a commuter period
[Pal02; Mar03], Ettema et al. describe a microscopic traffic flow model in which
drivers base their departure time and route choice decisions on a mental model
of the traffic conditions (i.e., the mean and variances of the experienced travel
times) [Ett03], Lago and Daganzo describe a departure-time user equilibrium
model, combining Vickrey’s DTC work (see also Section 3.1.4.2) and the LWR
first-order macroscopic model (see also Section 3.2.1.2) [Lag03a; Lag03b], Sz-
eto and Lo propose a formulation based on the cell-transmission model through a
variational inequality problem (see also Section 7.1.1.1) [Sze04], Lim and Hey-
decker identify a new equilibrium condition for the combined DTC-DRC prob-
lem, providing a computationally efficient solution algorithm that is based on the
concept of reasonable paths [Lim05], and finally Yperman et al. construct a dy-
namic network loading model based on cumulative curves; they couple this model
with Vickrey’s bottleneck model to determine an optimal road pricing policy by
analytically solving the combined DTC-DRC problem [Ype05a; Ype05b].

7.1.2.1 Overview of the framework

Our approach towards dynamic traffic assignment is simulation-based; it combines a
departure time choice (DTC) model with a dynamic route choice (DRC) model, and
incorporates a dynamic network loading (DNL) model based on an efficient traffic cel-
lular automaton. A flow chart of the framework is given in Figure 7.1. For simulation-
based DTA, integrating them into a single iterative loop is quite difficult, as the depar-
ture times are typically considered for known routes, and these routes are in turn based
on known departure times. Consequently, we combine the DTC and DRC models in
a sequential manner, as can be seen from the chart.

In general, we can describe our modelling technique as follows:

1. Based on the information contained in a static OD matrix that is valid for the
time period under consideration (e.g., the morning rush hour), we create a pop-
ulation of N agents by disaggregating the entire OD matrix.

2. Based on the description of the road network, and on the information from the
static OD matrix, we generate a set of routes that connect the origins and the
destinations. This set actually denotes feasible routes, as not all paths between
an origin and a destination should be considered (doing this selection before-
hand avoids extra complications in the DRC model).
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static OD matrix

create N agents

choose departure times

choose routes

execute DNL

W1 convergence ?

W1 convergence ?

STOP

(yes)

(no)

(yes)

(no)

ATIS

generate route set

network description

events

Figure 7.1: A flow chart of our framework for simulation-based dynamic traffic assignment
(DTA); it combines a departure time choice (DTC) model with a dynamic route choice (DRC)
model, and incorporates a dynamic network loading (DNL) model based on an efficient traffic
cellular automaton. The part containing the module for advanced traveller information systems
(ATIS) is optional. The upper dashed block represents the disaggregation of the traffic demand
into individual agents (i.e., commuters), the lower dashed block denotes the DRC model.

3. All agents’ departure times are re-calculated according to the DTC model (they
are uniformly distributed over the entire time period, before the first iteration,
thus corresponding to the assumption of a constant flow).
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4. Using the information contained in the route set, and the current experienced
travel times on the links in the road network, all agents get a route assigned,
corresponding to their current shortest path in the network (shortest in the sense
of minimal cost expressed as the travel time).

5. All agents are then put into queues located at the origins of the road network,
after which the DNL model is executed until all of them have reached their
destination (events, such as lane closures to simulate an accident, are modelled
as well). Note that advanced traveller information systems (ATIS) can influ-
ence the route choice model, as well as the DNL model; ATIS can also draw
information from the last run of the DNL model.

6. A convergence criterion is checked, corresponding to a W1 user equilibrium as
explained in Section 3.1.2.2.IV; the associated cost for each agent is its total
travel time. If convergence is not reached, we return to step 4 and recalculate
the new shortest routes, based on the last experienced total travel times after
execution of the DNL (their departure times remain fixed during subsequent
iterations).

7. If the previous step resulted in sufficient convergence with respect to the routing
of the vehicles, another convergence criterion is checked, but this time with
respect to the agents’ departure times. In this step, schedule delay costs are
taken into account for all agents, thereby including effects of arriving too early
or too late at their destinations. If the algorithm does not converge, we return to
step 3.

Note that as opposed to analytical DTA models for the combined DTC and DRC prob-
lem (see Section 7.1.2), we adopt two different convergence criteria in this framework.
In the former they are simultaneously combined, whereas we work with a sequential
procedure4. The modified W1 user equilibrium (see Section 3.1.2.2.IV) as used in
step 7 when checking the convergence, is based on a generalised travel cost. It corres-
ponds to the following formulation: “The generalised travel costs for all agents are
equal and less than those which would be experienced by a single agent departing at
a different time.”

In the following sections, we discuss the modelling of traffic demand, after which
we describe the DTC and DRC components, concluding with some remarks on the
convergence of simulation-based DTA.

4In our framework, a traveller wishing to undertake a journey is faced with two options: at what time
does he/she depart, and which route will he/she take ? Different possibilities exist for tackling this problem;
one example is the approach taken by the DynaSMART model [DYN03], in which a commuter can select
between changing his/her departure time, changing the route, changing both, or remaining with his/her
current choice; the choice is based on a multinomial logit model.
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7.1.2.2 Traffic demand generation

In most travel forecasting models, traffic demand is typically expressed as one or more
origin-destination (OD) matrices (see also Section 3.1.2.2.III for more information).
Within the classical four step model, it is assumed that steps (I) to (III) result in an
OD matrix that is fed to the fourth step, i.e., the traffic assignment which calculates
the routes vehicles will take.

The estimation of these OD matrices, forms a theme on its own; a typically en-
countered problem is the fact that due to the large amount of unknown variables (it
is a considerably underdetermined system of equations), additional constraints need
to be introduced. Besides the OD matrix estimation techniques explained in Section
3.1.2.2.III, we also mention some other methodologies, e.g., the doctoral dissertation
of Bierlaire, which provides a nice overview of several different OD matrix estima-
tion techniques [Bie95], Abrahamsson who gives a detailed literature survey of OD
estimation based on traffic counts [Abr98], and the work of Balakrishna who provides
a detailed methodology for the joint calibration of OD matrix estimation and route
choice models within the DynaSMART model [Bal02; DYN03].

Another approach for traffic demand specification builds upon the activity-based mod-
elling approach (see also Section 3.1.3 for more details). Examples in this direction
include the work of Balmer et al. who develop a methodology for creating indi-
vidual demand (i.e., tailored towards individual commuters) out of a general specific-
ation; they allow for the construction of agents’ plans out of general OD matrix data
[Bal05; Bal06], the work of McNally who integrated household activities, land-use
distributions, regional demographics, . . . into a microscopic model for traffic demand
forecasting [McN96]. A recent approach closely related to ours, is the one by Kemper
who disaggregates one static OD matrix into individual commuters, whilst taking into
account traffic flow profiles over time. However, his model currently does not support
departure time choice [Kem; Kem05].

Within our framework, we start from a known single static OD matrix that captures
an entire time period (e.g., the morning rush hour). We furthermore assume unimodal
traffic in the network, but we allow for a distinction between cars and trucks. From
this single OD matrix we create a population of N agents by disaggregation (note
that by ‘plans’ we mean an agent’s route end points, but not the actual path of the
route taken). As can be seen in Figure 7.2, our approach also borrows ideas from the
activity-based modelling approach, such that — as opposed to the paradigm of a single
static OD matrix — it is flexible enough to incorporate historical OD matrices, an
explicit synthetic population of households, land-use data, . . . Note that if necessary,
it is possible to recreate a single OD matrix from the generated agents.

7.1.2.3 Departure time choice (DTC)

Within our framework we explicitly provide time-of-day modelling in the form of a
departure time choice model. We assume the single static OD matrix specifies the
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historical OD matrices

generate agents and plans

land-use data

miscellaneous data

synthetic population (households)

create static OD matrix

Figure 7.2: An overview of our flexible approach that borrows ideas from activity-based mod-
elling. As opposed to the paradigm of a single static OD matrix, it can incorporate historical
OD matrices, an explicit synthetic population of households, land-use data, . . . If necessary, it
is possible to recreate a single OD matrix from the generated agents.

traffic demand over a given time period [tdemand,start, tdemand,end], e.g., between 07:00
and 09:00. As such, it represents the total number of commuters that want to depart
during the specified time period. For this latter time period, it is important that it com-
pletely encapsulates the period of heavy congestion (otherwise, some exogeneously
given boundary conditions are needed); it is also preferred that all commuters can
reach their destinations within the time period.

At the first iteration of the DTC model’s execution, all agents’ departure times are
uniformly distributed over the entire time period (we thus assume a constant flow);
the departure time for the ith agent is given as:

tdeparturei
= tdemand,start + (i− 1)

tdemand,end − tdemand,start

N
. (7.1)

Once the DNL model has been executed and the agents have reached their destinations
(assuming an equilibrium situation was achieved according to step 6 of the framework
in Section 7.1.2.1), we can calculate the general costs experienced by each individual
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traveller. At this point, we know the departure times tdeparturei
of all the agents, as

well as their waiting times µi(tdeparturei
) in the queues at the origins, and their travel

times Ti(tdeparturei
). With the latter two of these quantities, we associate certain costs,

resulting in Cµi
and CTi

. With respect to the departure time, we incorporate so-called
schedule delay costs Csdi

, as used in Vickrey’s bottleneck model mentioned in Section
3.1.4.2. In this model5, each agent is assumed to have a certain preferred arrival time
(PAT) tPATi

; extra costs are incurred if the agent arrives too early or too late [Vic69].
Combining all these costs, the generalised travel cost for each agent is then defined
as:

Ctotali(tdeparturei
) = Cµi

(µi(tdeparturei
)) +

CTi
(Ti(tdeparturei

)) +

max{Cβi
(tPATi

− (tdeparturei
+ Ti(tdeparturei

))), 0}+

max{Cγi
(tdeparturei

+ Ti(tdeparturei
)− tPATi

), 0}, (7.2)

with Cβi
< CTi

< Cγi
the costs for arriving too early or too late, respectively6; as

such, arriving too late carries a higher weight than arriving too early.

Note that it is also possible to specify a cost associated with an agent’s departure time;
this cost can for instance be represented as a utility function Udeparture(t), which assigns
a ‘score’ to each possible time instant for departure (e.g., some people do not want to
leave too early). As such, the range of the time period in which a commuter wishes
to depart is demarcated, such that utility maximisation of the individual results in a
chosen departure time [Bat01].

Our DTC model then selects the 10% agents with the highest costs and shifts their
departure times towards those associated with the lowest costs (we reserve an indif-
ference band for small shifts on the order of five minutes). In terms of Wardrop, this
corresponds to a W1 user equilibrium as explained in Section 3.1.2.2.IV, but now with
respect to the agents’ departure times: “The generalised travel costs for all agents are
equal and less than those which would be experienced by a single agent departuring
at a different time.” At this step, it is important to take into account certain constraints,
e.g., placing a restriction on the maximum number of agents that can depart in a cer-
tain time period (as the absolute inflow into the network is bounded by the capacity at
that point).

Let us finally mention that there are other approaches towards integrated DTC mod-
elling, e.g., the model of Levinson and Kumar, which constitutes an implementation
of the four step model. They extend it with a DTC model that is based on a binomial
logit model, whereby commuters can choose between travelling in the peak hour or

5In the period after Vickrey, Hendrickson and Kocur were among the first to consider DTC in combin-
ation with a deterministic queueing model in a user equilibrium setting [Hen81]. A while later, Small de-
veloped a DTC procedure that is based on a generalisation of the multinomial logit model [Sma82; Sma87].

6The symbols β and γ stem from Vickrey’s original formulation; in his work, he denoted the cost
associated with the travel time as α.
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in the shoulder hours of the peak period (they use a static user equilibrium method
for solving the DRC component) [Lev93]. Discrete choice modelling is a popular ap-
proach for dealing with these kinds of decisions in a DTA context [BA85; BA99]. All
techniques have one thing in common: when the projected demand exceeds the ca-
pacity, this will lead to the phenomenon of peak spreading. Commuters change their
departure times in order to accommodate for the excess demand during the assignment
procedure.

Note that the previously discussed algorithm is based on a single static OD matrix
that encapsulates, e.g., the morning rush hour. Another approach would be to
use multiple exogeneously given time-dependent/dynamic OD matrices (see also
Section 3.1.2.2.II). Each of these latter non-overlapping matrices covers, e.g., one
half hour. As the DNL simulation is executed, all traffic demand matrices are
to be consecutively assigned to the network. When performing this step, agents’
departure times can be shifted within one matrix’s time period, but also between
subsequent matrices’ time periods. In this case, it is important to put a constraint
on the maximum number of vehicles transferred between such OD periods; e.g., it
is impossible to allow a million agents to start at the same time instant at a single
origin.

7.1.2.4 Dynamic route choice (DRC)

With respect to the routing of vehicles through the network, there are two approaches
possible, i.e.:

• Pre-route assignment
This method is also known as equilibrium assignment, because each driver now
tends to minimise his/her travel cost; it is built on the assumption that travellers
have perfect information of the experienced travel times (corresponding to day-
to-day learning of the traffic pattern on a typical day, given the current traffic
demand [Cas91]), such that their travel time costs are fixed and known at the
time of departure. Due to its equilibrium nature, iterations are required until
convergence is met.

• En-route assignment
As opposed to the former method, this one is based on the instantaneous travel
times, and allows vehicles to change their routes as they proceed through the
road network (this is what is meant by ‘dynamic’ route choice). Note that this
approach requires only one simulation run of the DNL, whereby vehicles can
change their route at each junction they encounter in the road network. Within
this method, it is quite straightforward to incorporate route guidance; the caveat
however is that each vehicle should have a default route, i.e., pre-trip assign-
ment, in case no attention is given to route guidance.
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Because in general there exists more than one route between an origin and destina-
tion pair, commuters have to select which route they will take. We use the following
approach towards route choice:

1. At the first iteration of the DRC model’s execution, we calculate an initial travel
time for each link in the road network; this travel time is defined as the length
of the link divided by its free-flow speed. In subsequent iterations, we define
the travel time of a link as the arithmetic average of the travel times of all the
vehicles traversing the link.

2. Based on the current travel times of all the links, shortest paths are calculated for
each OD-pair, using, e.g., Dijkstra’s algorithm [Dij59], the heuristic shortest-
path algorithms of Jacob et al. [Jac98], or the efficient algorithm of Rosswog
et al. which is based on tree heuristics that uses the hierarchical information of
a road network [Ros01], and taking into account the set of predefined feasible
routesRpre (see step 2 in Section 7.1.2.1).

3. All vehicles now select a route from this set, according to the following multi-
nomial logit model7, which gives the probability of a given alternative route i at
departure time tdeparture as:

pi(tdeparture) =
eµ(−Ui(tdeparture)+εi)

∑

j∈R

eµ(−Uj(tdeparture)+εj)
, (7.3)

in which Ui(tdeparture) is the utility of route i at the specified departure time,R ⊆
Rpre is the set of all available routes between a vehicle’s origin and destination
pair, µ is a dispersion factor and εi is a stochastic error term.

7.1.2.5 Some remarks on the convergence of simulation-based DTA

As already mentioned in Section 7.1.1.2, convergence is in general not a guarantee in
simulation-based dynamic traffic assignment. Issues such as existence and uniqueness
of a well-defined equilibrium, as well as stability of the solution, still remain an open
question. Due to the stochastic nature of the simulations, convergence can be hindered
in the case of oscillations, or even due to a gridlock situation.

The primary technique adopted in this case, is called heuristic relaxation: a pre-
defined performance measure is compared for subsequent iterations, until the differ-
ence is no longer significant. Two possible performance measures are the following:

• the total travel time in the system, i.e., the sum of the travel times of all the
vehicles at the end of the simulation,

7See the report of Batley et al. for a thorough overview of different logit models for route choice [Bat].
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• or the combined variances of the travel times of all links separately, or the vari-
ance of the total travel time in the system.

In a more system-oriented setting, we can use the so-called relative duality gap (RDG),
for which we refer to the work of Carlier et al. [Car05].

Note that it is advisable to set a pre-defined upper limit on the number of feedback
iterations in the framework depicted in Section 7.1.2.1 (this might indicate a failure to
converge). Finally note that this construction assumes the existence of an equilibrium;
it is however not a necessity, as the algorithm is terminated anyway after a finite num-
ber of iterations.

With respect to the framework proposed in Section 7.1.2, we implemented a
small case study. The road network consisted of one origin and one destination,
connected via two single-lane links. The traffic flow model was represented as
the single-cell STCA traffic cellular automaton model (see also Section 4.3.2.1),
with ∆X = 7.5 m and ∆T = 1 s; for the first link, the slowdown probability was
set at 0.25, the maximum speed at 5 cells per time step, and a total link length
of 1000 cells. For the second link, these values were set at 0.75, 3 cells per time
step, and 500 cells, respectively. We loaded 5000 agents onto the network over
a simulation period of three hours (their preferred arrival times were all set at
halfway this period), with vehicles put in a waiting queue at the origin if they
could not enter a link (as such, we kept a FIFO discipline whereby one link is
able to block the other one).

As the vehicles were driving in the network, their respective travel times were
used for determining the average travel time on each link (only completed jour-
neys were taken into account). These were then converted into utilities, whereby
the route choice component employed a binary logit (this was justified because
both routes are independent of each other). Departure times were chosen in ac-
cordance with the methodology explained in Section 7.1.2.3. The execution of
the route choice model required not many iterations (e.g., generally less than 10),
as there were only two routes and the model converged easily in this setting. For
the departure time choice model however, we needed 20 iterations or more, be-
fore the generalised travel costs of all the agents became balanced. Note that the
computational complexity of the simulation increases as there are more agents in
the system.

