

Making
Things Talk
Second Edition

Tom Igoe

BEIJING • CAMBRIDGE • FARNHAM • KÖLN • SEBASTOPOL • TOKYO

Making Things Talk

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The MAKE: Projects series

designations, Making Things Talk, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of

the trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author

assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

Please note: Technology, and the laws and limitations imposed by manufacturers and content owners,

are constantly changing. Thus, some of the projects described may not work, may be inconsistent

with current laws or user agreements, or may damage or adversely affect some equipment.

Your safety is your own responsibility, including proper use of equipment and safety gear, and

determining whether you have adequate skill and experience. Power tools, electricity, and other

resources used for these projects are dangerous unless used properly and with adequate precautions,

including safety gear. Some illustrative photos do not depict safety precautions or equipment, in

order to show the project steps more clearly. These projects are not intended for use by children.

Use of the instructions and suggestions in Making Things Talk is at your own risk. O’Reilly Media, Inc.,

disclaims all responsibility for any resulting damage, injury, or expense. It is your responsibility to

make sure that your activities comply with applicable laws, including copyright.

ISBN: 978-1-449-39243-7

[TI]

by Tom Igoe

Copyright © 2011 O’Reilly Media, Inc. All rights reserved. Printed in Canada.

Published by O’Reilly Media, Inc.

1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.

For more information, contact our corporate/institutional sales department:

800-998-9938 or corporate@oreilly.com.

Print History

September 2007

First Edition

September 2011

Second Edition

Editor: Brian Jepson

Proofreader: Marlowe Shaeffer

Cover Designer: Karen Montgomery

Production Editor: Adam Zaremba

Indexer: Lucie Haskins

Cover Photograph: Tom Igoe

Contents

Preface . vii
Who This Book Is For . viii
What You Need to Know . ix
Contents of This Book . ix
On Buying Parts . x
Using Code Examples . xi
Using Circuit Examples . xi
Acknowledgments for the First Edition . xii
Note on the Second Edition . xiv

Chapter 1: The Tools .1
It Starts with the Stuff You Touch . 2
It’s About Pulses . 2
Computers of All Shapes and Sizes . 3
Good Habits . 4
Tools . 5
Using the Command Line . 13
Using an Oscilloscope . 34
It Ends with the Stuff You Touch . 35

Chapter 2: The Simplest Network . 37
Supplies for Chapter 2 . 38
Layers of Agreement . 40
Making the Connection: The Lower Layers . 42

Project 1: Type Brighter . 46
Project 2: Monski Pong . 50

Flow Control . 62
Project 3: Wireless Monski Pong . 64
Project 4: Negotiating in Bluetooth . 68

Conclusion . 72

Chapter 3: A More Complex Network . 75
Supplies for Chapter 3 . 76
Network Maps and Addresses . 77

Project 5: Networked Cat . 89
Conclusion . 112

Chapter 4: Look, Ma, No Computer! Microcontrollers on the Internet . 115
Supplies for Chapter 4 .117
Introducing Network Modules . 118

Project 6: Hello Internet! . 120
An Embedded Network Client Application . 127

Project 7: Networked Air-Quality Meter . 127
Programming and Troubleshooting Tools for Embedded Modules . 140
Conclusion . 147

Chapter 5: Communicating in (Near) Real Time . 149
Supplies for Chapter 5 . 150
Interactive Systems and Feedback Loops . 151
Transmission Control Protocol: Sockets & Sessions . 152

Project 8: Networked Pong . 153
The Clients . 155
Conclusion . 178

Chapter 6: Wireless Communication .181
Supplies for Chapter 6 . 182
Why Isn’t Everything Wireless? . 184
Two Flavors of Wireless: Infrared and Radio . 185

Project 9: Infrared Control of a Digital Camera . 188
How Radio Works . 190

Project 10: Duplex Radio Transmission . 193
Project 11: Bluetooth Transceivers .206

Buying Radios . 216
What About WiFi? . 216

Project 12: Hello WiFi! . 217
Conclusion .220

Chapter 7: Sessionless Networks . 223
Supplies for Chapter 7 . 224
Sessions vs. Messages . 226
Who’s Out There? Broadcast Messages . 227

Project 13: Reporting Toxic Chemicals in the Shop . 232
Directed Messages . 246

Project 14: Relaying Solar Cell Data Wirelessly . 248
Conclusion . 258

Chapter 8: How to Locate (Almost) Anything . 261
Supplies for Chapter 8 . 262
Network Location and Physical Location . 264
Determining Distance . 267

Project 15: Infrared Distance Ranger Example . 268
Project 16: Ultrasonic Distance Ranger Example . 270
Project 17: Reading Received Signal Strength Using XBee Radios . 273
Project 18: Reading Received Signal Strength Using Bluetooth Radios . 276

Determining Position Through Trilateration . 277
Project 19: Reading the GPS Serial Protocol . 278

Determining Orientation . 286
Project 20: Determining Heading Using a Digital Compass . 286
Project 21: Determining Attitude Using an Accelerometer .290

Conclusion . 299

Chapter 9: Identification . 301
Supplies for Chapter 9 .302
Physical Identification .304

Project 22: Color Recognition Using a Webcam .306
Project 23: Face Detection Using a Webcam . 310
Project 24: 2D Barcode Recognition Using a Webcam . 313
Project 25: Reading RFID Tags in Processing . 318
Project 26: RFID Meets Home Automation . 321
Project 27: Tweets from RFID . 329