7.2 An efficient dynamic network loading model (DNL)

Today, a main challenge is the construction of macroscopic and microscopic models
that lend themselves to a faithful representation of road traffic, as these models are
used in several key aspects in the control of traffic flows.
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Within this context, our research is aimed at assisting traffic engineers who wish to
evaluate what-if scenarios and/or perform real-time control of traffic flows. Whereas
the former requires a sufficiently detailed model, the latter calls for an efficient imple-
mentation that allows fast simulations. The challenge thus consists of the development
of a flexible testbed environment that is capable of providing us with a detailed sim-
ulation model of a real-world road network, not containing too many parameters that
require extensive calibration: the TCA models described in Chapter 4 fit this descrip-
tion nicely.

Although these TCA models allow for fast computations, they are nevertheless com-
putationally very expensive because they are based on behavioural models that need to
be applied to each vehicle at each time step (i.e., the car-following and lane-changing
models). We thus need to find the most optimal solution in terms of time and space
complexity. A logical step in this direction, is an efficient parallellisation scheme
that lowers the computational overhead involved. This can be accomplished by using
distributed computing, where we partition the road network in several distinct geo-
graphical regions that are assigned to different machines which run in parallel.

We automatically gain platform independency using JavaTM . The challenge now is to
get reliable and efficient (i.e., faster than real-time) operation of a very heterogeneous
computing environment. To this end, the simulator consists of one master, controlling
several different workers that efficiently simulate local traffic flows.

In this section, we first give an introduction that describes traffic flow simulation from
a historical perspective, paying attention to the role of open-source software devel-
opment. We then give a functional description of our DNL model, called Cellular
Automata Traffic SIMulation (CATSIM). This is followed by some implementation
details of the code, after which we discuss our approach towards an efficiency increase
through the paradigm of distributed computing [Mae03b; Mae04a].

7.2.1 Development of traffic flow simulators

In this section, we first give a brief overview of the development of traffic flow simu-
lators, looked at from the perspective of the programming languages involved and the
computational complexity of the models. The second part of this section considers
the effects of developing software under an open-source flag. It is worthwhile to take
a look at this aspect, as most of the traffic flow models tend to be developed in an
accessible academic setting, but once commercialisation ‘kicks in’, the model’s in-
ternals tend to get shrouded in legalese. In our discussion, we contrast open-source
development with the classical approach of non-disclosure of the software’s internals,
give pointers to some of the existing licences that can regulate the commercial and
non-commercial use of this type of software, and finally conclude with a note on legal
issues related to intellectual property rights, the patenting of ideas, inventions, and
algorithms.
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7.2.1.1 Traffic simulation from a historical perspective

Traffic flow simulators have come a long way since their inception in the early fifties
(see, e.g., the TRAffic Network Simulator – TRANS, which shows a remarkable paral-
lel with early traffic cellular automata models [Kat63]). In those days, computers op-
erated in both an analogue and digital fashion. However, as the former became more
expensive when larger systems were simulated, the latter gained a strong foothold in
the simulation community [Ger64]. Nowadays, as desktop computers get smaller and
more powerful, the traffic flow simulation software has undergone a drastic evolution.
It is implemented in either procedural languages (e.g., C, FORTRAN, . . . ) or object-
oriented ones (mainly C++ and JavaTM ), with the latest trend to employ script-based
languages (e.g., Ruby) within the environment of a simulator itself (see for example
the OmniTRANS project [Ver03a]). The simulators are applied to moderately sized
transportation networks, whilst still allowing a rather detailed view on traffic opera-
tions.

Another evolution that is noticeable, is the upcoming market of complete travel fore-
casting models that are based on dynamic traffic flow models. This class of software
applications has features such as complete GUIs, fully integrated travel demand mod-
elling, calculation of measures of effectiveness (e.g., noise and pollutant emissions),
. . . Examples of such full-fledged models are TransCAD [Cal01], OmniTRANS
[Ver03a], DynaSMART [DYN03], . . . In many cases, the DNL core of these mod-
els is formed by a mesoscopic or macroscopic model, but there is an evolving trend
towards more realistically microscopic models. However, noting the current state-of-
the-practice in the field of traffic flow engineering, we note that it is becoming more
and more appealing to move from static paradigms towards the use of fully integrated
DTA models on a commercial basis [Mae04b].

In our view, it is not necessary to get all the dynamics correct on a detailed mi-
croscopic level. As such, TCA models (see Chapter 4) can offer a certain degree
of detail, while retaining computational performance and remaining comparable
to their mesoscopic/macroscopic counterparts. One of the main advantages of the
TCA modelling paradigm is that it does not require many parameters, as opposed
to other microscopic traffic flow models in which the plethora of parameters and
features clouds a clear understanding of the models’ dynamic properties (see also
Sections 3.2.3.4 and 3.2.3.6).

7.2.1.2 The benefits of software development under an open-source flag

Despite the fact that most of the traffic flow models tend to be developed in an ac-
cessible academic setting, the traditional approach towards the creation of the major-
ity of ready-to-use software is mainly oriented towards its commercialisation. As a
consequence, it is beneficial from a marketing perspective to provide prospective cus-
tomers with complete packages that integrate transportation planning models, e.g., the



i

i

i

i

i

i

i

i

7.2 An efficient dynamic network loading model (DNL) 311

four step model (see Section 3.1.2 and some of the microscopic simulators mentioned
in Section 3.2.3.6).

In many cases, the main stream company policy is aimed towards the non-disclosure
of the models’ internals, effectively reducing these commercial packages to advanced
versions of black-box models. When such software starts to grow more mature and
complex, it becomes increasingly difficulty to answer the question “What is really
under the hood ?” The importance of this statement should not be underestimated, as
it is vital for transportation engineers to be acquainted with a model’s inner workings,
features, and limitations, when interpreting results for, e.g., policy decisions.

This lack of openness, can be remedied by developing the software under an open-
source flag. From this point on, the complete underlying model structure remains
revealed at all times, as it is now possible for many programmers to read, redistribute,
and modify the source code. When a company exhibits this sagacity, the unlocked
potential of open source can be fully brought into play. One of the main benefits
of this paradigm is that there are effectively ‘many eyes looking at one single prob-
lem’. As a direct result, the debugging, maintenance, and support life cycles of such
software become more transparent, as opposed to the monolithic approach typically
encountered in propriety software [Ray00]. If such an open-source project is properly
managed (which implicitly requires skilled people), it can receive an increased gain
from the feedback of its user base. Already, several successful examples of this type
of software development can be found in real life, e.g., the Linux operating system,
the Netscape and Mozilla web browsers, the StarOffice suite and OpenOffice.org pro-
ject, . . . Within the traffic community, the open-source approach is slowly starting to
pick up, for instance with a prime example such as the Simulation of Urban MObility8

(SUMO) [Kra04].

When releasing open-source software, there literally exists a myriad of licences that
regulate the commercial and non-commercial use of this type of software, as well
as its incorporation in third-party software. Archetypical examples are the Free Soft-
ware Foundation’s GNU General Public Licence9 (GPL) with the popular catch phrase
“free as in free speech, not as in free beer”, the Open-Source Initiative10 (OSI) which
provides a marketing vessel for ‘selling’ free software, the Creative Commons Li-
cences11 (CCL) that offer a flexible copyright for creative work, . . .

Finally, note that in our discussion, we did not state anything about legal issues such
as the management of intellectual property rights, issues related to the patenting of
ideas, inventions, and algorithms, et cetera. Indeed, most licences undoubtedly steer
clear of these topics, allowing their interpretation to remain up to the developer and/or
the company. However, the central core that forms the business model for open-source
software, is to freely share the software, whilst selling support. With respect to aca-
demic institutions and their management of intellectual property, dissemination of
algorithms by means of publications in journals might be discouraged. In these cases,

8http://sumo.sourceforge.net
9http://www.gnu.org/licenses

10http://www.opensource.org
11http://creativecommons.org/licenses

http://sumo.sourceforge.net
http://www.gnu.org/licenses
http://www.opensource.org
http://creativecommons.org/licenses
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we still deem it appropriate to publish the results, as we believe that the money remains
in the selling of the software. Another less-commercial track that can be followed, is to
release the software as a web service, thus effectively hiding the underlying code of an
algorithm’s implementation when confidentiality issues and ownership of intellectual
property rights are at stake.

7.2.2 Functional description of the simulator

Considering the CATSIM DNL model from a functional point of view, this section first
gives a description of the topological and geographical structure of the road network,
after which we explain some vehicle-related information, ending with what kinds of
statistical data can be collected during a simulation run.

7.2.2.1 Topological and geographical structure of the road network

In CATSIM we opt for an intuitive structure, whereby the network is topologically
decomposed into nodes and edges. Geographically, these graph characteristics corres-
pond to nodes and links. Different link types may exist (such as on-ramps, off-ramps,
merging areas, . . . ). For reasons of efficiency, we define each link to consist of one
or more undivisible road segments. All links are connected by special junction nodes,
where vehicles are transferred from one link to another (more than one link can enter
or exit a junction node). The intermediate nodes connecting the different segments of
a link are called bend nodes (note that the entire road section containing all the seg-
ments is represented with just one single CA lattice). They allow for a more realistic
modelling of the road network. Note that the specification of a node requires X, Y and
Z coordinates, thus we take road gradients (e.g., elevations, tunnels, . . . ) explicitly
into account (although it is up to the car-following model to actually use this inform-
ation). With these elementary building blocks, the motorway network can easily be
constructed using data provided by satellite images and/or geographical information
systems (GIS).

It should be stated that in our current specification, there is no definition of what the
actual underlying low-level TCA models are. They may even vary from link to link
if necessary, giving a flexible and open architecture. Notwithstanding this freedom,
they do have to agree ‘functionally’, e.g., lane changes should either be mandatory or
discretionary (see Section 3.2.3.1), time steps should be comparable, . . .

7.2.2.2 Vehicle-related information

As heterogeneity of a traffic stream is a necessity for a rich dynamical behaviour,
we allow for different classes of vehicles. This includes cars and trucks, with trucks
occupying extra cells as described in the multi-cell TCA models of Section 4.4. A
convenient method for representing this difference, is using passenger car units (see
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Section 2.3.1.2). Note that the rule sets do not model a vehicle as explicitly occupy-
ing more than one cell, but instead adjust the safe space headway to account for the
difference in vehicle length.

Furthermore, as opposed to most other implementations, our cells do not just contain a
number indicating the presence and/or speed of a vehicle. Instead, we allow for com-
plete objects to be contained in the cells, e.g., a vehicle with a commuter’s personal
routing plan. Because most interactions of the vehicles are based on local information,
we add another subtle refinement: information such as link travel times for example,
can be put in a central data storage that is available to the network simulator. This
means that some vehicles can be considered as ‘informed drivers’ having access to this
data storage, and are thereby able to reroute their trip in order to avoid encountering
network congestion.

7.2.2.3 Collecting statistical data

The simulator’s road network can be equipped with artificial loop detectors (see Sec-
tions 4.2.3.1 and 4.2.3.3 for an overview of different types of detectors in a TCA
setting). They accurately compute various statistics from the passing traffic flow, con-
tinuously storing all results in the central data storage. Even travel times recorded by
probe vehicles can be contained, such that this information becomes available to some
of the vehicles (i.e., the informed drivers) as they travel through the network.

7.2.3 Code implementation details

Beside the functional description of the previous section, we now shed some light on
our proposed choice of programming language for implementing a traffic flow simu-
lator. Afterwards, we illustrate some technical aspects related to the implementation
of CA lattices, as well as some details regarding the implementation of links in a road
network.

7.2.3.1 Choice of programming language

Whereas earlier designs of traffic flow simulators were based on procedural languages
(e.g., pure C code), we nowadays observe a trend towards the adoption of object-
oriented programming languages. In this spirit, we propose to use the JavaTM language,
as it has been designed around a “write once, run anywhere” (WORE) philosophy,
implying cross-platform portability without needing any recompilation of the code
base.

7.2.3.2 Some technical aspects related to the implementation of CAs

Classical implementations of CA models were typically aimed at obtaining a high
computational speed. This led to the use of techniques, e.g., single-bit coding schemes,
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typically targeted towards specific hardware platforms. The coming of popular object-
oriented programming languages such as C++ and JavaTM , coupled with the steady
increase of computational power in average desktop computers, makes the original
line of work a bit outdated.

As with respect to the implementation of a CA’s grid itself, there are two approaches
possible:

• site oriented: this is typically based on an array of cells, which is more suited
for links having high densities,

• particle oriented: this is typically based on a linked list of vehicles, which is
more suited for links having low densities.

In practice, it is best to consider the best of both worlds, i.e., only relevant sites are
updated. In this view, a site corresponds to a lateral section of a multi-lane link (i.e.,
all cells located at the same longitudinal position).

When exchanging vehicles between consecutive links at junction nodes, we use a lane
connectivity table that contains the numbers of all outgoing and incoming lanes, each
time in the local numbering scheme (the same holds for all intersection logic). The
following table gives the connectivity for the example of a main road and on-ramp
towards a merge section as depicted in Figure 7.3:




1a.1 → 2.2
1a.2 → 2.3
1b.1 → 2.1




PSfrag replacements

link 1a (main road)

link 1b (on-ramp)

link2 (merge)

1

1

1 2

2 3

Figure 7.3: A graphical sketch of the lane connectivity for a main road and on-ramp towards a
merge section; vehicles are exchanged between consecutive links based on a lane connectivity
table corresponding to the diagram.

Furthermore, in CATSIM, each link has both a car-following and lane-changing TCA
model with corresponding parameter vectors. Separating the parameters from the
models allows us to keep the latter while performing on-line adjustments to the former.

Finally, the slowdown probabilities are a property of the links, not of individual ve-
hicles. We justify this on the basis that (density,flow) measurements are more easily
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calibrated for a complete road section, than for each vehicle individually. This lat-
ter would give rise to a distinct fundamental diagram for each vehicle, whereby the
combination of them would result in an average fundamental diagram, depending on
the vehicles’ locations and surrounding traffic conditions. This clearly encompasses a
cumbersome approach.

7.2.4 Increasing efficiency through distributed computing

As already stated, using microscopic traffic simulators places a large computational
burden on the employed machine architecture. Many existing simulators were initially
designed to run on a single CPU. Only afterwards were they converted for parallel
operations (e.g., AIMSUN2 [Bar02a; Bar02b], TRANSIMS [Nag98c; Nag01], . . . ),
with some exceptions such as PARAMICS which was designed in a parallel fashion
from the ground up [Cam94; Lim00].

The same train of thought holds for most of the traffic cellular automata models. In the
beginning, when they were built using parallel implementations, the parallellisation
scheme was strongly reflected in their code base, relying heavily on the underlying
machine architecture. Examples are models whose computations were performed on
a large number of CPUs (e.g., 1024), all contained in one shared memory architecture,
employing special techniques such as single-bit encoding et cetera [Nag95c].

In the recent past, we already developed a microscopic traffic simulator in JavaTM ,
called Mitrasim 2000. Instead of being a true parallel implementation, it was based
on a client-server architecture (CSA), in the sense that the simulator ran on one ma-
chine (the server); several different other machines (the clients) showed an animation
of the traffic evolution on the motorway network [Mae01b]. A major problem was
that, mainly due to the single CPU architecture, the simulator did not achieve real-
time speed at all. However, our past experiences allow us to build a more efficient
and scalable simulator, in which parallelism can be implemented through distributed
computing.

In our framework, the concept of distributed computing implies that we no longer
use a homogeneous environment of CPUs working in a shared memory architecture.
Instead, a very heterogeneous computing environment is provided, like for example a
Beowulf cluster [Nag01]. Whereas supercomputers performed intensive tasks in the
past, we can nowadays observe a shift towards grid-based computing [Bak02]. For us,
the challenge now is to get reliable and efficient (i.e., faster than real-time) operation of
this latest networked architecture. In Figure 7.4, we can see an example of distributing
the load of the motorway network over a group of computing units.

The flexible functional description set out in Section 7.2.2, allows several implement-
ations. In this part, we present such a possible approach, in which parallelism is
achieved using distributed computing. In the following sections, we first shed some
light on the difference between high-throughput and high-performance computing.
We then give a description of the technologies used with respect to direct communic-
ation between different processing units, as well as a method that provides us with
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Figure 7.4: The idea behind distributed computing in the CATSIM dynamic network load-
ing model: one computer (the master) controls several workers in a heterogeneous computing
environment. All these computing units work together, whereby the load of the entire road net-
work is distributed. In the shown example, three major motorways are modelled whereby the
responsibility of each motorway is assigned to several grouped workers.

a shared memory. In a subsequent section, we explain the adopted parallellisation
scheme from a programmatorical and technical point of view. We end with a brief
consideration of some issues related to synchronisation, graph cycles, and data shar-
ing.

7.2.4.1 High-throughput versus high-performance computing

As desktop computers got increasingly more powerful during the last decade, the
paradigm of distributed computing has started to gain serious importance. Within
this concept, a distinction is made between two radically different methodologies:

• High-throughput computing (HTC)
In this setting, software is installed in a heterogeneous computing environment,
thereby distributing the processing power over different computing nodes (e.g.,
all desktop computers in a university’s research group). Users can submit tasks,
which are then optimally assigned to these nodes, taking into account priorities,
waiting queues, performance, . . . At each time, attention is given to the fact that
a user can regain and keep control over all the processing power of his/her own
machine, at which point the running task is scheduled and resumed at another
free computing node. As a result, HTC offers a large degree of fault-tolerant
computing power, available of long periods of time. Two examples of these
kinds of environments are the Condor [Tha04] and the H2O projects [Kur03].
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• High-performance computing (HPC)
Another important aspect of distributed systems, is their ability to quickly ex-
ecute certain tasks. As opposed to HTC, for which the speed of the requested
computation is not per se a strict constraint but the availability of computing
power on a large spatial scale is, HTC is centred around a close tie between
computing power in space and time. Examples of applications in this direction
are aspects such as computer graphics (e.g., ray tracing [Mae01a]), and micro-
scopic traffic flow simulation (see, e.g., the introduction of Section 7.2.4).

7.2.4.2 Technologies used

As the whole simulator will be constructed for the JavaTM Virtual Machine (JVM),
we automatically achieve cross-platform portability; this is a necessity in order to
efficiently address the heterogeneous computing environment.

Reliably controlling such a networked architecture requires a strict scheduling scheme:
all processing nodes in the computing network are tightly coupled with each other. In
this case, we have opted for a mixture of the ‘master/worker’ and ‘command’ applic-
ation patterns [Fre99]. This means that we have one master computer that controls N
distinct worker computers who execute the different tasks.

Currently, most distributed implementations of traffic simulators use classical commu-
nication techniques such as a Message Passing Interface (MPI) [Lus03] and/or Par-
allel Virtual Machines (PVM) [Gei94]. In spite of this, we strongly believe that this
is not sufficient for our envisioned architecture. There’s a trade-off involved, between
on the one hand efficient direct communication and on the other hand an accessible
shared memory architecture:

• Direct communication
It is very important that the computation/communication ratio remains as high
as possible, after parallelising12 the simulator [Fre99]. Translating this to our
JavaTM implementation, we establish dedicated communication channels between
the master and the workers and between the workers themselves; sockets provide
a suitable and efficient method for this type of communication. Furthermore, all
communication done between the workers, should be scheduled simultaneously
with the computations they perform, so delay times can be minimised.

• Shared memory
Because we are working in a heterogeneous computing environment, no stand-
ard shared memory architecture is directly available. There is however a nice
solution to this: JavaSpaces provide a generic environment that can be accessed

12As Balmer et al. noted, “With 100 Mbit Ethernet, the best possible real-time ratio of a parallel traffic
simulation with a one-second time step is approximately 170.” [Bal04b]. In these systems, the bottleneck
is not the communication speed but the network latency, i.e., the time needed to initiate a message; the
only way to tackle this is to use different hardware with a lower communication overhead, e.g., Myrinet
(http://www.myri.com), increasing the real-time ratio towards 800 [Cet03].

http://www.myri.com
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by any worker located anywhere in the network. It is based on the concept of
Linda Spaces [Gel96], implemented using JavaTM ’s Remote Method Invocation
(RMI) facility [Gro02], and provided as a service of the Jini Network Techno-
logy [Fre99; Sun03]. A major advantage is that when using a JavaSpace, no
explicit network addresses (e.g., IP addresses and TCP port numbers) need to
be known when communicating. All communication can be done anonymously
(loose coupling in space), and even asynchronously (loose coupling in time).
Despite its flexibility, the JavaSpaces service is — as stated before — in es-
sence a medium for loosely coupled communication, and thus not well suited
for performant dedicated communications. Because of this, we only use it for
setup purposes and infrequently accessed resources and information.

Furthermore, it is important to keep the following two points in mind:

– the underlying Jini technology is a network based protocol, that does not
offer any real-time guarantees,

– and JavaSpaces is semi-scalable: it runs in a single JVM, implying that
the service itself might become a bottleneck for communication, or worse,
it might fail. A solution to this problem can be to use multiple JavaSpaces
that are clustered together.

7.2.4.3 Programmatorical and technical aspects

After discussing the communication aspects and shared memory setup mentioned in
the previous section, we now explain the adopted parallellisation scheme from both
a programmatorical and technical point of view. We describe how the workers’ tasks
are set up and distributed. We then give details on how the dedicated communication
channels are constructed, ending with some comments on the execution of a simula-
tion step.

• Setting up the workers’ tasks
We assume that, at the beginning of the simulation, the master has all the in-
formation available about the road network infrastructure, the travel demand
and routing plans, . . . It then performs a domain decomposition on a geograph-
ical basis, dividing the network in exactly N partitions (the splitting of the links
is preferably done far away enough from any junction nodes, such that we can
avoid the complexities of intersection logic). Note that this encompasses static
load balancing (see Figure 7.4 for an example of such a decomposition); it is
also possible to opt for another scheme, thereby providing us with some means
to perform dynamic load balancing. This can, for example, be accomplished by
keeping track of the workers’ computation times and redividing and reassigning
partitions.
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• Distributing the tasks
The next step consists of the master distributing the tasks (i.e., the different
motorway stretches in each partition) into the JavaSpace. All the workers then
check this JavaSpace and each worker picks one task. Note that we assume at
this point that each task comprises more or less an equal amount of workload.

• Setting up dedicated communication channels
Once all tasks are distributed among the workers, they proceed to create dir-
ect channels for communication with their nearest-reachable neighbours (all the
workers’ IP addresses are broadcasted in the JavaSpace, together with inform-
ation on the neighbouring partitions). This is necessary, as all workers need to
exchange information of the traffic flows at their respective boundaries. The
master also advertises its location in the JavaSpace, after which each worker
requests a private communication channel to the master. Figure 7.5 shows the
relations between the computing units in the heterogeneous network architec-
ture. Note that, because of its reliability, the TCP/IP protocol remains the com-
munication mechanism of the underlying network transport layer.

Figure 7.5: A schematic overview of the three different kinds of dedicated com-
munication channels; communication between the master and the workers (shown
as thick lines), between workers’ neighbours (shown as thin lines) and with the
JavaSpace (shown as dotted arrows).

• A simulation step
The master then initiates communication with all the workers, instructing them
to advance to the next time step of the master clock. At this stage, several
intricate aspects need to be dealt with:

– each worker knows its neighbours, and communicates with them in order
to transfer vehicles that are crossing zones,
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– communication should only be performed when there are vehicles to trans-
fer; consecutive links have small overlapping regions such that vehicles
transfers only occur within these regions,

– for reasons of computational efficiency, we propose a hybrid cell/vehicle
oriented approach: when simulating, only active cells (i.e., containing
vehicles) are updated,

– because the JavaSpace itself is not efficient enough yet and because it as-
sumes loose coupling, we only use it for information that is not frequently
accessed (e.g., link travel times that are conventionally broadcasted on a
radio station or displayed above a certain road section), as mentioned in
Section 7.2.4.2.

Note that with respect to the real-time simulation of traffic flows, several prom-
ising projects were carried out. Examples of this are the simulations of Duis-
burg, Germany [Bar99] and those of the German Autobahn network of the
North-Rhine-Westphalia (NRW) region [Ric96c; Ric96b; Ric97; Wah02]. This
latter example also provides the user with a prediction of the traffic state
up to one hour in the future. It can be consulted on-line via a website
http://www.autobahn.nrw.de (see Figure 7.6). The prediction is based
on the On-Line SIMulator (OLSIM), which is an implementation of the brake-
light BL-TCA model (see Section 4.4.2.2) [Chr04; Pot04]. The tuning of the
simulation to the current state of the real-world road network, is done by com-
paring measurements from virtual detectors in the model and real-world loop de-
tectors from the motorways at certain checkpoints (containing sources and sinks).
Whenever a mismatch is found, vehicles are either added or removed, taking into
account to avoid severe disturbances of the current traffic flow [Bar99; Wah02].

7.2.4.4 Issues related to synchronisation, graph cycles, and data sharing

Because the workers in the computing environment need to exchange information at
their boundaries, deadlocks may occur in which some workers are mutually waiting
for each other. However, in our implementation as described earlier, this can not
happen because all the workers are directed by the master computer. This kind of
arbitration by an external third party, is frequently done in systems needing robust
synchronisation.

In a previous attempt at describing traffic in a road network, all links were initially
topologically sorted after which they could be processed [Mae01b]. This excluded
the presence of cycles in the graph describing the road network, which we now con-
sider to be a major flaw of any simulator that exhibits this phenomenon. Using traffic
cellular automata models solves this problem seamlessly, because all vehicle updates
are now being executed simultaneously (see Section 4.1.4 for more details). In gen-
eral, vehicles are tagged for lane changes (taking care of side effects such as ping-
pong traffic, as described in Section 4.5.1.3), then they execute their respective lane

http://www.autobahn.nrw.de
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Figure 7.6: A visualisation of the traffic in the Autobahn network of the North- Rhine-
Westphalia (NRW) region in Germany. The figure shows the traffic state in the Ruhr area,
predicted one half hour in the future, as broadcasted on an on-line website (image reproduced
after [Stü06]).

changes completing the lane-change model. Each vehicle’s speed is then re-evaluated,
after which all vehicles are moved to their new positions, completing the car-following
model.

We conclude this section by mentioning that any data that should be shared among the
workers, can be kept by a dedicated data server. In our implementation, we choose this
data server to be the JavaSpace itself, providing an anonymous service of which the
network address no longer explicitly needs to be known. The fact that the JavaSpace
service is not yet efficient enough, is no problem because all time critical operations
are done using dedicated communication channels, whereas the JavaSpace is only
used for distributing tasks, sharing infrequently accessed information, . . .

7.3 Some example applications

Let us briefly consider some of the target applications of our framework (i.e., the in-
tegrated DTA methodology from Section 7.1 and the DNL model described in Section
7.2), these encompass traffic state estimation, sustainability effects of traffic manage-
ment systems, and assessing the impacts of traffic control measures.
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7.3.1 Reliable state estimation of the road network

As implied at the end of Section 7.2.4.3, it is possible to estimate the collective state
of the traffic on the entire road network, based on information from the real-world
(e.g., measurements stemming from single inductive loop detectors). As such, the
framework can either simulate traffic in an off-line setting, based on historical data
captured, e.g., in a single static OD matrix. It is then possible to derive information
for a typical day, whereby the following aspects can be studied:

• the lengths of jams in both time and space,

• travel time losses and robustness properties,

• indicators for high-risk zones that contain recurrent congestion,

• and assessing the impact of an incident, leading to, e.g., lane closures.

In an on-line setting, the framework needs to be fed with real-time data, after which
the simulation is ran to get a global updated view of the traffic state. Coupled with a
prediction step, this leads to a powerful methodology that can be used to steer traffic,
e.g., by advertising travel times on variable message signs (VMS).

7.3.2 Sustainability effects of traffic management systems

When thinking in a sustainable mobility framework, one approach could be to limit the
traffic demand and to balance this demand over different traffic modes. As a comple-
mentary approach, one could also try to optimise the use of the existing infrastructure.
With respect to the latter approach, we carried out a project, funded by the Belgian
Federal Science Policy (DWTC) [Mae04e; Mae06].

One of the central components within the project, is a method to assess the ‘qual-
ity’ of a simulated traffic situation. To this end, we need to define goals we would
like to achieve; stated in control terms, this corresponds to a cost function, called
the sustainable cost function (SCF). In the scope of this project on sustainable mo-
bility, a definition of the cost function includes penalisations for pollutant emissions
(environmental costs), congestion (socio-economic costs), noise emissions, dangerous
situations (like shock waves), . . . The cost function is expressed in terms of the states
of the model and can be evaluated during simulation (all these costs are expressed in
monetary terms). Within the project, we controlled traffic flows with respect to this
cost function. If we use the SCF in steps 4 and 6 of the framework described in Sec-
tion 7.1.2.1, then this will lead to a social optimum as explained in Section 3.1.4.2 on
the concept of road pricing policies. The framework can then be used as a mirror of
the real world.
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7.3.3 Assessing the impacts of traffic control measures

As we believe all political decisions should hinge on advice from studies, these require
an a posteriori interpretation with a good dose of common sense. Most of the time,
such studies try to assess the impact of policy decisions that are implemented by means
of local and global control measures. Typical decisions and measures include the
following:

• rerouting effects, requiring a study of day-to-day and within-day replanning of
commuters,

• ATMS effects (e.g., ramp metering, speed harmonisation, platoon driving, . . . ),

• policy decisions (e.g., overtaking prohibitions for trucks, road pricing strategies,
. . . ),

• and changes in the road infrastructure, possibly leading to induced traffic, which
we believe requires a more activity-based approach.

7.4 Conclusions

In this chapter, we constructed a framework that allows us to perform dynamic traffic
assignment (DTA), integrating departure time choice (DTC) and dynamic route choice
(DRC), coupled with a dynamic network loading (DNL) model. The method is built
around a traffic flow model that is represented as a computationally efficient cellular
automaton. After explaining two of the mainstream DTA approaches, i.e., analytical
and simulation-based, we gave an overview of each of the framework’s components.
In a separate section, we payed explicit attention to the DNL model, considering traffic
flow simulation from a historical perspective, and discussing the benefits of open-
source software development. After a functional description of the simulator, some
code implementation details were given, ending with an overview of parallellisation
through distributed computing. In a final section of the chapter, we discussed some
example applications such as traffic state estimation, sustainability effects of traffic
management systems, and assessing the impacts of traffic control measures.
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Chapter 8

General conclusions and future
research

In the final chapter of this dissertation, we give a concise overview of the results ob-
tained in our research, centred around the state-of-the-art in the literature, numerical
data analysis, and integrated dynamic traffic assignment. This is followed by an ex-
tensive account of some of the issues encountered during our explorations, requiring
and suggesting further research. Note that although most of the discussed methods are
also applicable to city traffic, the work in this dissertation is primarily aimed towards
motorways.

8.1 Discussion and summary

The research elaborated upon in this dissertation, spanned a broad range going from
a discussion of the models encountered in transportation planning and traffic flow
modelling, over the concept of traffic cellular automata models, towards a numerical
analysis of traffic data, ending with a framework for performing integrated dynamic
traffic assignment. In the following sections, we take a look at each of these aspects
in detail.

8.1.1 The physics of road traffic and transportation

Considering the plethora of notations encountered in different scientific fields related
to traffic flow modelling, Chapter 2 provided an extensive account of what we suggest
what would be the current state-of-the-practice, detailing several aspects related to
the description of traffic flows. Most importantly, we have introduced a nomenclature
convention, built upon a consistent set of notations. Besides the classical traffic flow
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variables and performance indicators, we discussed some of the different points of
view with respect to the causes of congestion, as adopted by the traffic engineering
community. In this latter aspect, we compared two different mainstream philosophies,
based on congestion being deterministic (i.e., bottleneck-induced) and stochastic (i.e.,
spontaneous breakdown) in nature, respectively. We noted how both theories are quite
different, but nevertheless compatible with each other. As choosing which school to
follow is largely a matter of personal taste, we conclude that research into the beha-
viour of traffic at bottlenecks is one of the most important aspects in the context of
traffic flow theory.

With respect to the existing literature, Chapter 3 elucidated on transportation planning
models, operating on a high level, and traffic flow models that explicitly describe the
physical propagation of traffic flows, typically on a lower level. The incentive for such
an elaborate description was fuelled by the fact that we encounter a frequent confusion
among traffic engineers and policy makers when it comes to transportation planning
models and the role that traffic flow models play therein. One of the main advances
to the currently existing body of literature, is our comprehensive overview, which is
unique on a global scale. As of yet, when diving into the field of traffic-related re-
search, people had to read tons of course texts, papers, . . . most of the time spread
over different scientific areas. Our contribution to the state-of-the-art in the literature,
is an integrated overview that is able to help any researcher wishing to partake in the
field (note that our work excludes fields such as (agent-based) traffic control theory
and practice, as this is not the focus of our research). Within our survey, we elab-
orated upon land-use models, trip-based and activity-based transportation models, as
well as transportation economics, discussing pros and contras, and the links between
them. On the traffic flow modelling side, the debate on whether or not to use macro-
/meso- or microscopic models still continues to spawn many intriguing discussions
(in the upcoming Section 8.2.1, we shed some light on the sense and nonsense of the
development of yet another traffic flow model).

8.1.2 Cellular automata models of road traffic

Continuing our survey, Chapter 4 dived into the field of traffic cellular automata mod-
els, as being one of the most promising microscopic simulation models; they allow
for computationally efficient, yet still detailed enough, calculations of the propagation
of traffic flows. They found their roots in the physics discipline of statistical mech-
anics, having the goal of reproducing the correct macroscopic behaviour based on a
minimal description of microscopic interactions. Already, several reviews of traffic
cellular automata models exist, but none of them considers all the models exclusively
from the behavioural point of view, as we do. As this kind of survey did not hitherto
exist in the current scientific field, our overview fills this void, caused by the need for
researchers to have such a comprehensive insight. We also introduced a classification
based on single-cell versus multi-cell TCA models, whereby the latter class can lead
to some surprising behaviour with respect to unexpected hysteresis phenomena. In
a sense, we also believe that developing yet another TCA model is no longer a ne-
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cessity; rather, putting the existing models to good use has become more of an issue
in our opinion (e.g., the use of the brake-light TCA model in the On-Line SIMulator
(OLSIM) [Chr04; Pot04]).

Bridging the gap between microscopic and macroscopic models, we presented in
Chapter 5 an alternate methodology that implicitly incorporates the STCA’s stochasti-
city into the macroscopic first-order LWR model. The innovative aspect of our ap-
proach, is that we derive the LWR’s fundamental diagram directly from the STCA’s
rule set, by assuming a stationarity condition that converts the STCA’s rules into a set
of linear inequalities. In turn, these constraints define the shape of the fundamental
diagram that is then specified to the LWR model. The main insight gained from our
approach, is that there can be a significant difference between an average fundamental
diagram (STCA) and a stationary fundamental diagram (LWR). As a result, the STCA
model is able to temporarily operate under larger flows and densities than those pos-
sible for the LWR’s stationary fundamental diagram. As such, it becomes very im-
portant to correctly capture the capacities in both the STCA and LWR models in the
presence of noise.

8.1.3 Numerical analysis of traffic data

Chapter 6 revolved around an exploratory analysis of traffic data, mostly stemming
from single inductive loop detectors embedded in Flanders’ motorways. Our tech-
niques were aimed at the raw, noisy data, containing outliers, missing values, . . . To
this end, we implemented a methodology that tracks outliers from a statistical point
of view. We also developed a visual technique, based on maps, that allows a quick
assessment of structural and incidental detector malfunctioning.