Network Identification . 353
Project 28: IP Geocoding . 355

Conclusion .360

Chapter 10: Mobile Phone Networks and the Physical World . 363
Supplies for Chapter 10 . 364
One Big Network .366

Project 29: CatCam Redux . 369
Project 30: Phoning the Thermostat . 386

Text-Messaging Interfaces . 393
Native Applications for Mobile Phones .396

Project 31: Personal Mobile Datalogger . 401
Conclusion . 415

Chapter 11: Protocols Revisited .417
Supplies for Chapter 11 . 418
Make the Connections . 419
Text or Binary? . 422
MIDI . 425

Project 32: Fun with MIDI . 427
Representational State Transfer . 435

Project 33: Fun with REST . 437
Conclusion .440

Appendix: Where to Get Stuff . 443
Supplies .444
Hardware . 447
Software . 452

Index . 455

vi MAKING THINGS TALK

Preface
A few years ago, Neil Gershenfeld wrote a smart book called When

Things Start to Think. In it, he discussed a world in which everyday

objects and devices are endowed with computational power: in other

words, today. He talked about the implications of devices that exchange

information about our identities, abilities, and actions. It’s a good read,

but I think he got the title wrong. I would have called it When Things

Start to Gossip, because—let’s face it—even the most exciting thoughts

are worthwhile only once you start to talk to someone else about them.

Making Things Talk teaches you how to make things that have compu-

tational power talk to each other, and about giving people the ability to

use those things to communicate.

Making Things Talk
MAKE: PROJECTS

viii MAKING THINGS TALK

For a couple of decades now, computer scientists have
used the term object-oriented programming to refer to a
style of software development in which programs and sub-
programs are thought of as objects. Like physical objects,
they have properties and behaviors. They inherit these
properties from the prototypes from which they descend.
The canonical form of any object in software is the code
that describes its type. Software objects make it easy to
recombine objects in novel ways. You can reuse a software
object if you know its interface—the collection of proper-
ties and methods to which its creator allows you access
(as well as the documents so that you know how to use
them). It doesn’t matter how a software object does what
it does, as long as it does it consistently. Software objects
are most effective when they’re easy to understand and
when they work well with other objects.

Who This Book Is For
This book is written for people who want to make things talk to other things. Maybe you’re

a science teacher who wants to show your students how to monitor weather conditions

at several locations around your school district simultaneously, or a sculptor who wants

to make a whole room of choreographed mechanical sculptures. You might be an industrial

designer who needs to be able to build quick mockups of new products, modeling both their

forms and their functions. Maybe you’re a cat owner, and you’d like to be able to play with

your cat while you’re away from home. This book is a primer for people with little technical

training and a lot of interest. This book is for people who want to get projects done.

The main tools in this book are personal computers, web
servers, and microcontrollers, the tiny computers inside
everyday appliances. Over the past decade, microcontrollers
and their programming tools have gone from being arcane
items to common, easy-to-use tools. Elementary school
students are using the tools that baffled graduate students
only a decade ago. During that time, my colleagues and
I have taught people from diverse backgrounds (few of
them computer programmers) how to use these tools to
increase the range of physical actions that computers can
respond to, sense, and interpret.

In recent years, there’s been a rising interest among
people using microcontrollers to make their devices not

only sense and control the physical world, but also talk to
other things about what they’re sensing and controlling.
If you’ve built something with a Basic Stamp or a Lego
Mindstorms kit, and want to make that thing communicate
with things you or others have built, this book
is for you. It is also useful for software programmers
familiar with networking and web services who want an
introduction to embedded network programming.

If you’re the type of person who likes to get down to
the very core of a technology, you may not find what
you’re looking for in this book. There aren’t detailed code
samples for Bluetooth or TCP/IP stacks, nor are there
circuit diagrams for Ethernet controller chips. The

In the physical world, we’re surrounded by all kinds of
electronic objects: clock radios, toasters, mobile phones,
music players, children’s toys, and more. It can take a
lot of work and a significant amount of knowledge to make
a useful electronic gadget—it can take almost as much
knowledge to make those gadgets talk to each other in
useful ways. But that doesn’t have to be the case. Electronic
devices can be—and often are—built up from simple
modules. As long as you understand the interfaces, you
can make anything from them. Think of it as object-oriented
hardware. Understanding the ways in which things talk to
each other is central to making this work, regardless of
whether the object is a toaster, an email program on your
laptop, or a networked database. All of these objects can
be connected if you can figure out how they communicate.
This book is a guide to some of the tools for making those
connections.
X

PREFACE ix

Many people whose programming experience begins
with microcontrollers can do wonderful things with some
sensors and a couple of servomotors, but they may not
have done much to enable communication between
the microcontroller and other programs on a personal
computer. Similarly, many experienced network and
multimedia programmers have never experimented with
hardware of any sort, including microcontrollers. If you’re
either of these people, this book is for you. Because the
audience of this book is diverse, you may find some of
the introductory material a bit simple, depending on your
background. If so, feel free to skip past the stuff you know
to get to the meatier parts.

If you’ve never used a microcontroller, you’ll need a little
background before starting this book. I recommend you
read my previous book, Physical Computing: Sensing
and Controlling the Physical World with Computers
(Thomson), co-authored with Dan O’Sullivan, which

What You Need to Know
In order to get the most from this book, you should have a basic knowledge of electronics

and programming microcontrollers, some familiarity with the Internet, and access to both.

Contents of This Book
This book explains the concepts that underlie networked objects and then provides

recipes to illustrate each set of concepts. Each chapter contains instructions for building

working projects that make use of the new ideas introduced in that chapter.

In Chapter 1, you’ll encounter the major programming
tools in the book and get to “Hello World!” on each of them.

Chapter 2 introduces the most basic concepts needed to
make things talk to each other. It covers the characteristics
that need to be agreed upon in advance, and how keeping

those things separate in your mind helps troubleshooting.
You’ll build a simple project that features one-to-one serial
communication between a microcontroller and a personal
computer using Bluetooth radios as an example of modem
communication. You’ll learn about data protocols, modem
devices, and address schemes.

components used here strike a balance between simplic-
ity, flexibility, and cost. They use object-oriented hardware,
requiring relatively little wiring or code. They’re designed

to get you to the end goal of making things talk to each
other as quickly as possible.
X

introduces the fundamentals of electronics, microcon-
trollers, and physical interaction design.

You should also have a basic understanding of computer
programming before reading much further. If you’ve never
done any programming, check out the Processing pro-
gramming environment at www.processing.org. Processing
is a simple language designed to teach nonprogrammers
how to program, yet it’s powerful enough to do a number
of advanced tasks. It will be used throughout this book
whenever graphic interface programming is needed.

This book includes code examples in a few different pro-
gramming languages. They’re all fairly simple examples,
so if you don’t want to work in the languages provided, you
can use the comments in these examples to rewrite them
in your favorite language.
X

x MAKING THINGS TALK

Jameco (http://jameco.com), Digi-Key (www.digikey.
com), and Farnell (www.farnell.com) are general electron-
ics parts retailers, and they sell many of the same things.
Others, like Maker Shed (www.makershed.com), SparkFun
(www.sparkfun.com), and Adafruit (http://adafruit.com)
carry specialty components, kits, and bundles that make
it easy to do popular projects. A full list of suppliers is
included in the Appendix. Feel free to substitute parts for
things with which you are familiar.

Because it’s easy to order goods online, you might be
tempted to communicate with vendors entirely through
their websites. Don’t be afraid to pick up the phone as well.
Particularly when you’re new to this type of project, it
helps to talk to someone about what you’re ordering and to
ask questions. You’re likely to find helpful people at the end
of the phone line for most of the retailers listed here. I’ve
listed phone numbers wherever possible—use them.
X

On Buying Parts
You’ll need a lot of parts for all of the projects in this book. As a result, you’ll learn about

a lot of vendors. Because there are no large electronics parts retailers in my city, I buy

parts online all the time. If you’re lucky enough to live in an area where you can buy from

a brick-and-mortar store, good for you! If not, get to know some of these online vendors.

Chapter 3 introduces a more complex network: the
Internet. It discusses the basic devices that hold it
together, as well as the basic relationships among those
devices. You’ll see the messages that underlie some of the
most common tasks you do on the Internet every day, and
learn how to send those messages. You’ll write your first
set of programs to send data across the Net based on a
physical activity in your home.

In Chapter 4, you’ll build your first embedded device. You’ll
get more experience with command-line connections to
the Net, and you’ll connect a microcontroller to a web
server without using a desktop or laptop computer as an
intermediary.

Chapter 5 takes the Net connection a step further by
explaining socket connections, which allow for longer
interaction. You’ll learn how to write your own server
program that you can connect to anything connected to
the Net. You’ll connect to this server program from the
command line and from a microcontroller, so that you can
understand how different types of devices can connect to
each other through the same server.

Chapter 6 introduces wireless communication. You’ll learn
some of the characteristics of wireless, along with its pos-
sibilities and limitations. Several short examples in this
chapter enable you to say “Hello World!” over the air in a
number of ways.

Chapter 7 offers a contrast to the socket connections of
Chapter 5, by introducing message-based protocols like
UDP on the Internet, and ZigBee and 802.15.4 for wireless
networks. Instead of using the client-server model from
earlier chapters, here you’ll learn how to design conversa-
tions where each object in a network is equal to the others,
exchanging information one message at a time.

Chapter 8 is about location. It introduces a few tools to
help you locate things in physical space, and it offers some
thoughts on the relationship between physical location and
network relationships.

Chapter 9 deals with identification in physical space and
network space. You’ll learn a few techniques for generat-
ing unique network identities based on physical charac-
teristics. You’ll also learn a bit about how to determine a
networked device’s characteristics.

Chapter 10 introduces mobile telephony networks, covering
many of the things that you can now do with phones and
phone networks.

Chapter 11 provides a look back at the different types of
protocols covered in this book, and gives you a framework
to fit them all into for future reference.
X

PREFACE xi

For example, writing a program that uses several chunks of
code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing
this book and quoting example code does not require
permission. Incorporating a significant amount of example
code from this book into your product’s documentation
does require permission.

We appreciate attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example:
“Making Things Talk: Practical Methods for Connecting
Physical Objects, by Tom Igoe. Copyright 2011 O’Reilly
Media, 978-1-4493-9243-7.” If you feel that your use of
code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@
oreilly.com.
X

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in

this book in your programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code.