In contrast to the many existing approaches for travel time estimation, we considered
the use of cumulative curves, based on flow measurements, for the off-line estimation
of travel times. A central aspect in this methodology was dealing with synchronisation
issues and systematic errors; afterwards, it was possible to estimate the distribution of
the travel time. We applied our methodology to case studies on the E19 motorway and
the R0 ring road, thereby uncovering the differences in travel time distributions on,
e.g., Mondays and Fridays.

The final part of our research on numerical analysis of traffic data, dealt with reli-
ability and robustness properties related to traffic flow dynamics, giving us an extra
instrument for the analysis of recurrent congestion. These tempo-spatial maps of the
traffic evolution provide us with a powerful method for assessing structural conges-
tion on a typical weekday. This can assist policy makers in deciding where to spend
attention when tackling congestion, e.g., indicating the hot spots that are sensitive to
disturbances.
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8.1.4 Integrated dynamic traffic assignment

Finally, our research described in Chapter 7 of this dissertation, consists of the devel-
opment of a framework that allows us to perform simulation-based dynamic traffic
assignment. Nowadays, it has become more or less mandatory to include depar-
ture time choice and dynamic route choice, coupled with a dynamic network load-
ing model. Our proposed framework describes a straightforward method for doing all
three, whereby we opt for a sequential inclusion of both departure time choice and
dynamic route choice models. The underlying dynamic network loading model is rep-
resented as a computationally efficient cellular automaton. In order to furthermore
increase the efficiency, we explain a technique that adopts the concept of parallel-
lisation through distributed computing, i.e., dividing the total work load over several
distinct central processing nodes.

8.2 Future research

With respect to future research, we now provide an extensive account of some of the
issues encountered during the course of our research; we have ordered them into four
distinct groups, i.e., (i) traffic flow models, (ii) numerical data analysis, (iii) integrated
dynamic traffic assignment, and (iv) general road traffic-related remarks.

8.2.1 Traffic flow models

• The lack of a unified notational standard for traffic flow variables has bothered
many scientific fields that are drawn to the conglomerate that traffic flow mod-
elling has become (i.e., the integration of engineering, mathematics, physics,
economics, psychology, . . . ). The adoption of a logical and consistent termino-
logy is a necessity when it comes to creating order in the ‘zoo of notations’ that
currently exists. We believe this largely exceeds the idea of an intuitive notation
that is different in each scientific field separately.

• There is a need for a consequent analysis of all kinds of developed traffic flow
models, their mathematical properties and physical soundness (e.g., are there
phantom phenomena occurring that are only encountered in the model structure
itself ?). As researchers in the scientific field seem to spawn many traffic flow
models, the question arises as to how do these relate to each other and what are
their respective strengths and weaknesses ?

• Closely related to the previous remark, is the sense and nonsense of developing
yet another ‘new’ traffic flow model. Although it has benefits in that we may
get renewed insights into already existing model formulations, their (hidden)
assumptions and properties, . . . , it nevertheless is time to put the models to good
use. In many cases, the modelling done can be viewed as a mere mathematical
exercise. Irrespective of the previous comments, the quest remains to construct
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the most simplistic model that has the greatest explanatory strength, whilst still
being based on tangible real-world principles.

• It is easier to model and predict the behaviour of groups of people (corres-
ponding to socio-economics and statistical mechanics), than the behaviour of a
single individual (corresponding to psychology). As such, it remains a task for
the humanities and social sciences to devote research in this area with respect
to the modelling of transportation demand. The inclusion of psychological as-
pects is especially useful when assessing how human beings comply and react
to advanced traveller information systems (ATIS), e.g., route guidance, . . .

• Related to the previous remark and the conclusions 3.3 in Chapter 3, there are
two more aspects that deserve attention:

– On the one hand there are the self-organising aspects of a transportation
system. In nearly all cases of traffic flow models, this factor is neglected
or even not an issue. We could argue that traffic cellular automata models
and stochastic models in general have self-organising aspects, as they can
lead to the spontaneous formation of jams. However, the real power of
self-organisation lies in how we can model traffic not just as a medium but
as a complete interactive environment, in which human behaviour plays
an important role. How can the presence of information influence this be-
haviour ? Can this be incorporated in ‘intelligent’ traffic flow models ?
How is the interaction between a driver and his vehicle, between a driver
and other drivers in his neighbourhood, and between a driver and his en-
vironment (i.e., the road infrastructure, sign posts, traffic lights, . . . ) ?

– On the other hand there is a large concern with respect to traffic safety. The
traditional approach is centred around statistics based on accidents, some-
times including more elaborated methods such as classes of road types, in-
tersection layout, . . . With the arrival of more powerful computers, it has
become possible to execute detailed simulations that incorporate all kinds
of elements, such as physical vehicle and engine characteristics, human
behaviour and tactical decisions when accelerating, decelerating, chan-
ging lanes, and crossing intersections, the interaction between a vehicle
and a human’s physiology, . . . An example of such a promising model
is the PELOPS submicroscopic traffic flow model, described in Section
3.2.4.

8.2.2 Data quality, travel time estimation, and reliability

• Performing robust statistics based on large-scale data sets (i.e., a high number
of observations n and a high number of dimensions p) still remains a challenge.
The MCD estimator used in Section 6.2.2.2 is not suited for data sets containing
more than say 50,000 data points. If this is the case, it is more advisable to use
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an alternative, such as the median and median absolute deviation (MAD) as
robust estimates for the mean and variance.

• With the advent of upcoming technologies such as GSM and GPS probe vehicles,
we can envision a trend towards a true integration of data from all kinds of
sources on a country-wide scale. This includes, e.g., traffic counts from single
and double inductive loop detectors as well as cameras, information from traffic
lights, travel times from probe vehicles, weather information and forecasts, . . .
The issue then comes down to the most effective way of mining all the inform-
ation in this ‘national data warehouse’. With respect to the control of traffic
flows and the dissemination of information towards the travellers, this becomes
a significant challenge for future stake holders.

• There is the need for reliable travel time estimation in an on-line setting; this is
useful in a control-oriented context for real-time advanced traffic management
systems (ATMS) and advanced traveller information systems (ATIS). When a
new measurement from the system becomes available, how can we translate it
into another form of information, i.e., an updated travel time, such that we can
tune our controller ?

• The travel time estimation procedure explained in Section 6.3.2 should be com-
pared to the existing START/SITTER1 system in Flanders, which bases its travel
times on the inverse of the speed as recorded by single inductive loop detectors.
Preliminary results in this direction are already obtained by Logghe and Van
Hove [Log05a]; in congestion, the latter exhibits much more variability than
the former technique, due to the fluctuations at low speeds caused by stop-and-
go traffic.

• When estimating the cumulative N curves in Section 6.3.2, we did not make a
distinction between vehicle classes, leading to an average travel time. In this
respect, a further refinement would be to estimate them for cars and trucks sep-
arately. Because on a longer road section, vehicles will probably tend to travel
at different speeds, implying overtaking manoeuvres, we can assume that the
FIFO condition no longer holds. How can we now incorporate this in the pro-
cedure for estimating travel times based on cumulative N curves ?

• Another remark related to the previous comment, is how to do travel time estim-
ation for complete roads, i.e., sequences of road segments. How do we treat the
time spent in the complexes of on-/off-ramps in between ? Can we use traffic
counts from the detectors located at the on-/off-ramps themselves ? If this is not
possible (e.g., no detectors exist), can we then use the mean speed as calculated
by the inverse of the travel time upstream/downstream of the complex, or the
mean speed as reported by the upstream/downstream detectors of each section

1START/SITTER is an acronym for “Systeem Trafiek op Autosnelwegen Reële Tijd – Système Intelligent
Trafic en Temps Réel”; it is a system that processes the traffic measurements on the Belgian motorway
network in real time.
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nearest to the complex ? Do we have to take into account the current regime,
i.e., congestion upstream or downstream when selecting the correct speed ?

• One of the main challenges in capturing valuable real-time traffic data (e.g.,
actual travel times), is the correct map-matching from GSM probes onto the
underlying road network. An even better approach is to directly use the position
of GPS-probe vehicles; influential players on this market include transportation
companies that equip their truck fleet with GPS devices, allowing the data to
be used in order to get an accurate picture of traffic conditions on motorways,
in cities, . . . One of the most complete scenarios in this respect is when the
technology is implanted in each vehicle, converting them all into probes that
gather floating car data.

• Related to the illustrative detector maps of Section 6.2.3.2, it is also possible to
coalesce the three used statistics S1, S2, and S3, by assigning a distinct color to
each one of them (e.g., red, yellow, and blue). Summing them will result in a
coloured map, which is reminiscent of the expression levels on micro-arrays in
the discipline of bio-informatics.

• Finally, when constructing the reliability maps in Section 6.3.3, we based our
statistics on the median as a robust location estimator. It is however also possible
to use, e.g., the 95% or even the 99% percentile, which will give us a possible
indication of very rare events such as incidents (e.g., football games) and acci-
dents. This can give the road operator a clue as to where traffic safety might
be a concern (e.g., the so-called black spots), which areas are more sensitive to
disturbances, . . .

8.2.3 Integrated dynamic traffic assignment

• A first item to tackle, is constructing a practical computer implementation of
the framework proposed in Chapter 7, thereby creating a model that can be used
for scenario evaluation and the applications mentioned therein. Crucial in the
development will be the behaviour of the model with respect to convergence.

• One of the major questions in the field is whether or not an equilibrium always
exists. In this respect, it is advisable to first define what is meant by an equi-
librium (e.g., reaching some sort of a stationary state). Does an equilibrium
then always exists in simulation-based traffic assignment, what about gridlocks
that cause problems for these kind of DTA models (e.g., TRANSIMS does not
perform DTC as of yet, but its DRC component averages route travel times in
15 minute intervals, feeding them back to the assignment module; from time to
time, oscillations caused by rerouting tend to occur) ? Assuming perfect inform-
ation and deterministic flows, the existence of an equilibrium can be expected,
but the world is not made up of perfectly informed commuters, et cetera. How
about convergence and stability issues, existence proofs, . . . as explained in
the work of Szeto and Lo [Sze06] ? And what if there exist road networks that
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might not be able to achieve an equilibrium due to their layout: jam lengths and
times can vary from day to day, resembling an unstable system.

• Related to the previous remark, is the notion that, notwithstanding the possib-
ility on convergence, there is another issue that needs to be addressed. When
the DNL model is executed, we obtain the result of one such a Monte Carlo
simulation. In this respect, it is necessary to perform multiple simulation runs,
as they each are the outcome of a stochastic process. How do we assess the
combination of these runs ?

• How can we define the set of available paths that are considered by a commuter ?
Is this a large diverse set, a small one, which paths are dropped, . . . ?

• How are extensions such as multi-modal traffic, multiple trip-legs, et cetera
included in the modelling approach ? We believe an activity-based setup is best
suited for this goal.

• How to calibrate a framework for integrated dynamic traffic assignment such as
ours, by means of data stemming from traffic detectors (e.g., cameras, single
inductive loop detectors, . . . ) ?

8.2.4 General road traffic-related remarks

• How can we incorporate travel time reliability in the a priori design of a road
network ? Can we adapt existing networks to this end, for example through
the introduction of some form of ‘controlled’ flexibility (e.g., the allowed use
of hard shoulder lanes, which implies extra risks in case an incident occurs and
they are needed for ambulances and the like) ?

• What is the role of public transportation ? How can this sector benefit in the
sense of traffic flows, i.e., using dedicated lanes, giving priority to buses and
trams by means of the explicit control of traffic lights, using buffer zones at
intersections, . . . ?

• There is an increasing need for the adaptation of the function of a road to its
design. E.g., the implementation of policy measures such as zones with max-
imum speeds of 30 km/h near schools, may require a change in the road’s infra-
structure; this will discourage fast driving, making it more logical and sensical
for humans to stick to the imposed speed limit.

• Besides caused by incidents, congestion always occurs due to a traffic demand
that exceeds the supply. An increased demand also leads to an increased prob-
ability of congestion, as driver fluctuations will play an important role near the
critical density. As a result, advanced traffic management systems (ATMS) and
advanced driver assistance systems (ADAS) may result in a slight amelioration
of the traffic situation. We therefore believe that the main focus towards the
alleviation of congestion should be on a higher level, i.e., where route choice
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and assignment occurs, possibly through the implementation of road pricing
policies and the like.

• Is it useful or just pointless to equip every commuter with route guidance and
actual information ? Some may win, some may lose as the excess of demand
needs to go somewhere. Everybody can be more or less satisfied if all measures
are fully integrated with each other (i.e., the ATMS on the road, as the integra-
tion of public transportation, as the shifting of departure times, . . . ). In the end,
the game might boil down to the question: “How intelligent is my route planner
and is it able to beat every on else on the block, or in other words: how can I
beat the system ?”. A key question is how this influences network equilibria,
and if we can use this knowledge to anticipate on traffic conditions and steer
them towards some set point.
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Appendix A

Glossary of terms

A.1 Acronyms and abbreviations

4SM four step model
AADT annual average daily traffic
ABM activity-based modelling
ABS anti-locking brake system
ACC adaptive cruise control
ACF average cost function
ADAS advanced driver assistance systems
AIMSUN2 Advanced Interactive Microscopic Simulator for

Urban and Non-Urban Networks
ALBATROSS A Learning BAsed TRansportation Oriented

Simulation System
AMI average mutual information
AMICI Advanced Multi-agent Information and Control for

Integrated multi-class traffic networks
AON all-or-nothing
ARIMA autoregressive integrated moving average
ASDA Automatische StauDynamikAnalyse
ASEP asymmetric simple exclusion process
ATIS advanced traveller information systems
ATMS advanced traffic management systems
BCA Burgers cellular automaton
BJH Benjamin, Johnso, and Hui
BJH-TCA Benjamin-Johnson-Hui traffic cellular automaton
BL-TCA brake-light traffic cellular automaton
BML Biham, Middleton, and Levine
BML-TCA Biham-Middleton-Levine traffic cellular automaton
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BMW Beckmann, McGuire, and Winsten
BPR Bureau of Public Roads
BTS base transceiver station
CA cellular automaton
CA-184 Wolfram’s cellular automaton rule 184
CAD computer aided design
CATSIM Cellular Automata Traffic SIMulation
CBD central business district
CCL Creative Commons Licences
CFD computational fluid dynamics
CFL Courant-Friedrichs-Lewy
CFVD Cellular Floating Vehicle Data
ChSch-TCA Chowdhury-Schadschneider traffic cellular automaton
CLO camera Linkeroever
CML coupled map lattice
CONTRAM CONtinuous TRaffic Assignment Model
COMF car-oriented mean-field theory
CPM computational process models
CSA client-server architecture
CTM cell transmission model
DARPA Defense Advanced Research Projects Agency
DCE delay coordinate embedding
DDE delayed differential equation
DFI-TCA deterministic Fukui-Ishibashi traffic cellular automaton
DGP dissolving general pattern
DLC discretionary lane change
DLD double inductive loop detector
DNL dynamic network loading
DoD Department of Defense
DRC dynamic route choice
DRIP dynamic route information panel
DSA Daily Statistics Algorithm
DTA dynamic traffic assignment
DTC dynamic traffic control

departure time choice
DTM dynamic traffic management
DUE deterministic user equilibrium
DynaMIT Dynamic network assignment for the Management of

Information to Travellers
DYNASMART DYnamic Network Assignment-Simulation Model for Advanced

Roadway Telematics
ECA elementary cellular automaton
EDA exploratory data analysis
ELA emergency lane assist
EM expectation-maximisation
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EP expanded congested pattern
EPS electronic power steering
ER-TCA Emmerich-Rank traffic cellular automaton
ESP electronic stability programme
FCD floating car data
FDE finite difference equation
FIFO first-in, first-out
FNN false nearest neighbours
FOTO Forecasting of Traffic Objects
FVD floating vehicle data
GETRAM Generic Environment for TRaffic Analysis and Modeling
GHR Gazis-Herman-Rothery
GIS geographical information systems
GNSS Global Navigation Satellite System (e.g., Europe’s Galileo)
GoE Garden of Eden state
GP general pattern
GPL GNU General Public Licence
GPRS General Packet Radio Service
GPS Global Positioning System (e.g., USA’s NAVSTAR)
GRP generalised Riemann problem
GSM Groupe Spéciale Mobile
GSMC Global System for Mobile Communications
HAPP household activity pattern problem
HCM Highway Capacity Manual
HCT homogeneously congested traffic
HDM human driver model
HKM human-kinetic model
HPC high-performance computing
HRB Highway Research Board
HS-TCA Helbing-Schreckenberg traffic cellular automaton
HTC high-throughput computing
ICC intelligent cruise control
IDM intelligent driver model
INDY INteractive DYnamic traffic assignment
ITS intelligent transportation systems
IVP initial value problem
JDK JavaTM Development Kit
JRE JavaTM Runtime Environment
JVM JavaTM Virtual Machine
KKT Karush-Kuhn-Tucker
KKW-TCA Kerner-Klenov-Wolf traffic cellular automaton
KWM kinematic wave model
LIBRA Library for Robust Analysis
LGA lattice gas automaton
LOD level of detail
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LOS level of service
LPF low-pass filter
LSP localised synchronised-flow pattern
LTM link transmission model
LWR Lighthill, Whitham, and Richards
MAD median absolute deviation
MADT monthly average daily traffic
MCD minimum covariance determinant
MCMC Markov chain Monte Carlo
MC-STCA multi-cell stochastic traffic cellular automaton
MD Mahalanobis distance
MesoTS Mesoscopic Traffic Simulator
MFT mean-field theory
MI multiple imputation
MINDAT Minute Data
MITRASIM MIcroscopic TRAffic flow SIMulator
MITSIM MIcroscopic Traffic flow SIMulator
MIXIC Microscopic model for Simulation of Intelligent Cruise Control
MLC mandatory lane change

moving localised cluster
MOE measure of effectiveness
MPA matrix-product ansatz
MPC model predictive control
MPCF marginal private cost function
MPI Message Passing Interface
MSA method of successive averages
MSCF marginal social cost function
MSP moving synchronised-flow pattern
MT movement time
MTS Mobile Traffic Services
MUC-PSD multi-class phase-space density
NaSch Nagel and Schreckenberg
NAVSTAR Navigation Satellite Timing and Ranging
NCCA number conserving cellular automaton
NRW North-Rhine-Westphalia
NSE Navier-Stokes equations
OCT oscillatory congested traffic

optimal control theory
OD origin-destination
ODE ordinary differential equation
OLSIM On-Line SIMulator
OSI Open-Source Initiative
OSS Open-Source Software
OVF optimal velocity function
OVM optimal velocity model



i

i

i

i

i

i

i

i

A.1 Acronyms and abbreviations 343

Paramics Parallel microscopic traffic simulator
PAT preferred arrival time
PATH California Partners for Advanced Transit and Highways