Even though we want you to be adventurous, we also want
you to be safe. Please don’t take any unnecessary risks
when building this book’s projects. Every set of instruc-
tions is written with safety in mind; ignore the safety
instructions at your own peril. Be sure you have the appro-
priate level of knowledge and experience to get the job
done in a safe manner.

Using Circuit Examples
In building the projects in this book, you’re going to break things and void warranties.

If you’re averse to this, put this book down and walk away. This is not a book for those

who are squeamish about taking things apart without knowing whether they’ll go back

together again.

Please keep in mind that the projects and circuits shown
in this book are for instructional purposes only. Details like
power conditioning, automatic resets, RF shielding, and
other things that make an electronic product certifiably
ready for market are not included here. If you’re designing
real products to be used by people other than yourself,
please do not rely on this information alone.
X

xii MAKING THINGS TALK

The Interactive Telecommunications Program in the Tisch
School of the Arts at New York University has been my
home for more than the past decade. It is a lively and
warm place to work, crowded with many talented people.
This book grew out of a class, Networked Objects, that I
have taught there for several years. I hope that the ideas
herein represent the spirit of the place and give you a
sense of my enjoyment in working there.

Red Burns, the department’s founder, has supported
me since I first entered this field. She indulged my many
flights of fancy and brought me firmly down to earth when
needed. On every project, she challenges me to make sure
that I use technology not for its own sake, but always so it
empowers people.

Dan O’Sullivan, my colleague and now chair of the program,
introduced me to physical computing and then generously
allowed me to share in teaching it and shaping its role at
ITP. He is a great advisor and collaborator, and offered
constant feedback as I worked. Most of the chapters
started with a rambling conversation with Dan. His finger-
prints are all over this book, and it’s a better book for it.

Clay Shirky, Daniel Rozin, and Dan Shiffman were also
close advisors on this project. Clay watched indulgently as
the pile of parts mounted in our office, and he graciously
interrupted his own writing to give opinions on my ideas.
Daniel Rozin offered valuable critical insight as well, and
his ideas are heavily influential in this book. Dan Shiffman
read many drafts and offered helpful feedback. He also
contributed many great code samples and libraries.

Fellow faculty members Marianne Petit, Nancy Hechinger,
and Jean-Marc Gauthier were supportive throughout this
writing, offering encouragement and inspiration, covering
departmental duties for me, and offering inspiration
through their own work.

The rest of the faculty and staff at ITP also made this
possible. George Agudow, Edward Gordon, Midori Yasuda,
Megan Demarest, Nancy Lewis, Robert Ryan, John Duane,
Marlon Evans, Tony Tseng, and Gloria Sed tolerated all
kinds of insanity in the name of physical computing and

Acknowledgments for the First Edition
This book is the product of many conversations and collaborations. It would not have

been possible without the support and encouragement of my own network.

networked objects, and made things possible for the
other faculty and me, as well as the students. Research
residents Carlyn Maw, Todd Holoubek, John Schimmel,
Doria Fan, David Nolen, Peter Kerlin, and Michael Olson
assisted faculty and students over the past few years
to realize projects that influenced the ones you see in
these chapters. Faculty members Patrick Dwyer, Michael
Schneider, Greg Shakar, Scott Fitzgerald, Jamie Allen,
Shawn Van Every, James Tu, and Raffi Krikorian have used
the tools from this book in their classes, or have lent their
own techniques to the projects described here.

The students of ITP have pushed the boundaries of pos-
sibility in this area, and their work is reflected in many
of the projects. I cite specifics where they come up, but
in general, I’d like to thank all the students who took my
Networked Objects class—they helped me understand
what this is all about. Those from the 2006 and 2007
classes were particularly influential, because they had to
learn the stuff from early drafts of this book. They have
caught several important mistakes in the manuscript.

A few people contributed significant amounts of code,
ideas, or labor to this book. Geoff Smith gave me the
original title for the course, Networked Objects, and intro-
duced me to the idea of object-oriented hardware. John
Schimmel showed me how to get a microcontroller to
make HTTP calls. Dan O’Sullivan’s server code was the
root of all of my server code. All of my Processing code
is more readable because of Dan Shiffman’s coding style
advice. Robert Faludi contributed many pieces of code,
made the XBee examples in this book simpler to read, and
corrected errors in many of them. Max Whitney helped
me get Bluetooth exchanges working and get the cat bed
finished (despite her allergies!). Dennis Crowley made the
possibilities and limitations of 2D barcodes clear to me.
Chris Heathcote heavily influenced my ideas on location.
Durrell Bishop helped me think about identity. Mike
Kuniavsky and the folks at the “Sketching in Hardware”
workshops in 2006 and 2007 helped me see this work
as part of a larger community, and introduced me to a lot
of new tools. Noodles the cat put up with all manner of
silliness in order to finish the cat bed and its photos. No
animals were harmed in the making of this book, though
one was bribed with catnip.

PREFACE xiii

Casey Reas and Ben Fry made the software side of this
book possible by creating Processing. Without Processing,
the software side of networked objects was much more
painful. Without Processing, there would be no simple,
elegant programming interface for Arduino and Wiring. The
originators of Arduino and Wiring made the hardware side
of this book possible: Massimo Banzi, Gianluca Martino,
David Cuartielles, and David Mellis on Arduino; Hernando
Barragán on Wiring; and Nicholas Zambetti bridging the
two. I have been lucky to work with them.