Program on Advanced Technology for the Highway
PCE passenger car equivalent
PCU passenger car unit
PDE partial differential equation
PELOPS Program for the dEvelopment of Longitudinal micrOscopic

traffic Processes in a Systemrelevant environment
PeMS California Freeway Performance Measurement System
PHF peak hour factor
PLC pinned localised cluster
pMFT paradisiacal mean-field theory
PMT total person miles travelled
PQM point-queue model
PRT perception-reaction time
PSD phase-space density
PVM Parallel Virtual Machines
PW Payne-Whitham
QoS quality of service
RD robust distance
RDG relative duality gap
RMI Remote Method Invocation
RP recurrence plots
RQA recurrence quantification analysis
SCF sustainable cost function
SFI-TCA stochastic Fukui-Ishibashi traffic cellular automaton
Simone Simulation model of Motorways with Next generation vehicles
SLD single inductive loop detector
SMARTEST Simulation Modelling Applied to Road Transport

European Scheme Tests
SMS space-mean speed
SOC self-organised criticality
SOMF site-oriented mean-field theory
SP synchronised-flow pattern
SQM spatial-queue model
SSEP symmetric simple exclusion process
SSNN state-space neural networks
STA static traffic assignment
STARCHILD Simulation of Travel/Activity Responses to

Complex Household Interactive Logistic Decisions
START/SITTER Systeem Trafiek op Autosnelwegen Reële Tijd/

Système Intelligent Trafic en Temps Réel
STCA stochastic traffic cellular automaton
STCA-CC stochastic traffic cellular automaton with cruise control
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SUE stochastic user equilibrium
SUMO Simulation of Urban MObility
SUV sport utility vehicle
T2-TCA Takayasu-Takayasu traffic cellular automaton
TASEP totally asymmetric simple exclusion process
TCA traffic cellular automaton
TCS traction control system
TDF travel demand function
TISEAN TIme SEries ANalysis
TMC Traffic Message Channel
TMS time-mean speed
TOCA time-oriented traffic cellular automaton
TRANS TRAffic Network Simulator
TRANSIMS TRansportation ANalysis and SIMulation System
TRB Transportation Research Board
TRP thresholded recurrence plot
TSA time series analysis
TSG triggered stop-and-go traffic
UDM ultra-discretisation method
UMTS Universal Mobile Telecommunications System
VDR-TCA velocity-dependent randomisation traffic cellular automaton
VDT total vehicle distance travelled
VHT total vehicle hours travelled
VI variational inequality
VIP video image processor
VMS variable message sign
VMT total vehicle miles travelled
VOT value of time
WLT wireless location technology-based
WORE write once, run anywhere
WSP widening synchronised-flow pattern
WYA whole year analysis
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A.2 List of symbols

Traffic flow theory

ai the acceleration of vehicle i

C the number of substreams in a traffic flow

η the efficiency of a road section (according to Chen et al, [Che01b])

∆Ti the time taken by vehicle i to travel the distance ∆X

∆Xi the distance travelled by vehicle i during the time interval ∆T

E the efficiency of a road section (according to Brilon, [Bri00])

F the free-flow curve in three-phase traffic theory

gsi
the space gap of vehicle i

gl,b
si

the space gap at the left-back of vehicle i

gl,f
si

the space gap at the left-front of vehicle i

gr,b
si

the space gap at the right-back of vehicle i

gr,f
si

the space gap at the right-front of vehicle i

gti the time gap of vehicle i

gl,b
ti the time gap at the left-back of vehicle i

gl,f
ti the time gap at the left-front of vehicle i

gr,b
ti the time gap at the right-back of vehicle i

gr,f
ti the time gap at the right-front of vehicle i

hs the average space headway

hsi
the space headway of vehicle i

hl,b
si

the space headway at the left-back of vehicle i

hl,f
si

the space headway at the left-front of vehicle i

hr,b
si

the space headway at the right-back of vehicle i

hr,f
si

the space headway at the right-front of vehicle i

ht the average time headway

hti the time headway of vehicle i

hl,b
ti the time headway at the left-back of vehicle i

hl,f
ti the time headway at the left-front of vehicle i

hr,b
ti the time headway at the right-back of vehicle i

hr,f
ti the time headway at the right-front of vehicle i

J the wide-moving jam line J in three-phase traffic theory

k the density

kc the density of the c-th substream in a traffic flow

kc the critical density

kcrit the critical density
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kj the jam density

kjam the jam density

kmax the jam density

kl the density in lane l

kout the density associated with the queue discharge capacity

k(t) the density at time t

K the length of a measurement region (i.e., a certain road section)

Kld the length of a detection zone

l the average length of a vehicle

li the length of vehicle i

L the number of lanes on a road

N the number of vehicles in a measurement region

Nl the number of vehicles in the measurement region in lane l

Nl(t) the number of vehicles in the measurement region in lane l at time t

N(t) a cumulative count function

Ñ(t) a smooth approximation of N(t)

ot the average on-time of a set of vehicles

oti the on-time of vehicle i

oti,l
the on-time of vehicle i in lane l

q the flow

q|15 the peak flow rate during one quarter hour within an hour

q|60 the average flow during the hour with the maximum flow in one day

qb a background flow

qc the flow of the c-th substream in a traffic flow

qc the capacity flow

qcap the capacity flow

qe(k) an equilibrium relation between the flow and the density

ql the flow in lane l

qmax the capacity flow

qout the outflow from a (wide-moving) jam, the queue discharge capacity

q(t) the flow at time t

ρ the occupancy

ρi the occupancy time of vehicle i

ρl the occupancy in lane l

Rs a spatial measurement region at a fixed time instant

Rt a temporal measurement region at a fixed location

Rt,s a general measurement region

σ2
s the statistical sample variance of the space-mean speed
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σ2
t the statistical sample variance of the time-mean speed

S the synchronised-flow region in three-phase traffic theory

τi the reaction time of vehicle i’s driver

t∗ a time instant

Tmp the duration of a measurement period

T (t0) the experienced dynamic travel time, starting at time instant t0

T̃ (t0) the experienced instantaneous travel time, starting at time instant t0

vc the capacity-flow speed

vcap the capacity-flow speed

vff the free-flow speed

vi the speed of vehicle i

vi,l the speed of vehicle i in lane l

vi,l(t) the speed of vehicle i in lane l at time t

vmax the maximum allowed speed (e.g., by an imposed speed limit)

vs the space-mean speed

vsc
the space-mean speed of the c-th substream

vse(hs) an equilibrium relation between the SMS and the average space headway

vse(k) an equilibrium relation between the SMS and the density

vse(q) an equilibrium relation between the SMS and the flow

vsust the sustained speed during a period of high flow

vt the space-mean speed

vtc the time-mean speed of the c-th substream

v(t, x) the local instantaneous vehicle speed at time instant t and location x

w the characteristic/kinematic wave speed (of a wide-moving jam)

x∗ a location

xi the longitudinal position of vehicle i
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Traffic flow models

amax the maximum acceleration in the IDM

c(k) the sound speed of traffic

C(q) the economical cost associated with the travel demand q

∆f(x) the forward difference operator applied to f(x)

∆k the difference in density up- and downstream of a shock wave

∆q the difference in flow up- and downstream of a shock wave

∆T the size of a time step in a numerical discretisation scheme

∆X the width of a cell in a numerical discretisation scheme

Dj a destination zone j

ε a small diffusion constant for the viscosity ν

g∗s (vi,∆vi) the effective desired space gap in the IDM

κ a kinetic coefficient related to τ , k, and Θ

kt the partial derivative of k(t, x) with respect to time

kx the partial derivative of k(t, x) with respect to space

k̃(t, x, vs) the phase-space density at (t, x) associated with SMS vs

k̃t the partial derivative of k̃(t, x) with respect to time

k̃x the partial derivative of k̃(t, x) with respect to space

λ the sensitivity to the stimulus in a car-following model

the arrival rate at a server in queueing theory

µ the service rate of a server in queueing theory

∇f(x) the backward difference operator applied to f(x)

the gradient vector of f(x)

ν the kinematic traffic viscosity coefficient

νW a parameter in Whitham’s sound speed of traffic

Oi an origin zone i

π the probability of overtaking (as opposed to slowing down)

P the traffic pressure

Px the partial derivative of the traffic pressure with respect to space

P (t, x, vs) the distribution of the vehicles with SMS vs at (t, x)

qpc the practical capacity

qso travel demand associated with a system optimum

que travel demand associated with a user equilibrium

S a traffic state in the human-kinetic model

τ a driver’s reaction time

Θ the variance of the speed
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Θe(k, vs) an equilibrium relation between the speed variance, the density,

and the SMS

T a travel time

Tff the travel time under free-flow conditions

Tr a relaxation parameter (in Pipes’ car-following model)

u the velocity (in the context of a Navier-Stokes fluid)

vdes the desired speed of drivers

vst the partial derivative of the space-mean speed with respect to time

vsx the partial derivative of the space-mean speed with respect to space

vse(k,Θ) an equilibrium relation between the SMS, the density,

and the speed variance

V () the optimal velocity function

wshock the speed of a shock wave

Cellular automata

C(0) a CA’s initial configuration

C(t) a CA’s global configuration at time step t

δ a CA’s local transition rule

G a CA’s global map

G−1 a reversible CA’s inverse global map

KL the number of cells in one lane of a TCA’s lattice

L a CA’s lattice (e.g., Z
2)

Ni the (partially) ordered set of cells in the neighbourhood of the ith cell

|N | the number of cells in the neighbourhood of each cell

O−C(t)|G−1 the backward orbit of the configuration C(t) under G−1

O+
C(0)|G the forward orbit of the initial configuration C(0) under G

σi(t) the state of the ith cell at time step t

Σ the set of all possible states a CA’s cells can be in (e.g., Z2)

ΣL the set of all possible global configurations of a CA

ΣN the set of all possible configurations of a cell’s neighbourhood

|ΣΣN | the number of all possible rules of a CA

TC(0)|G the trajectory/orbit of the initial configuration C(0) under G
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Traffic cellular automata

∧ the logical binary conjunction operator ‘AND’

α the entry rate of particles in the TASEP model

αi the anticipatory driving parameter of vehicle i

a the acceleration capability of a vehicle in the KKW-TCA model

β the exit rate of particles in the TASEP model

b the deceleration capability of a vehicle in the KKW-TCA model

bi(t) the state of the brake light of vehicle i at time t in the BL-TCA model

δ the probability for a particle to move to the right in the TASEP model

∆acci
the deterministic acceleration of vehicle i in the KKW-TCA model

∆T a TCA’s temporal discretisation

∆V a TCA’s speed discretisation

∆X a TCA’s spatial discretisation

D0 a parameter for the synchronisation distance in the KKW-TCA model

D1 a parameter for the synchronisation distance in the KKW-TCA model

Di the synchronisation distance of vehicle i in the KKW-TCA model

ηi the stochastic acceleration of vehicle i in the KKW-TCA model

γ the probability for a particle to move to the left in the TASEP model

gs the average space gap

g∗si
(t) the effective space gap of vehicle i at time t in the BL-TCA model

gssecurity a security constraint for the space gap in the BL-TCA model

gt the median time gap

gts the safe time gap in the TOCA model

h the interaction range of the brake light in the BL-TCA model

hsc the average space headway corresponding to the critical density

hsj the average space headway corresponding to the jam density

kg the global density of a TCA’s lattice

kl the local density of a TCA’s lattice

KL the number of cells in one lane of a TCA’s lattice

L a TCA’s lattice

li the length of vehicle i

l the average length of all vehicles on a TCA’s lattice

LL the number of lanes in a TCA’s lattice

Mgsi ,vi
the gap-speed matrix of the ER-TCA model

p the slowdown probability in [0, 1]

p0 the slow-to-start probability in [0, 1]

pa the acceleration probability in [0, 1] in the KKW-TCA model
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pa1 a parameter for the acceleration probability in the KKW-TCA model

pa2 a parameter for the acceleration probability in the KKW-TCA model

pacc the acceleration probability in [0, 1] in the TOCA model

pb the braking probability in [0, 1] in the BL-TCA model

the deceleration probability in [0, 1] in the KKW-TCA model

pd the slowdown probability in [0, 1] in the BL-TCA model

pdec the deceleration probability in [0, 1] in the TOCA model

ps the slow-to-start probability in [0, 1] in the BJH-TCA model

pt the slow-to-start probability in [0, 1] in the T2-TCA model

Pn(v) the probabilities of finding a space gap of n cells

for a vehicle driving with speed v

qg the global flow of a TCA’s lattice

ql the local flow of a TCA’s lattice

tsi
the interaction horizon in the BL-TCA model

vdesi
the desired speed of vehicle i in the KKW-TCA model

vp a parameter for the acceleration probability in the KKW-TCA model

vsff the space-mean speed in the free-flow regime

vsg the global space-mean speed of a TCA’s lattice

vsl the local space-mean speed of a TCA’s lattice

ξ(t) a random number in [0, 1[ drawn at time t from a uniform distribution

xl,b
i the longitudinal position of vehicle i’s left-back neighbour

xl,f
i the longitudinal position of vehicle i’s left-front neighbour

xr,b
i the longitudinal position of vehicle i’s right-back neighbour

xr,f
i the longitudinal position of vehicle i’s right-front neighbour

Data quality, travel time estimation, and reliability

αld the slope of an SLD’s threshold’s linear function

∆N the number of vehicles between two measurement posts

∆t the time needed to travel between two consecutive measurement posts

∆t the average time difference between a pair of t(N) curves

d the order of integration in an ARIMA model

Φ the cumulative distribution function of the normal distribution

g the g-factor for an SLD

k the density

K the length of a road section

the distance between two measurement posts

Kld the length of an SLD
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λldi
a threshold calculated for SLD i

lj the length of the j th vehicle

l the average vehicle length

lc the average length of a car

lt the average length of a truck

m the number of multiple imputations

mDCE the embedding dimension for delay coordinate embedding

µ the mean of a distribution

µ̂MCD a robust estimation of the mean of a distribution

n the number of data points (observations)

Ndown the cumulative number of vehicles (downstream)

Nup the cumulative number of vehicles (upstream)

otj the on-time of the j th vehicle over an SLD

otci
the average on-time for a car at SLD i

otcmin
the minimum average on-time for all cars at an SLD

otcmax
the maximum average on-time for all cars at an SLD

p the number of dimensions (variables)

the order of autoregression in an ARIMA model

p(ρi) an estimated probability density function of the occupancies ρi

χ2
p,0.975 a specified threshold for identifying outliers

q the flow

the order of the moving average in an ARIMA model

qdown the flow (downstream)

qup the flow (upstream)

qci
the number of cars driving by SLD i

qti the number of trucks driving by SLD i

ρ∗ a threshold occupancy

ρc the critical occupancy

ρi the occupancy of SLD i

r a point on the trajectory of a delay coordinate embedded time series

σ the standard deviation of a distribution

Σ the covariance matrix of a distribution

Σ̂MCD a robust estimation of the covariance matrix of a distribution

S1 the number of samples with zero occupancy for the DSA algorithm

S2 the number of samples with a high occupancy for the DSA algorithm

S3 the entropy of the occupancy samples for the DSA algorithm

τDCE the delay for delay coordinate embedding

τldi
a threshold calculated for SLD i
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τldmin the minimum threshold for all SLDs

τldmax the maximum threshold for all SLDs

tdown the inverse of the cumulative number of vehicles (downstream)

tup the inverse of the cumulative number of vehicles (upstream)

T the average experienced dynamic travel time of all the vehicles

T (t0) the experienced dynamic travel time starting at t0

T̃ (t0) the experienced instantaneous travel time starting at t0

T̃ff the experienced instantaneous travel time under free-flow conditions

TDSA the length of the aggregation period for the DSA algorithm

Tmp the duration of a measurement period

vj the speed of the j th vehicle

vff the free-flow speed

vti the time-mean speed of all vehicles driving by SLD i

xi a univariate sample taken from a distribution

xi a multivariate sample taken from a distribution

xmed the median of a distribution

xref a reference measurement used for interpolation

zi the z-score for identifying outliers
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Dynamic traffic assignment based on cellular automata

Cβi
the schedule delay cost for agent i when arriving too early

Cγi
the schedule delay cost for agent i when arriving too late

Cµi
the cost associated with agent i’s queueing time

Csdi
the schedule delay costs for agent i

CTi
the cost associated with agent i’s travel time

Ctotali the generalised travel cost associated with agent i

εi a stochastic error term in the route logit model

µ a dispersion factor in the route logit model

µi the waiting time of agent i in a queue at an origin

N the number of agents in a disaggregated population

pi the logit probability for selecting a certain route

R the set of all available routes between an OD-pair

Rpre the set of predefined feasible routes

tdemand,end the end of the demand generation period

tdemand,start the start of the demand generation period

tdeparturei
the departure time of agent i

tPATi
agent i’s preferred arrival time

Ti the travel time of agent i

Udeparture a utility function for agent i’s time of departure

Ui the utility of route i
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Appendix B

TCA+ JavaTM software

As already briefly mentioned in Chapter 4, all simulations therein were performed by
means of our Traffic Cellular Automata + software [Mae04d]. It was developed for
the JavaTM Virtual Machine (JVM), and can be downloaded1 from:

http://smtca.dyns.cx

The software is also referenced on the Traffic Forum2 (see Section ‘Links’, Subsec-
tion ‘Online Traffic Simulation or Visualization (Java Applets)’, Item ‘Java (Swing)
application for several cellular automata models’).

In this appendix, we summarise our rudimentary TCA+ software. We start with an
overview of its features, explain how to run the software, and conclude with some
technical details with respect to the implementation of its code base.

B.1 Overview and features

The TCA+ software package’s goal is two-fold: on the one hand, it provides an in-
tuitive didactical tool for getting acquainted with the concept of single-lane traffic
cellular automata models. On the other hand, it provides a rich enough code base to
perform hand-tailored simulation experiments, as well as giving insight into the details
of programming TCA models.

In a nutshell, our software considers one-dimensional traffic cellular automata with
periodic boundary conditions, i.e., vehicles driving on a unidirectional circular road.
Different sets of rules can be chosen, and for each set its parameters (e.g., stochastic

1From May 2002 until June 2005, the software has been downloaded some 800 times, of which one
third appears to be traffic coming from search engines’ indexing robots.

2http://www.trafficforum.org
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noise) can be changed at run time. Both local and global measurements can be per-
formed on the lattice by means of artificial loop detectors. A traffic light with cyclical
red and green phases was also added, allowing to study elementary queueing beha-
viour. In the software, we have implemented the TCA models listed in Table B.1.

TCA model Refer to Section TCA model Refer to Section

CA-184 4.3.1.1 stochastic T2-TCA 4.3.3.1

DFI-TCA 4.3.1.2 VDR-TCA 4.3.3.3

STCA 4.3.2.1 VDR-CC-TCA 4.3.3.3

STCA-CC 4.3.2.2 TOCA 4.3.3.4

SFI-TCA 4.3.2.3 MC-STCA 4.4.1

TASEP 4.3.2.4 HS-TCA 4.4.2.1

ER-TCA 4.3.2.5 BL-TCA 4.4.2.2

deterministic T2-TCA 4.3.3.1 KKW-TCA 4.4.2.3

Table B.1: All TCA models implemented in our TCA+ software, accompanied by references
to the respective sections in Chapter 4 where they are extensively discussed.

In Figure B.1, we show a screenshot of the main graphical user interface (GUI). As can
be judged from the image, the TCA+’s GUI is rather huge, spanning approximately
1400x1200 pixels (scrollbars are automatically placed if it does not fit on the screen).
It consists of several panels:

• a scrolling time-space diagram containing vehicle trajectories and an animation
of the road situation,

• a panel containing some simulation statistics,

• several simulator controls,

• and scrolling loop detector plots and plots of the (k,q), (k,vs), and (q,vs) dia-
grams.

In the following paragraphs, we describe each of these features in more detail. Note
that there currently are two versions of the GUI: a standard version for all the single-
cell TCA models, and a modified multi-cell TCA version with limited functionality
(mainly for creating coloured tempo-spatial diagrams).

Vehicle animation

Looking at the time-space diagram in the upper-left panel, we can discern the indi-
vidual vehicle trajectories, as well as the typical backwards-travelling shock waves of
congestion. In this scrolling diagram, the time axis goes from the left to the right,
while the space axis goes from the bottom to the top (and is a one-to-one mapping of
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Figure B.1: A screenshot of the TCA+’s main graphical user interface (GUI) for single-cell
TCA models. The GUI is rather huge, spanning approximately 1400x1200 pixels, consisting
of several panels: a scrolling time-space diagram containing vehicle trajectories, an animation
of the road situation, a panel containing some simulation statistics, several simulator controls,
scrolling loop detector plots and plots of the (k,q), (k,vs), and (q,vs) diagrams.

the consecutive cells on the ring road). Each pixel here corresponds to a unique cell
of the simulator and each vehicle is coloured with a certain shade of yellow (in order
to easily distinguish between different neighbouring vehicles). There is also a setting
available that allows stopped vehicles to be coloured red. In the upper-middle panel,
the actual geometrical configuration of the ring road is depicted. This allows us to
view the current physical situation on the road, i.e., the positions of all the vehicles.
Each vehicle can be coloured with a certain shade of yellow (the same as in the time-
space diagram). The current phase of the traffic light is also shown, as well as the
positions of all the loop detectors: their positions are indicated by the small purple
boxes alongside the road. The small green box indicates the position of the traffic
light, with vehicles travelling in clockwise fashion.
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Simulation statistics

In the upper-right panel, we can find the length of the ring road (expressed in the
number of cells), the number of vehicles currently in the simulator, the global vehicle
density, and the current time step. There is also a small panel that allows to quickly
set the status of the traffic light to either red or green.

Simulator controls and settings

The middle-left panel contains buttons for starting, stopping (i.e., pausing), resetting,
and quitting the simulator. Several preferences can also be specified, i.e., whether
or not to activate several panels containing the simulator’s output. There is also the
possibility to log the measurements from the loop detectors to a default file (called
detector-values.data). And finally, the type of traffic cellular automaton (i.e., its rule
set) can also be selected from a list, specified by radio control buttons.

Note that there are several initial conditions possible for each density level: it is pos-
sible to start with a homogeneous state (all vehicles are spaced evenly), with a compact
superjam of vehicles that are all stopped, or with a random initialisation (see also the
introduction of Section 4.3).

If the simulation goes (visually) too fast, the cycle hold time can be increased, thereby
freezing the simulation for a while between two consecutive time steps. Besides this,
the ring road’s global density and the vehicles’ maximum speed can be specified. The
sampling time for the artificial loop detectors can be adjusted (to increase or smooth
out fluctuations). And finally, all probabilities can be adjusted between 0% and 100%
in incremental steps of 1%.

The red and green cycle times for the traffic light can be specified, such that the light
can operate automatically, thereby inducing artificial queues at regular intervals. One
can also control the traffic light manually (enabling the red or green phase) using the
small upper-right panel; but if applied, the traffic-light controls override these manual
settings.

Plots of macroscopic measurements

The software has the ability to extract both local and global macroscopic flow meas-
urements from several uniformly road-side placed loop detectors which record flows,
densities, and space-mean speeds.

The three large coloured regions in the middle panel represent the measured (and
averaged) values of the local flows, local densities, and local space-mean speeds of
the loop detectors. Pair-wise correlating these values, results in the plots of the (k,q),
(k,vs), and (q,vs) diagrams in the lower-right panel. The coloured dots indicate locally
obtained measurements, whereas the black dots represent globally obtained ones.

Note the small button that allows to construct these diagrams: when it is pressed, the
global density is incrementally increased from 0% to 100%, each time adding a single
vehicle to the ring road. The simulation is then ran for a certain amount of time and
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the measurements from all the loop detectors are recorded. When all densities are
processed (an indicator of the total time left is shown), the diagrams should be clearly
visible in the loop detector plots in the lower-right panel.

B.2 Running the software

When visiting the website mentioned in the introduction of this appendix, there are
two options for downloading the software. One is by downloading the compiled
classes, whereas the other is to download the programme’s source code. Once the
compiled software has been downloaded, it is relatively easy to start the graphical
user interface. Considering the single-cell setup GUI, the software is ran by executing
the following command:

java -jar tca.jar

Note that a JavaTM Development Kit (JDK) (preferably Sun’s at
http://java.sun.com) should be installed. Furthermore, due to a change in
the multi-threading implementation of the JavaTM SwingTM API, it appears that only
JDK/JRE 1.3.1 is suitable.

B.3 Technical implementation details

It should be noted that the software is not implemented as an applet, but instead as
a full JavaTM application because it uses SwingTM components that are not standard
supported by most browsers (at least not without installing a necessary plugin). The
source itself logically consists of three different parts:

• the TCA engine with different rule sets,

• the graphical user interface,

• and a whole range of predefined experiments.

The geometrical configuration used in the single-cell TCA engine is a unidirectional
ring road with a single lane. Vehicles are located in cells of ∆X = 7.5 m and can have
speeds of 0 to 5 cells/time step (corresponding to a maximum speed of 135 km/h). One
iteration in the simulation corresponds to a time step of ∆T = 1 s.

A number of artificial loop detectors are uniformly placed alongside the road, aggreg-
ating various macroscopic traffic measurements (i.e., flows, densities and space-mean
speeds). In the GUI, global measurements on the entire lattice are performed accord-
ing to the methodology explained in Section 4.2.3.2, whereas local measurements are
performed according to Section 4.2.3.1. Note that for the TCA software itself, it is

http://java.sun.com
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also possible to perform local measurements using a detector of unit length, according
to the methodology explained in Section 4.2.3.3.

Besides the standard single-cell GUI and the limited multi-cell GUI, there also exist
some predefined experiments. These allow to create the (k,q), (k,vs), and (q,vs) dia-
grams, histograms of the vehicles’ speeds, space gaps, and time gaps, as well as sev-
eral order parameters (density correlations, nearest neighbours, and an inhomogeneity
measure that compares the locally recorded densities to the current global density).

Inside the TCA+ software, several packages are available:

• tca.base containing the definitions of cells, global states, loop detectors, and
the traffic cellular automaton’s lattice,

• tca.automata containing implementations of all the TCA models mentioned
in Section B.1,

• tca.simulator containing the classes related to the single-cell and multi-
cell GUIs,

• tca.experiments.fundamentaldiagrams,
tca.experiments.histograms,
and tca.experiments.orderparameters containing setups for the pre-
viously mentioned experiments.
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Appendix C

Some thoughts on obtaining a
PhD

In this appendix, we share our thoughts with respect to the process of obtaining a PhD
degree in the Faculty of Engineering at the Katholieke Universiteit Leuven. We focus
on what we believe to be the requirements of a PhD candidate, after which we give
some reflections on the hassles in the doctoral training programme every graduate
student is expected to participate in.

C.1 Preliminaries

• This note was written in the pluralis majestatis for aesthetic purposes, further-
more, we use the words ‘must’ and ‘should’ liberally and interchangeably, but a
negative connotation is never implied.

• The vision set forth in this note, is mainly based on the process of obtaining a
doctoral degree in the Faculty of Engineering (Katholieke Universiteit Leuven).
Other faculties focus on other aspects, putting more or less emphasis on some
of the points touched upon in our train of thought.

“Be passionate about your scientific field, feel driven by your research.”

C.2 Requirements of a PhD candidate

PhD candidates are those among the few people in the world who can do research at
any time. They can pursue own interests, noble causes, . . . all in the name of research.
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But, at the same time, this great freedom also implies a sense of responsibility which
we think is a necessary ingredient !

Consider the following implicit minimal requirements (‘implicit’ meaning that a ma-
ture PhD candidate will take the following points for granted); a PhD candidate:

• must be aware of the structure in which he/she is expected to work/operate;
here we are talking on the level of the research group, the department, and
to a lesser extent the university’s structure (more specifically about financial
possibilities/opportunities for funding, et cetera), be concerned with his/her
working environment.

• must, to a high degree, be able to work independently.
⇒Additionally, a PhD candidate should not be afraid of talking to other people,
in fact, he/she should consult others if necessary (note here that one of the roles
for the promotor is to point out possible persons).

• closely related to the previous point, a PhD candidate must construct a re-
search network in which he/she actively creates and manages contacts at sev-
eral levels (e.g., locally within the research group, globally with fellow research-
ers in other departments, and even at conferences et cetera).
⇒ Conferences are mainly intended as a means to develop and sustain your
network.

• must be able to coordinate a project, i.e., have organisational skills (with initial
guidance if needed), and have a (broad) sense of responsibility, taking initiat-
ives, et cetera. Behaving in a professional way is mandatory when interacting
with other people.

• must be enthusiastic about his/her research, and have ambition (the optimal
situation is when the candidate ‘lives’ by his research, thinks about it at the
most odd occasions, is absorbed by the scientific field. . . but is still able to draw
a line !).

• must be interdisciplinary minded (i.e., being interested in all kinds of know-
ledge, not only those within the own field of research), in contrast to this, a PhD
candidate should be able to fluently handle the large doses of incoming inform-
ation by selecting the relevant parts.
⇒ This implies that a PhD candidate is supposed to be extremely curious:
he/she is like a sponge, absorbing as much knowledge as possible. In this
respect, a PhD candidate should strive for an almost encyclopaedial knowledge
of literature.
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Furthermore, we believe a PhD candidate:

• should have a critical attitude towards science, research, and triviality,

• should have a global world view, and his/her position in it,

• should be creative about his/her research,

• should adopt his/her own research style, create a personal profile, have a
unique character (as opposed to the default grey mass in which most PhD can-
didates seem to dissolve).

Note that independence comes in at least two degrees: taking initiatives, coming (1)
from the promotor and (2) from oneself. Furthermore, we acknowledge the fact that
there are different kinds of doctoral students, with respect to being able to work in-
dependently. In the case where the PhD candidate needs guidance, this should be
initially provided by (1); the promotor is not obliged to guide the candidate in per-
sona, but should at least be obliged to provide the means for guidance.

With respect to this last item, we partially agree with the K.U.Leuven’s ‘Profile of a
good promotor’1: a promotor can only guide a limited number of doctoral students;
if this number increases, this requires other means of guidance (e.g., post-doctoral
researchers). The exception we make, is when the PhD candidates are able to function
truly independently. But do note that in any other case, the primary role of the
promotor is to ‘take care’ of the PhD candidate, such that in the end, the same results
are achieved as if the candidate was working independently.

Universities are not large scale PhD factories; instead, PhD’s craft themselves to a
certain degree, with a careful eye for detail.

To end, we would like to draw some attention to the following question:

“What is the initial motivation for starting as a PhD candidate ?”

We believe each individual should think about this question at one time or another,
and be able to give a definite answer for him/herself. Doing a PhD is certainly not a
‘nine to five job’, as it entails a whole philosophy in a certain sense. Obtaining the
PhD degree is a daunting task, in which the candidate learns to plan over a course of
three to six years, getting more mature in the process.

1See http://www.kuleuven.ac.be/doctoreren/profiel.htm for more information.

http://www.kuleuven.ac.be/doctoreren/profiel.htm
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364 Appendix C – Some thoughts on obtaining a PhD

C.3 About the doctoral training programme (DOCOP)

(note: DOCOP means ‘DOCtoraatsOPleiding’ in Dutch)

Consider the original intent of the regulations:

1. “The first goal of the DOCOP regulation is to broaden the knowledge of the
PhD candidate and to immerse him/her in the field of research.”

2. “As a secondary goal of the regulations, they allow the process of obtaining
the doctoral degree more efficiently by providing better guidance and tracking
abilities.”

3. “The regulations also aspire to play a supportive role, in that they want to pre-
pare the PhD candidate for his/her later professional functioning.”

4. “They furthermore stimulate the research dynamics and contribute to a doctoral
culture.”

Putting these intentions into practice, the doctoral training consists of the following
requirements that reflect the expectations towards a ‘good PhD candidate’:

• publications at an international level,

• giving and following of doctoral seminars,

• actively participating to international congresses,

• and reporting on the doctoral research on a regular base.

In contrast to this, we claim that:

• this regulation should, in principle, be redundant, because a ‘good’ PhD can-
didate:

– will spontaneously follow courses, go to conferences, publish in journ-
als, et cetera, when it’s interesting to him/her, it should not necessarily
be directly related to the field of research (although it can sometimes be
preferred),

– should not be obliged to take doctoral exams (except of course the thesis
defence).
⇒ This means that the famous requirement of ‘following a doctoral course
with evaluation’ is dismissed on the grounds that when a course (or part
of it) is interesting to the researcher, he/she will already try to master it,
without the need for an evaluation. There are many more courses, and the
fact that the DOCOP rules stipulate that only one course is necessary, also
reflects the artificial sounding to this rule.
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• the DOCOP rules don’t guarantee the fulfillment of the second intent: guidance
is not provided at all, tracking the research progress is done in a way that is too
artificial (grading),

Note that our claims are based on the preposition that many things that are stipulated
in the original DOCOP regulation, are in fact expected to be automatically satisfied
by the PhD candidate. This means that we ask the following central question:

“Should a PhD candidate be enforced to obtain these goals ?”

We say no, because in our opinion, the other PhD candidates are ‘unworthy’ to obtain
their doctoral degree. In order to receive the PhD title, one has to earn it. This
last remarks clearly goes beyond the requirement of a thesis with an accompanying
dissertation. From our point of view, we believe this is the original motivation from
which the DOCOP regulation took root. However, the current regulation has a per-
tinent fixation on the grading system, and not as much appreciation of the qualitative
content.

Addendum:

Other universities base their doctoral training requirements on more or less the same
philosophies:

• “To deepen the PhD candidate’s knowledge of the discipline and scientific field
and to broaden his/her knowledge outside this discipline.’’

— Universiteit Antwerpen

• “To deepen and broaden the PhD candidate’s knowledge and skills.”
— Universiteit Gent

• “To stimulate a high research quality, and to provide a increased level of sup-
port for PhD candidates.”

— Vrije Universiteit Brussel

• “To provide profound, systematic, and functional guidance for PhD candidates,
to provide a thorough education in all aspects of the research methodology, to
learn to work independently.”