Though I’ve tried to use and cite many hardware vendors
in this book, I must give a special mention to Nathan
Seidle at Spark Fun. This book would not be what it is
without him. While I’ve been talking about object-oriented
hardware for years, Nathan and the folks at SparkFun have
been quietly making it a reality.

Thanks also to the support team at Lantronix. Their
products are good and their support is excellent. Garry
Morris, Gary Marrs, and Jenny Eisenhauer answered my
countless emails and phone calls helpfully and cheerfully.

In this book’s projects, I drew ideas from many colleagues
from around the world through conversations in workshops
and visits. Thanks to the faculty and students I’ve worked
with at the Royal College of Art’s Interaction Design program,
UCLA’s Digital Media | Arts program, the Interaction Design
program at the Oslo School of Architecture and Design,
Interaction Design Institute Ivrea, and the Copenhagen
Institute of Interaction Design.

Many networked object projects inspired this writing.
Thanks to those whose work illustrates the chapters:
Tuan Anh T. Nguyen, Joo Youn Paek, Doria Fan, Mauricio
Melo, and Jason Kaufman; Tarikh Korula and Josh
Rooke-Ley of Uncommon Projects; Jin-Yo Mok, Alex Beim,
Andrew Schneider, Gilad Lotan and Angela Pablo; Mouna
Andraos and Sonali Sridhar; Frank Lantz and Kevin Slavin
of Area/Code; and Sarah Johansson.

Working for MAKE has been a great experience. Dale
Dougherty encouraged of all of my ideas, dealt patiently
with my delays, and indulged me when I wanted to try new
things. He’s never said no without offering an acceptable
alternative (and often a better one). Brian Jepson has gone
above and beyond the call of duty as an editor, building all
of the projects, suggesting modifications, debugging code,
helping with photography and illustrations, and being

endlessly encouraging. It’s an understatement to say that
I couldn’t have done this without him. I could not have
asked for a better editor. Thanks to Nancy Kotary for her
excellent copyedit of the manuscript. Katie Wilson made
this book far better looking and readable than I could ever
have hoped. Thanks also to Tim Lillis for the illustrations.
Thanks to all of the MAKE team.

Thanks to my agents: Laura Lewin, who got the ball rolling;
Neil Salkind, who picked it up from her; and the whole
support team at Studio B. Thanks finally to my family and
friends who listened to me rant enthusiastically or complain
bitterly as this book progressed. Much love to you all.
X

We’d Like to Hear from You
Please address comments and questions concerning this book

to the publisher:

O’Reilly Media, Inc .

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a website for this book, where we list errata,

examples, and any additional information. You can access

this page at: www.makezine.com/go/MakingThingsTalk

To comment or ask technical questions about this book,

send email to: bookquestions@oreilly.com

Maker Media is a division of O’Reilly Media devoted entirely

to the growing community of resourceful people who believe

that if you can imagine it, you can make it. Consisting of MAKE

Magazine, CRAFT Magazine, Maker Faire, and the Hacks series

of books, Maker Media encourages the Do-It-Yourself mentality

by providing creative inspiration and instruction.

For more information about Maker Media, visit us online:

MAKE: www.makezine.com

CRAFT: www.craftzine.com

Maker Faire: www.makerfaire.com

Maker SHED: www.makershed.com

xiv MAKING THINGS TALK

Before any technology is adopted in general use, there
has to be a place for it in the popular imagination. People
with no knowledge of the technology must have some
idea what it is and for what it can be used. Prior to 2005,
I spent a lot of time explaining to people what physical
computing was and what I meant by “networked objects.”
Nowadays, everyone knows the Wii controller or the Kinect
as an example of a device that expands the range of
human physical expression available to computers. These
days, it’s difficult to find an electronic device that isn’t
networked.

While it’s been great to see these ideas gain a general
understanding, what’s even more exciting is seeing them
gain in use. People aren’t just using their Kinects for
gaming, they’re building them into assistive interfaces for
physically challenged clients. They’re not just playing with
the Wii, they’re using it as a musical instrument controller.
People have become accustomed to the idea that they can
modify the use of their electronics—and they’re doing it.

When I joined the project, my hope for Arduino was that
it might fill a need for something more customizable than
consumer electronic devices were at the time, yet be less
difficult to learn than microcontroller systems. I thought
the open source approach was a good way to go because
it meant that hopefully the ideals of the platform would
spread beyond the models we made. That hope has been
realized in the scores of derivative boards, shields, spinoff
products, and accessories that have popped up in the last
several years. It’s wonderful to see so many people not
just making electronics for others to build on, but doing it
in a way that doesn’t demand professional expertise to get
started.

Note on the Second Edition
Two general changes prompted the rewriting of this book: the emergence of an open

source hardware movement, and the growth of participatory culture, particularly around

making interactive things. The community surrounding Arduino, and the open source

hardware movement more generally, has grown quickly. The effects of this are still being

realized, but one thing is clear: object-oriented hardware and physical computing are

becoming an everyday reality. Many more people are making things with electronics

now than I could have imagined in 2005.

The growth of Arduino shields and libraries has been big
enough that I almost could have written this edition so
that you wouldn’t have to do any programming or circuit
building. There’s a shield or a library to do almost every
project in this book. However, you can only learn so much
by fitting premade pieces together, so I’ve tried to show
some of the principles underlying electronic communica-
tions and physical interfaces. Where there is a simple
hardware solution, I’ve indicated it but shown the circuit
it encloses as well. The best code libraries and circuit
designs practice what I think of as “glass-box enclosure”—
they enclose the gory details and give you a convenient
interface, but they let you look inside and see what’s
going on if you’re interested. Furthermore, they’re well-
constructed so that the gory details don’t seem that gory
when you look closely at them. Hopefully, this edition will
work in much the same way.

Software Reference
There have been a number of large changes made to the
Arduino platform since I started this edition. The Arduino
IDE was in beta development, but by the time this book
comes out, version 1.0 will be available. If you’re already
familiar with Arduino, please make sure you’ve downloaded
version 1,0beta1 or later of the IDE. This book was written
using Arduino 1.0 beta1, which is available online at http://
code.google.com/p/arduino/wiki/Arduino1. The final 1.0
version will be available on the Download page at www.
arduino.cc. Check the Arduino site for the latest updates.
The code for this book can be found online on my gitHub
repository at https://github.com/tigoe/MakingThing-
sTalk2 and I’ll write about any changes on the blog, www.
makingthingstalk.com.

PREFACE xv

Hardware Reference
To keep the focus on communications between physical
devices, I’ve chosen to use the Arduino Uno as the
reference hardware design for this edition. Everything in
this book will work on an Arduino Uno with the appropri-
ate accessories or shields. A few projects were made with
specialty Arduino models like the Arduino Ethernet or the
Arduino LilyPad because their form factor was the most
appropriate, but even those projects were tested on the
Uno. Anything that is compatible with the Uno should be
able to run this code and interface with these circuits.

Acknowledgments for the Second
Edition
The network of people who make this book possible
continues to grow.

The changes in this edition are due in no small part to the
work of my partners on the Arduino team. Working with
Massimo Banzi, David Cuartielles, Gianluca Martino, and
David Mellis continues to be enjoyable, challenging, and
full of surprises. I’m lucky to have them as collaborators.

The Interactive Telecommunications Program at NYU
continues to support me in everything I do professionally.
None of this would be possible without the engagement
of my colleagues there. Dan O’Sullivan, as always, was a
valued advisor on many of the projects that follow. Daniel
Shiffman and Shawn Van Every provided assistance with
desktop and Android versions of Processing. Marianne
Petit, Nancy Hechinger, Clay Shirky, and Marina Zurkow
offered critical and moral support. Red Burns, as ever,
continues to inspire me on how to empower people by
teaching them to understand the technologies that shape
their lives.

The cast of resident researchers and adjunct professors at
ITP is ever-changing and ever-helpful. During this edition,
research residents Mustafa Bağdatlı, Caroline Brown,
Jeremiah Johnson, Meredith Hasson, Liesje Hodgson,
Craig Kapp, Adi Marom, Ariel Nevarez, Paul Rothman, Ithai
Benjamin, Christian Cerrito, John Dimatos, Xiaoyang Feng,
Kacie Kinzer, Zannah Marsh, Corey Menscher, Matt Parker,
and Tymm Twillman helped with examples, tried projects,
out, and kept things going at ITP when I was not available.

Adjunct faculty members Thomas Gerhardt, Scott Fitzger-
ald, Rory Nugent, and Dustyn Roberts were valued col-
laborators by teaching this material in the Introduction to
Physical Computing course.

Rob Faludi remains my source on all things XBee- and Digi-
related.

Thanks to Antoinette LaSorsa and Lille Troelstrup at the
Adaptive Design Association for permission to use their tilt
board design in Chapter 5.

Many people contributed to the development of Arduino
through our developers mailing list and teachers list. In
particular, Mikal Hart, Michael Margolis, Adrian McEwen,
and Limor Fried influenced this book through their work on
key communication libraries like SoftwareSerial, Ethernet,
and TextFinder, and also through their personal advice
and good nature in answering my many questions off-list.
Michael Margolis’ Arduino Cookbook (O’Reilly) was a
reference for some of the code in this book as well. Thanks
also to Ryan Mulligan and Alexander Brevig for their
libraries, which I’ve used and adapted in this book.

Limor Fried and Phillip Torrone, owners of Adafruit, were
constant advisors, critics, and cheerleaders throughout
this book. Likewise, Nathan Seidle at SparkFun continues
to be one of my key critics and advisors. Adafruit and
SparkFun are my major sources of parts, because they
make stuff that works well.

This edition looks better graphically thanks to Fritzing,
an open source circuit drawing tool available at http://
fritzing.org. Reto Wettach, André Knörig, and Jonathan
Cohen created a great tool to make circuits and sche-
matics more accessible. Thanks also to Ryan Owens at
SparkFun for giving me advance access to some of its
parts drawings. Thanks to Giorgio Olivero and Jody Culkin
for additional drawings in this edition.

Thanks to David Boyhan, Jody Culkin, Zach Eveland, and
Gabriela Gutiérrez for reading and offering feedback on
sections of the manuscript.

xvi MAKING THINGS TALK

Thanks to Keith Casey at Twilio; Bonifaz Kaufmann,
creator of Amarino; Andreas Göransson for his help on
Android; and Casey Reas and Ben Fry for creating Pro-
cessing’s Android mode, and for feedback on the Android
section.