— Universiteit Hasselt

Note that at the Universiteit Gent, following the doctoral training is advised, but not
made obligatory. And at the Vrije Universiteit Brussel, they internally challenged the
use of the doctoral training programme, changing it from a mere administrative task of
obtaining points, to a more dedicated guidance of PhD candidates (by means of peer
support, knowledge management, . . . ).
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Appendix D

Nederlandse samenvatting

Modelleren van Verkeer op Autosnelwegen:
State-of-the-Art, Numerieke Data Analyse,
en Dynamische Verkeerstoedeling

Hoofdstuk 1: Inleiding

Gezien de huidige problematiek omtrent de drukte in het wegverkeer in steden en
landen, wordt het met de dag duidelijker dat we filevorming niet volledig kunnen
oplossen. Alles is echter niet verloren, daar we kunnen proberen om de toestand
te verzachten door de ritten zo comfortabel mogelijk te maken. Het blijft niette-
min een zware taak om filevorming op globale schaal aan te pakken, iets wat een
geı̈ntegreerde aanpak vereist, en waarbij verschillende regeltechnieken gecombineerd
worden. Voorbeelden van dit laatste zijn de geavanceerde verkeersbeheerssystemen
(ATMS) zoals dynamische route geleiding, toeritdosering, snelheidsharmonisatie, ge-
tijdengolven, . . . , en beleidsmaatregelen die beslist worden door (lokale) overheden.
Deze maatregelen worden uitgevoerd onder de vorm van bijvoorbeeld rekeningrijden,
beter en goedkoper openbaar vervoer, . . . tot zelfs sommige bizarre voorstellen zoals
dubbeldek-autosnelwegen, voorgesteld door de liberale senator Jean-Marie De Dec-
ker. Met dit laatste wil men de capaciteit van het wegennet uitbreiden en zo de files
verminderen. In tegenstelling tot sommige van deze extreme maatregelen, zou vlotter
verkeer bewerkstelligd moeten worden door gebruik te maken van het bestaande we-
gennet, zonder de noodzaak om nieuwe weginfrastructuur aan te leggen (let wel dat
lokale aanpassingen nog steeds toegestaan zijn).

367
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Een eerste luik van ons onderzoek is het aanreiken van een goede achtergrond met
betrekking tot het modelleren van wegverkeer. Tot op heden is er nog vaak een regel-
matige verwarring tussen verkeersdeskundigen enerzijds en beleidsmakers anderzijds,
wanneer het aankomt op transportplanningsmodellen en de rol die verkeersstroommo-
dellen daarin spelen. Het literatuuroverzicht in dit werk is uniek omdat het een redelijk
volledig geheel vormt. Hierdoor wordt de noodzaak weggenomen om te gaan kijken
in de zoo van artikels en notaties die er op dit moment heerst.

Een tweede luik van ons onderzoek is gericht op de numerieke data analyse van ruwe
verkeersmetingen (tellingen). We geven onderzoekers middelen om statistische uit-
schieters op te sporen, om op een snelle manier structurele en incidentele storingen
van detectors te beoordelen, om reistijden te schatten op een off-line manier, geba-
seerd op ruwe cumulatieve tellingen, en om een visuele voorstelling van de dynamica
van verkeersstromen in tijd en ruimte te verkrijgen.

Het derde en laatste luik van ons onderzoek komt voort uit de dynamische verkeers-
toedeling. De huidige evolutie in het wetenschappelijk domein is om op een endogene
wijze zowel keuze van vertrektijdstip als route te combineren. We stellen een duidelij-
ke methode voor die toelaat om beide problemen op sequentiële wijze aan te pakken,
op basis van een verkeersstroommodel dat uitgewerkt wordt als een computationeel
efficiënte cellulaire automaat. Deze efficiëntie wordt verder nog verbeterd door het
concept parallelliseren door middel van gedistribueerd rekeken.

Hoofdstuk 2: Verkeersstroomtheorie

Omwille van de grote diversiteit van het vakgebied (ingenieurs, fysici, wiskundigen,
. . . ), is een van de belangrijkste doelstellingen van dit hoofdstuk om zowel een logi-
sche als consistente terminologie te definiëren. We geloven er sterk in dat een derge-
lijke standaard een noodzaak is, zeker wanneer het er op aankomt om een graad van
orde te creëren in de ‘zoo van notaties’ die op dit moment ons insziens bestaat (voor
een volledig overzicht van alle afkortingen en notaties die we voorstellen, verwijzen
we de lezer naar appendix A).

In dit hoofdstuk geven we een overzicht van wat op dit moment de state-of-the-art is
met betrekking tot verkeersstroomtheorie. We beginnen met een korte geschiedenis,
waarna we de tussentijden en -ruimtes als microscopische karakteristieken van weg-
verkeer geven, met dichtheden en intensiteiten als hun macroscopische tegenhangers.
Verdergaand, bespreken we enkele performantie-indicatoren die ons toelaten om de
kwaliteit van de verkeersoperaties te beoordelen. Hierbij besteden we ook kort aan-
dacht aan het afleiden van reistijden op basis van cumulatieve curves. Het laatste deel
van dit hoofdstuk bespreekt enkele relaties tussen verkeerskundige karakteristieken,
door middel van het fundamenteel diagram, en werpt een licht op verschillende stand-
punten inzake de oorzaken van filevorming.
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Hoofdstuk 3: Transportplannings- en verkeersstroom-
modellen

Daar waar het vorige hoofdstuk ging over de notaties en terminologie die geassocieerd
worden met karakteristieken van verkeersstromen, legt dit hoofdstuk de nadruk op de
verschillende verkeersmodellen die er bestaan.

Gedurende ons onderzoek merkten we vaak een verwarring op tussen verkeerskundi-
gen aan de ene kant en beleidsmakers aan de andere kant. Om hieraan tegemoet te ko-
men, gaan we dieper in op transportplanningsmodellen enerzijds en verkeersstroom-
modellen anderzijds. De eerste klasse is typisch werkzaam op een hoger niveau, waar-
bij gezinnen bepaalde beslissingen nemen, wat aanleiding geeft tot transport en het
gebruik van de weginfrastructuur. De tweede klasse is typisch werkzaam op een lager
niveau, waarbij expliciet het stromen van het verkeer op een wegennetwerk wordt be-
schreven; deze klasse wordt typisch als onderdeel in de eerste klasse gebruikt. Voor
de transportplanningsmodellen bespreken we modellen voor het gebruik van land, zo-
wel in een klassieke als moderne context, waarna we het traditionele vierstapsmodel
(4SM) uit de doeken doen, gevolgd door een uitwerking van activiteiten-gebaseerd
modelleren (ABM). Alvorens in te gaan op de stroommodellen, geven we nog een
beknopt overzicht van enkele basisprincipes in het vakgebied rond de transportecono-
mie, waarbij we afsluiten met een discussie omtrent rekeningrijden. Vanaf dan gaat
het hoofdstuk verder met gedetailleerde informatie over macroscopische, mesoscopi-
sche en microscopische stroommodellen (zie Figuur D.1 voor een voorbeeld van deze
laatste klasse); van deze drie vereisen de microscopische modellen vaak ook meer re-
kenkracht omwille van de complexere interacties tussen individuele voertuigen, daar
waar macro- en mesoscopische modellen eerder uitgaan van geaggregeerd gedrag (bij-
voorbeeld zoals in samendrukbare vloeistoffen en gassen).

Onze doelstelling is niet om een volledig overzicht te geven, maar is het eerder onze
intentie om de lezer een grondig gevoel te geven voor de verschillen tussen transport-
plannings- en verkeersstroommodellen. Omwille van de snelle vooruitgang geduren-
de het laatste decennium (en zelfs de laatste vijf jaren), probeert dit hoofdstuk zowel
oudere, meer klassieke modellen, als de laatste ontwikkelingen in het vakgebied te
bespreken. Merk op dat ons overzicht beperkt is, en bijvoorbeeld geen behandeling
geeft van disciplines zoals verkeersregeling, milieumodellering, . . .

Tot op heden gebruiken veel transportplanningsbureaus statische modellen voor het
evalueren van beleidsmaatregelen; de noodzaak tot dynamische modellen wordt meer
en meer uitgesproken [Mae04b]. Zelfs na meer dan zestig jaar onderzoek op ver-
keerskundig vlak, blijft het debat omtrent wat nu de juiste modelleringsaanpak is nog
steeds even intens. Aan de kant van de transportplanningsmodellen, opteren veel stu-
diebureaus nog voor het klassieke vierstapsmodel, omdat het de meest intuı̈tieve en
begrepen aanpak vormt. In tegenstelling tot dit model, wint activiteiten-gebaseerd
modelleren aan aandacht, al blijft het voor veel mensen een min of meer obscure, niet
transparante discipline. Aan de basis van deze twijfels tegenover de ABM aanpak
ligt de afwezigheid van een algemeen aanvaarde omkadering zoals die wel aanwe-



i

i

i

i

i

i

i

i

370 Nederlandse samenvatting

Figuur D.1: Een voorbeeld van een microscopische verkeerssimulator, Mitrasim 2000
[Mae01b]. Links is een deel van de A10 ringweg rond Amsterdam te zien, rechts een gede-
tailleerder beeld van een op-/afrittencomplex. Elk tiende van een seconde worden de indivi-
duele voertuigen (personen- en vrachtwagens) voortbewogen doorheen het netwerk, waarbij ze
telkens een bepaalde route volgen en proberen om hun bestemming botsingsvrij te bereiken.

zig is voor het 4SM. Het lijkt dan ook verleidelijk om de ABM aanpak rechtstreeks
te vertalen naar die van de 4SM (waarbij bijvoorbeeld de creatie van de syntheti-
sche populatie overeenkomt met de productie- en attractiecycli, de distributie-stap en
de opsplitsing naar mode), waarbij tijdsafhankelijke herkomst-bestemmingstabellen
worden afgeleid. In gelijkaardige trend, kan men de simulatie van individuen in ABM
zien als een implementatie van de verkeerstoedeling in het 4SM. Niettemin blijft het
echter moeilijk om inzicht te krijgen in een dergelijke rechtstreekse vertaling en het
resulterende reisgedrag van een bevolking. We merken bij dit laatste op dat het vak-
gebied rond ABM zich in een toestand van beweging bevindt, dankzij de steeds meer
toenemende rekenkracht van computers.

Op het vlak van verkeersmodellering, blijft het debat omtrent welke nu de juiste aan-
pak is (micro-/meso/- of macroscopische modellen), steeds stof tot intrigerende dis-
cussies op te werpen. Ondanks de respectievelijke kritieken, is het algemeen aan-
vaard dat het modelleren van bestuurdersgedrag complexe mens-mens, mens-voertuig
en voertuig-voertuig interacties vereist. Dit vraagt dan ook om interdisciplinair on-
derzoek, met invloeden van vakgebieden zoals wiskunde, fysica, en ingenieurstech-
nieken, alsmede sociologie en psychologie (zie bijvoorbeeld ook het overzicht van
Helbing en Nagel [Hel04]).
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Hoofdstuk 4: Cellulaire automaten voor wegverkeer

Na de bespreking in het vorige hoofdstuk, leggen we in dit hoofdstuk de nadruk
op computationeel efficiënte microscopische stroommodellen. Cellulaire automaten
(traffic cellular automata, afgekort als TCA) passen netjes in deze beschrijving. Over-
eenkomstig met de principes van de statistische mechanica, hebben deze TCA model-
len niet de bedoeling om een realistische microscopische beschrijving van de ver-
keersstroom als grondslag te zijn. Ze zijn er eerder op gericht om het macroscopisch
gedrag correct weer te geven, en als dusdanig zeer geschikt om eerste- en tweede-orde
macroscopische effecten van verkeersstromen te vatten.

Er bestaan reeds enkele overzichten van TCA modellen (bijvoorbeeld de meer theore-
tisch-georiënteerde werken van Chowdhury et al. [Cho00], Santen [San99], Knospe
et al. [Kno04], en Mahnke et al. [Mah05]). Echter, geen enkele van deze overzichten
beschouwt de TCA modellen exclusief vanuit hun gedragingsdynamiek. Ons onder-
zoek vult deze leegte in het huidige vakgebied in en geeft een antwoord op de vraag
van onderzoekers naar een dergelijk bevattend inzicht. Merk op dat dit hoofdstuk in
zijn geheel ook als opzichzelf-staand overzicht werd gepubliceerd in Physics Reports
[Mae05].

In het hoofdstuk bespreken we eerst de historische achtergrond van cellulaire auto-
maten (CA). We gaan dieper in op de ingrediënten van een CA en de wiskundige
achtergrond, waarbij we een weg discretiseren in een aantal kleine cellen die elk een
breedte hebben van bijvoorbeeld ∆X = 7.5 m. Ook de tijd wordt gediscretiseerd in
eenheden van ongeveer ∆T = 1 s. Gedurende een tijdsstap van t naar t + 1, wordt
op alle voertuigen tegelijk een verzameling van gedragsregels toegepast. Deze regels
beschrijven hoe een voertuig zijn snelheid aanpast, hierbij rekening houdend met ener-
zijds dat het zo snel mogelijk wil rijden, en anderzijds dat het niet wil botsen met zijn
voorligger. Hierna wordt de nieuwe positie berekend uitgaande van deze snelheid (zie
Figuur D.2 voor een voorbeeld). We geven ook methodes aan om op een rooster van
cellen macroscopische karakteristieken te meten. Verder beschrijven we ook hoe deze
omgezet kunnen worden naar eenheden in de werkelijke wereld en vice versa.

Vervolgens behandelen we uitgebreid de gedragsmatige aspecten van enkele TCA mo-
dellen die in de literatuur voorkomen. We maken hierbij gebruik van tijd-ruimte dia-
grammen, empirische verbanden tussen de dichtheid en de intensiteit, en histogram-
men die de verdeling van de snelheden, tussenruimtes en tussentijden van de voer-
tuigen weergeven. We maken in het hoofdstuk een onderscheid tussen enkelvoudige
en meervoudige celmodellen (telkens slechts 1 rijstrook). In de eerste soort neemt
een voertuig exact 1 cel in, terwijl in de tweede soort langere voertuigen ondersteund
worden doordat deze meerdere opeenvolgende cellen kunnen innemen. We besluiten
met een kort overzicht van TCA modellen voor meerdere rijstroken, en modellen die
werken op twee-dimensionale roosters van cellen. Het laatste deel van dit hoofdstuk
illustreert enkele van de meer gebruikte analytische benaderingen van enkelvoudige
TCA modellen.
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Figuur D.2: Een schematisch overzicht van de werking van een cellulaire automaat voor een
verkeersstroom met slechts 1 rijstrook. We zien twee tijdsstappen (voertuigen rijden van links
naar rechts), waarbij tussen de tijdstippen t en t + 1 voor alle voertuigen wordt gekeken naar
hun huidige snelheid. Deze snelheid wordt dan op basis van een verzameling gedragsregels
berekend (bijvoorbeeld zo snel mogelijk proberen te rijden zonder op de voorligger te botsen),
waarna de voertuigen hun nieuwe posities innemen.

Gegeven de huidige stand van zaken op het vlak van TCA modellen, toont onze ana-
lyse aan dat het vakgebied gedurende het laatste decennium sterk geëvolueerd is. Dit
is voornamelijk te danken aan de toename in de rekenkracht van de computers. Er
worden complexere modellen ontwikkeld, waarvan het brake-light TCA model (zie
ook paragraaf 4.4.2.2 voor meer details) het meestbelovend lijkt. Aansluitend bij het
overzicht van het vorige hoofdstuk, merken we op dat er een evoluerende trend is om
deze TCA modellen ook in te schakelen als fysieke modellen die het wegverkeer be-
schrijven in multi-agent systemen (bijvoorbeeld in de activiteiten-gebaseerde aanpak
van transportplanningsmodellen). Men beschrijft hier dan het gedrag van een ganse
bevolking voor grootschalige wegennetwerken (i.e., landelijk niveau).

Hoofdstuk 5: Overeenkomende dynamiek van de STCA
en het LWR model

Dit hoofdstuk is gewijd aan het dichten van de kloof die er heerst tussen microsco-
pische en macroscopische modellen, in het bijzonder tussen het stochastische TCA
model van Nagel en Schreckenberg (STCA) [Nag92b] en het eerste-orde macrosco-
pische vloeistofmodel van Lighthill, Whitham en Richards (LWR) [Lig55; Ric56].
We gebruiken hiervoor een alternatieve methode die impliciet de stochasticiteit van
het STCA model in het LWR model betrekt. We veronderstellen dat een stationaire
voorwaarde geldt voor de gedragsregels van de STCA, waarna we deze laatste omzet-
ten in een verzameling lineaire ongelijkheden. Deze definiëren dan de vorm van het
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fundamentele diagram dat vervolgens als parameter van het LWR model kan gezien
worden. We passen onze methode toe op een kleine theoretische gevalsstudie. Hieruit
besluiten we dat het zeer belangrijk is om de capaciteiten in beide systemen goed te
vatten, zeker naarmate de stochastische ruis toeneemt.

Hoofdstuk 6: Data kwaliteit, reistijdschattingen en be-
trouwbaarheid

Dit hoofdstuk legt zich toe op exploratieve data analyse (EDA); we beschouwen hier-
bij alle verkeersmetingen (tellingen) die vergaard worden op het Vlaamse autosnelwe-
gennet. Eerst beschrijven we verschillende manieren om deze metingen te bekomen:
enkelvoudige lusdetectoren in het wegdek, of camera’s geplaatst langs de weg. Verder
bekijken we hoe al deze gegevens in een databank worden bewaard en hoe we deze
kunnen bevragen om bijvoorbeeld dagelijkse patronen te visualiseren. We bestuderen
ook de gemiddelde snelheden die door de vermelde lusdetectoren berekend worden,
en wat hier de effecten van zijn. Vervolgens werken we een methode uit om statisti-
sche uitschieters in de metingen op te sporen, en reiken we verschillende oplossingen
aan om ontbrekende waarden op te vullen.

We ontwikkelen ook een visuele techniek die gebaseerd is op intuı̈tieve kaarten die
een duidelijk overzicht geven van structurele en incidentele storingen van detectors.
Daarnaast werken we een methode uit voor het off-line schatten van reistijden, geba-
seerd op ruwe voertuigtellingen. Hiertoe construeren we eerst twee opeenvolgende
cumulatieve curves van een gesloten wegsectie, waarna we een geautomatiseerde syn-
chronisatie van deze curves uitvoeren, rekening houdend met systematische fouten.
Daarna is het mogelijk om de verdeling van de reistijd te schatten met behulp van een
histogram (zie bijvoorbeeld Figuur D.3). Het laatste deel van dit hoofdstuk bespreekt
enkele tijd-ruimte kaarten die de verkeersdynamica weergeven (voor de E19 autosnel-
weg tussen Antwerpen en Brussel en de R0 ringweg rond Brussel); dit laat toe om
punten met structurele filevorming te identificeren.