New projects have inspired the new work in this edition.
Thanks to Benedetta Piantella and Justin Downs of
Groundlab, and to Meredith Hasson, Ariel Nevarez, and
Nahana Schelling, creators of SIMbalink. Thanks to Timo
Arnall, EInar Sneve Martinussen, and Jørn Knutsen at
www.nearfield.org for their RFID inspiration and collabo-
ration.Thanks to Daniel Hirschmann for reminding me
how exciting lighting is and how easy DMX-512 can be.
Thanks to Mustafa Bağdatlı for his advice on Poker Face,
and thanks to Frances Gilbert and Jake for their role in the
CatCam 2 project. Apologies to Anton Chekhov. Thanks to
Tali Padan for the comedic inspiration.

Thanks to Giana Gonzalez, Younghui Kim, Jennifer
Magnolfi, Jin-Yo Mok, Matt Parker, Andrew Schneider,
Gilad Lotan, Angela Pablo, James Barnett, Morgan
Noel, Noodles, and Monski for modeling projects in the
chapters.

Thanks, as ever, to the MAKE team, especially my editor
and collaborator Brian Jepson. His patience and persis-
tence made another edition happen. Thanks to technical
editor Scott Fitzgerald, who helped pull all the parts
together as well. If you can find a part on the Web from this
book, thank Scott. Thanks also to my agent Neil Salkind
and everyone at Studio B.

In the final weeks of writing this edition, a group of close
friends came to my assistance and made possible what
I could not have done on my own. Zach Eveland, Denise
Hand, Jennifer Magnolfi, Clive Thompson, and Max
Whitney donated days and evenings to help cut, solder,
wire, and assemble many of the final projects, and they
also kept me company while I wrote. Joe Hobaica, giving
up several days, provided production management to
finish the book. He orchestrated the photo documentation
of most of the new projects, organized my workflow, kept
task lists, shopped for random parts, checked for conti-
nuity, and reminded me to eat and sleep. Together, they
reminded me that making things talk is best done with
friends.
X

xviii MAKING THINGS TALK

The Tools
This book is a cookbook of sorts, and this chapter covers the key ingre-

dients. The concepts and tools you’ll use in every chapter are intro-

duced here. There’s enough information on each tool to get you to the

point where you can make it say “Hello World!” Chances are you’ve

used some of the tools in this chapter before—or ones just like them.

Skip past the things you know and jump into learning the tools that are

new to you. You may want to explore some of the less-familiar tools

on your own to get a sense of what they can do. The projects in the

following chapters only scratch the surface of what’s possible for most

of these tools. References for further investigation

are provided.

1
MAKE: PROJECTS

Happy Feedback Machine by Tuan Anh T . Nguyen

The main pleasure of interacting with this piece comes from the feel of flipping the switches and turning the knobs.

The lights and sounds produced as a result are secondary, and most people who play with it remember how it feels

rather than its behavior.

2 MAKING THINGS TALK

It Starts with the Stuff You Touch
All of the objects that you’ll encounter in this book—tangible or intangible—will have

certain behaviors. Software objects will send and receive messages, store data, or both.

Physical objects will move, light up, or make noise. The first question to ask about any

object is: what does it do? The second is: how do I make it do what it’s supposed to do?

Or, more simply, what is its interface?

An object’s interface is made up of three elements. First,
there’s the physical interface. This is the stuff you touch—
such as knobs, switches, keys, and other sensors—that
react to your actions. The connectors that join objects
are also part of the physical interface. Every network of
objects begins and ends with a physical interface. Even
though some objects in a network (such as software
objects) have no physical interface, people construct
mental models of how a system works based on the
physical interface. A computer is much more than the
keyboard, mouse, and screen, but that’s what we think of it
as, because that’s what we see and touch. You can build all
kinds of wonderful functions into your system, but if those
functions aren’t apparent in the things people see, hear,
and touch, they will never be used. Remember the lesson
of the VCR clock that constantly blinks 12:00 because no
one can be bothered to learn how to set it? If the physical
interface isn’t good, the rest of the system suffers.

Second, there’s the software interface—the commands
that you send to the object to make it respond. In some
projects, you’ll invent your own software interface; in
others, you’ll rely on existing interfaces to do the work for
you. The best software interfaces have simple, consistent
functions that result in predictable outputs. Unfortunately,

not all software interfaces are as simple as you’d like them
to be, so be prepared to experiment a little to get some
software objects to do what you think they should do.
When you’re learning a new software interface, it helps
to approach it mentally in the same way you approach
a physical interface. Don’t try to use all the functions
at once; first, learn what each function does on its own.
You don’t learn to play the piano by starting with a Bach
fugue—you start one note at a time. Likewise, you don’t
learn a software interface by writing a full application with
it—you learn it one function at a time. There are many
projects in this book; if you find any of their software
functions confusing, write a simple program that demon-
strates just that function, then return to the project.

Finally, there’s the electrical interface—the pulses of electri-
cal energy sent from one device to another to be interpreted
as information. Unless you’re designing new objects or the
connections between them, you never have to deal with
this interface. When you’re designing new objects or the
networks that connect them, however, you have to under-
stand a few things about this interface, so that you know
how to match up objects that might have slight differences
in their electrical interfaces.
X

It’s About Pulses
In order to communicate with each other, objects use communications protocols.