Hoofdstuk 7: Dynamische verkeerstoedeling gebaseerd
op cellulaire automaten

Binnen het kader van de modellering van de transportvraag, bestaan er drie grote me-
thodologieën, namelijk trip-gebaseerd, activiteiten-gebaseerd en evenwichtsgebaseerd
(zie ook paragrafen 3.1.2 en 3.1.3) [Boy98]. Deze diversiteit in het vakgebied is een
duidelijk teken dat verschillende technieken worden beschouwd, elk gebaseerd op een
eigen reeks aan ideeën. Ondanks deze verscheidenheid, gebruiken de verschillende
technieken bepaalde aspecten van elkaar. Dit impliceert dat er enige algemene ove-
reenkomsten tussen de modellen te vinden zijn. Bijgevolg, zal een voorspellingsmodel
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Figuur D.3: Bovenaan: De evolutie van de reistijd gedurende een dag, berekend op basis
van cumulatieve curves (zie ook paragraaf 2.3.2.2); de data was afkomstig van enkelvoudige
lusdetectoren over drie rijstroken van de E40 autosnelweg tussen Erpe-Mere and Wetteren, dit
voor maandag 4 april 2003. Zoals te zien, trad er hoogstwaarschijnlijk een incident op rond
11u00, waardoor de reistijd van vier naar zeven minuten toenam. Verder is te zien dat rond
18u45 ’s avonds al het verkeer gelijktijdig vertraagde gedurende een periode van ongeveer tien
minuten. Onderaan: Gebaseerd op de berekende reistijden gedurende de dag, kunnen we een
histogram opstellen dat een benadering geeft van de onderliggende verdeling van de reistijden.
Op de grafiek is te zien dat het gemiddelde rond de vier minuten ligt.

voor transport een geven-en-nemen zijn tussen de verschillende vereisten en wensen
en de huidige stand van zaken.

Kijkende naar de structuur die achter deze methodologieën zit, weten we dat een
kerncomponent in elk van hen gevormd wordt door verkeerstoedeling [Boy04a]. In
dit hoofdstuk beschrijven we eerst enkele benaderingen om dynamische verkeerstoe-
deling te doen, dit vanuit een zowel analytisch als simulatie-gebaseerd standpunt.
Daarna stellen we een methode voor om dynamische verkeerstoedeling uit te voe-
ren, waarbij we de keuze van het vertrektijdstip sequentieel integreren (dit leidt tot
het fenomeen piekspreiding) met dynamische routekeuze. De methode is gebouwd
rond een verkeersstroommodel dat uitgewerkt wordt als een computationeel efficiënte
cellulaire automaat; we geven een functionele beschrijving en enkele implementatie
details, waarna we een techniek bespreken die de efficiëntie nog groter maakt op basis
van parallellisatie door middel van gedistribueerd rekenen. Bij dit laatste wordt de
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werklast verdeeld over een aantal gescheiden rekeneenheden (zie ook Figuur D.4 voor
een illustratief overzicht). In het laatste deel van het hoofdstuk, geven we een kort
overzicht van enkele mogelijke toepassingen, zoals schatting van de verkeerstoestand,
duurzaamheidseffecten van verkeersbeheerssystemen en het schatten van de impact
van verkeersmaatregelen.

Figuur D.4: Het idee achter gedistribueerd rekenen in een verkeersstroommodel: een com-
puter (master) stuurt enkele rekeneenheden (computer farm) aan in een heterogene rekenom-
geving (e.g., verschillende soorten computers). Al deze rekeneenheden werken samen, waarbij
de rekenlast van het totale wegennet over hen verdeeld wordt. In het voorbeeld zien we drie
grote autosnelwegen gemodelleerd, waarbij verschillende gegroepeerde rekeneenheden de ver-
antwoordelijkheid over een autosnelweg krijgen toegewezen.

Hoofdstuk 8: Besluiten

In dit proefschrift werd gekeken naar de stand van zaken met betrekking tot de mo-
dellering van het verkeer op autosnelwegen, de numerieke data analyse van ruwe ver-
keersmetingen (tellingen) en de integratie van de keuze van vertrektijdstip en rou-
te in dynamische verkeerstoedeling. Met betrekking tot de literatuur onderscheiden
onze bijdragen zich doordat ze een synthese vormen van de benaderingen voor het
beschrijven van wegverkeer, terwijl dergelijke samenvattingen tot op heden enkel ver-
spreid bestonden. Om een globaal beeld te krijgen met betrekking tot de kwaliteit van
verkeersmetingen, bieden wij daarnaast methodes aan die kunnen omgaan met groot-
schalige data, dit in tegenstelling tot het meeste onderzoek naar de numerieke analyse
van verkeersmetingen wat vaak slechts op beperkte data wordt uitgevoerd. Tenslotte
met betrekking tot de vele benaderingen van het paradigma van simulatie-gebaseerde
dynamische verkeerstoedeling, stellen wij een methodologie voor die de keuze van het
vertrektijdstip sequentieel met de routekeuze integreert.
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[Fre95] J. Freund and T. Pöschel. A statistical approach to vehicular traffic. Physica A,
volume 219:pages 95–113, 1995.

[Fre99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces: Principles, Patterns and Prac-
tice. Addison-Wesley, 3rd edition, Nov 1999. ISBN 0-201-30955-6.

[Fuk93] M. Fukui and Y. Ishibashi. Evolution of traffic jam in traffic flow model. Journal of
the Physical Society of Japan, volume 62(11):pages 3841–3844, Nov 1993.

[Fuk96] M. Fukui and Y. Ishibashi. Traffic flow in 1D cellular automaton model in-
cluding cars moving with high speed. Journal of the Physical Society of Japan,
volume 65(6):pages 1868–1870, 1996.

[Fuk97] M. Fukui and Y. Ishibashi. Effect of delay in restarting of stopped cars in
a one-dimensional traffic model. Journal of the Physical Society of Japan,
volume 66(2):pages 385–387, Feb 1997.

[Fuk98] H. Fukś and N. Boccara. Generalized deterministic traffic rules. International
Journal of Modern Physics C, volume 9:pages 1–12, 1998.
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[Fuk01] H. Fukś and N. Boccara. Convergence to equilibrium in a class of interacting particle
systems evolving in discrete time. Physical Review E, volume 64(1):page 016117,
Jul 2001.
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1992.

[Lev93] D. Levinson and A. Kumar. Integrating feedback into the transportation planning
model: Structure and application. In Proceedings of the 72nd Annual Meeting of
Transportation Research Board. Washington, D.C., Jan 1993.

[LeV01] R. J. LeVeque. Some traffic flow models illustrating interesting hyperbolic behavior.
In Minisymposium on Traffic Flow. SIAM Annual Meeting, Jul 2001.

[LeV03] R. J. LeVeque. CLAWPACK Version 4.2 User’s Guide. University of Washington,
Dec 2003.

[Li90] W. Li and N. Packard. The structure of the elementary cellular automata rule space.
Complex Systems, volume 4:pages 281–297, 1990.

[Li02] B. Li and B. De Moor. Dynamic identification of origin-destination matrices in the
presence of incomplete observations. Transportation Research B, volume 36:pages
37–57, 2002.

[Li03] T. Li. Global solutions of nonconcave hyperbolic laws with relaxation arising from
traffic flow. Journal of Differential Equations, volume 190:pages 131–149, 2003.

[Lig55] M. Lighthill and G. Whitham. On kinematic waves: II. A theory of traffic flow on
long crowded roads. In Proceedings of the Royal Society, volume A229, pages 317–
345. 1955.



i

i

i

i

i

i

i

i

402 References

[Lim00] Q. Limited. Paramics-online v3 – System Overview. Technical report, Quadstone
Limited, 16 Chester Street, Edinburgh EH3 7RA, Scotland, Nov 2000.
(URL: http://www.paramics-online.com).

[Lim05] Y. Lim and B. Heydecker. Dynamic departure time and stochastic user equilibrium
assignment. Transportation Research B, volume 39:pages 97–118, 2005.

[Lin95] W.-H. Lin and D. Ahanotu. Validating the Basic Cell Transmission Model on a Single
Freeway Link. PATH technical note 95-3, Institute of Transportation Studies, Univer-
sity of California, Berkeley, 1995.

[Lin00] R. Lindsey and E. Verhoef. Congestion modeling. In D. Hensher and K. Button,
editors, Handbook of Transportation Modelling, chapter 21. Elsevier Science, Ltd.,
2000.

[Lin01] R. Lindsey and E. Verhoef. Traffic congestion and congestion pricing. In D. Hensher
and K. Button, editors, Handbook of Transport Systems and Traffic Control, pages
77–105. Elsevier/Pergamon, Amsterdam, 2001.

[Lin03] M. Linauer and D. Leihs. Generating floating car data using GSM-network. In Pro-
ceedings of the 10th World Congress and Exhibition on Intelligent Transport Systems
and Services (ITSS03). Madrid, Spain, Nov 2003.

[Lin04] J. van Lint. Reliable travel time prediction for freeways. Ph.D. thesis, Technische
Universiteit Delft, May 2004.

[Lin05] R. Lindgren. Analysis of Flow Features in Queued Traffic on a German Freeway.
Ph.D. thesis, Portland State University, 2005.

[Lit87] R. Little and D. Rubin. Statistical Analysis with Missing Data. J. Wiley & Sons, New
York, 1987.

[Liu02] H. X. Liu, X. Ban, B. Ran, and P. Mirchandani. An analytical dynamic traffic assign-
ment model with probabilistic travel times and perceptions. Transportation Research
Record, 2002.

[Lo99] H. K. Lo. A dynamic traffic assignment formulation that encapsulates the cell-
transmission model. In A. Cedar, editor, Transportation and Traffic Traffic Theory,
pages 327–350. Elsevier Science, 1999.

[Lo02] H. K. Lo and W. Szeto. A cell-based variational inequality formulation of
the dynamic user optimal assignment problem. Transportation Research B,
volume 36:pages 421–443, 2002.

[Lo04] H. K. Lo and W. Szeto. Modeling advanced traveler information services: static
versus dynamic paradigms. Transportation Research B, volume 38(6):pages 495–
515, Jul 2004.

[Lo05] H. K. Lo and W. Szeto. Road pricing modeling for hyper-congestion. Transportation
Research A, 2005.

[Log03a] S. Logghe. Dynamic modeling of heterogeneous vehicular traffic. Ph.D. thesis,
Katholieke Universiteit Leuven, Jun 2003.

http://www.paramics-online.com


i

i

i

i

i

i

i

i

References 403

[Log03b] S. Logghe and B. Immers. Heterogeneous traffic flow modelling with the lwr model
using passenger-car equivalents. In Proceedings of the 10th World Congress and
Exhibition on Intelligent Transport Systems and Services (CD-ROM). ERTICO, ITS
Europe, Madrid, Spain, Nov 2003.

[Log04] S. Logghe and F. Vanhove. Het Belgische verkeer in cijfers. 2004-01, Transport &
Mobility Leuven, Jan 2004.

[Log05a] S. Logghe and F. Vanhove. De betrouwbaarheid van Belgische verkeersdetectoren.
2nd draft, Transport & Mobility Leuven, Mar 2005.

[Log05b] LogicaCMG. Get moving faster with Mobile Traffic Services, 2005.

[Log05c] LogicaCMG. MTS Quality Assessment Results, 2005.

[Lud98] J. Ludmann. Beeinflussung des Verkehrsablaufs auf Straßen – Analyse mit dem
fahrzeugorientierten Verkehrssimulationsprogramm PELOPS. Ph.D. thesis, Institut
für Kraftfahrwesen Aachen, 1998.

[Luk72] J. Luke. Mathematical models for landform evolution. Journal of Geophysical Re-
search, volume 77:pages 2460–2464, 1972.

[Lus03] E. Lusk. MPI-2: Extensions to the Message-Passing Interface. Message Passing
Interface Forum, Nov 2003.

[Mae01a] S. Maerivoet. Advanced Computer Graphics using OpenGL. Universitaire Instelling
Antwerpen, Department of Mathematics and Computer Science, 2001.

[Mae01b] S. Maerivoet. Het gebruik van microscopische verkeerssimulatie bij een onderzoek
naar de fileproblematiek op de Antwerpse Ring. Master’s thesis, Universitaire In-
stelling Antwerpen, Jun 2001. Promotor: prof. dr. Serge Demeyer.

[Mae03a] S. Maerivoet, S. Logghe, B. D. Moor, and B. Immers. A comparison of a cellular
automaton and a macroscopic model. In P. Bovy, S. Hoogendoorn, M. Schrecken-
berg, and D. Wolf, editors, Proceedings of the Workshop on Traffic and Granular
Flow ’03, pages 199–204. Delft University of Technology, Springer, 2004, Delft,
The Netherlands, Oct 2003.

[Mae03b] S. Maerivoet and B. D. Moor. Development of an improved traffic cellular auto-
maton model for traffic flows on a highway road network. In Proceedings of the
10th World Congress and Exhibition on Intelligent Transport Systems and Services
(CD-ROM). ERTICO, ITS Europe, Madrid, Spain, Nov 2003.

[Mae04a] S. Maerivoet. Efficient microscopic simulation of large scale highway traffic flows.
In 23rd Benelux Meeting on Systems and Control. Helvoirt, The Netherlands, Mar
2004.

[Mae04b] S. Maerivoet. Models in Aid of Traffic Management. Seminar slides for ‘Trans-
portmodellen ter ondersteuning van het mobiliteits- en vervoersbeleid’, May 2004.
Federaal Wetenschapsbeleid, Belgium.

[Mae04c] S. Maerivoet. Traffic: an Interplay between Models, Simulations, and Control Ac-
tions. Slides presented at the Friday Seminar (Universiteit Antwerpen), Mar 2004.



i

i

i

i

i

i

i

i

404 References

[Mae04d] S. Maerivoet. Traffic Cellular Automata. Java software tested with JDK 1.3.1, 2004.
(URL: http://smtca.dyns.cx).

[Mae04e] S. Maerivoet. Sustainability effects of traffic management systems. In The Transport
Science and Technology Congress, Athens, Greece, 2004. Sep 2004. Slides presented
at TransTec 2004.

[Mae04f] S. Maerivoet and B. De Moor. Advancing density waves and phase transitions in
a velocity dependent randomization traffic cellular automaton. 03-111, Katholieke
Universiteit Leuven, Oct 2004.

[Mae04g] S. Maerivoet and B. De Moor. Non-concave fundamental diagrams and phase trans-
itions in a stochastic traffic cellular automaton. The European Physical Journal B –
Condensed Matter Physics, volume 42(1):pages 131–140, Nov 2004.

[Mae05] S. Maerivoet and B. D. Moor. Cellular automata models of road traffic. Physics
Reports, volume 419(1):pages 1–64, Nov 2005.

[Mae06] S. Maerivoet and B. D. Moor. Sustainability Effects of Traffic Management Systems.
TR 06-033, Department of Electrical Engineering ESAT-SCD (SISTA), Katholieke
Universiteit Leuven, Mar 2006. Final report for the DWTC PODO-II - CP/40 project.

[Mag00] L. Magne, S. Rabut, and J.-F. Gabard. Towards an hybrid macro-micro traffic flow
simulation model. In INFORMS Salt Lake City Spring 2000 Conference. May 2000.

[Mah36] P. C. Mahalanobis. On the generalized distance in statistics. Proceedings of the
National Institute of Science of India, volume 2(49), 1936.

[Mah04] B. P. Mahanti. Aggregate Calibration of Microscopic Traffic Simulation Models.
Master’s thesis, Massachusetts Institute of Technology, Sep 2004.
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[Ran03] B. Raney, N. Cetin, A. Völlmy, M. Vrtic, K. Axhausen, and K. Nagel. An agent-
based microsimulation model of swiss travel – first results. Networks and Spatial
Economics, volume 3:pages 23–41, 2003.

[Ras02] M. Rascle. An improved macroscopic model of traffic flow: Derivation and links with
the lighthill-whitham model. Mathematical and Computer Modelling, (35):pages
581–590, 2002.

[Ray00] E. S. Raymond. The Cathedral and the Bazaar, 2000.

[Rec86a] W. Recker, M. McNally, and G. Root. A model of complex travel behavior: Part I –
theory. Transportation Research A, volume 20(4):pages 307–318, 1986.

[Rec86b] W. Recker, M. McNally, and G. Root. A model of complex travel behavior: Part II -
operational model. Transportation Research A, volume 20(4):pages 319–330, 1986.

[Rec95] W. Recker. The household activity pattern problem: General formulation and solu-
tion. Transportation Research B, volume 29(1):pages 61–77, 1995.

[Reu50] A. Reuschel. Fahrzeugbewegungen in der Kolonne bei gleichfoermig beschleunigtem
oder verzoegertem Leifahrzeug. Z Oesterr Ingr Architekt Vereines, volume 95:pages
59–62,73–77, 1950.

[Ric56] P. I. Richards. Shockwaves on the highway. Operations Research, volume 4:pages
42–51, 1956.

[Ric96a] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations
using cellular automata. Physica A, volume 231:page 534, 1996.

[Ric96b] M. Rickert and P. Wagner. Parallel real-time implementation of large-scale,
route-plan-driven traffic simulation. Internation Journal of Modern Physics C,
volume 7(2):pages 133–153, 1996.

[Ric96c] M. Rickert, P. Wagner, and C. Gawron. Real-time traffic simulation of the German
Autobahn network. In Proceedings of the 4th Workshop on Parallel Systems and
Algorithms PASA’96. World Scientific Publishing Co. Pte. Ltd., 1996.

[Ric97] M. Rickert. Traffic Simulation on Distributed Memory Computers. Ph.D. thesis,
Universität zu Köln, Dec 1997.
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