A protocol is a series of mutually agreed-upon standards for communication between

two or more objects.

THE TOOLS 3

Serial protocols like RS-232, USB, and IEEE 1394 (also
known as FireWire and i.Link) connect computers to
printers, hard drives, keyboards, mice, and other periph-
eral devices. Network protocols like Ethernet and TCP/
IP connect multiple computers through network hubs,
routers, and switches. A communications protocol usually
defines the rate at which messages are exchanged, the
arrangement of data in the messages, and the grammar of
the exchange. If it’s a protocol for physical objects, it will
also specify the electrical characteristics, and sometimes
even the physical shape of the connectors. Protocols
don’t specify what happens between objects, however.
The commands to make an object do something rely on
protocols in the same way that clear instructions rely on
good grammar—you can’t give useful instructions if you
can’t form a good sentence.

One thing that all communications protocols have in
common—from the simplest chip-to-chip message to the
most complex network architecture—is this: it’s all about
pulses of energy. Digital devices exchange information

by sending timed pulses of energy across a shared con-
nection. The USB connection from your mouse to your
computer uses two wires for transmission and reception,
sending timed pulses of electrical energy across those
wires. Likewise, wired network connections are made up of
timed pulses of electrical energy sent down the wires. For
longer distances and higher bandwidth, the electrical wires
may be replaced with fiber optic cables , which carry timed
pulses of light. In cases where a physical connection is
inconvenient or impossible, the transmission can be sent
using pulses of radio energy between radio transceivers (a
transceiver is two-way radio, capable of transmitting and
receiving). The meaning of data pulses is independent of
the medium that’s carrying them. You can use the same
sequence of pulses whether you’re sending them across
wires, fiber optic cables, or radios. If you keep in mind that
all of the communication you’re dealing with starts with
a series of pulses—and that somewhere there’s a guide
explaining the sequence of those pulses—you can work
with any communication system you come across.
X

The second type of computer you’ll encounter in this book,
the microcontroller, has no physical interface that humans
can interact with directly. It’s just an electronic chip with
input and output pins that can send or receive electrical
pulses. Using a microcontroller is a three-step process:

1. You connect sensors to the inputs to convert physical
energy like motion, heat, and sound into electrical energy.

2. You attach motors, speakers, and other devices to the
outputs to convert electrical energy into physical action.

3. Finally, you write a program to determine how the input
changes affect the outputs.

In other words, the microcontroller’s physical interface is
whatever you make of it.

The third type of computer in this book, the network
server, is basically the same as a desktop computer—it
may even have a keyboard, screen, and mouse. Even
though it can do all the things you expect of a personal
computer, its primary function is to send and receive data
over a network. Most people don’t think of servers as
physical things because they only interact with them over
a network, using their local computers as physical inter-
faces to the server. A server’s most important interface for
most users’ purposes is its software interface.

Computers of All Shapes and Sizes
You’ll encounter at least four different types of computers in this book, grouped

according to their physical interfaces. The most familiar of these is the personal

computer. Whether it’s a desktop or a laptop, it’s got a keyboard, screen, and mouse,

and you probably use it just about every working day. These three elements—the

keyboard, the screen, and the mouse—make up its physical interface.

4 MAKING THINGS TALK

The fourth group of computers is a mixed bag: mobile
phones, music synthesizers, and motor controllers, to
name a few. Some of them will have fully developed
physical interfaces, some will have minimal physical inter-
faces but detailed software interfaces, and most will have
a little of both. Even though you don’t normally think of

these devices as computers, they are. When you think of
them as programmable objects with interfaces that you
can manipulate, it’s easier to figure out how they can all
communicate, regardless of their end function.
X

Good Habits
Networking objects is a bit like love. The fundamental problem in both is that when

you’re sending a message, you never really know whether the receiver understands

what you’re saying, and there are a thousand ways for your message to get lost or

garbled in transmission.

You may know how you feel but your partner doesn’t.
All he or she has to go on are the words you say and the
actions you take. Likewise, you may know exactly what
message your local computer is sending, how it’s sending
it, and what all the bits mean, but the remote computer
has no idea what they mean unless you program it to
understand them. All it has to go on are the bits it receives.
If you want reliable, clear communications (in love or net-
working), there are a few simple things you have to do:

•	 Listen more than you speak.
•	 Never assume that what you said is what they heard.
•	 Agree on how you’re going to say things in advance.
•	 Ask politely for clarification when messages aren’t clear.

Listen More Than You Speak
The best way to make a good first impression, and to main-
tain a good relationship, is to be a good listener. Listening
is more difficult than speaking. You can speak anytime you
want, but since you never know when the other person
is going to say something, you have to listen all the time.
In networking terms, this means you should write your
programs such that they’re listening for new messages most
of the time, and sending messages only when necessary.
It’s often easier to send out messages all the time rather
than figure out when it’s appropriate, but it can lead to all
kinds of problems. It usually doesn’t take a lot of work to
limit your sending, and the benefits far outweigh the costs.

Never Assume
What you say is not always what the other person hears.
Sometimes it’s a matter of misinterpretation, and other
times, you may not have been heard clearly. If you assume
that the message got through and continue on oblivi-
ously, you’re in for a world of hurt. Likewise, you may be
inclined to first work out all the logic of your system—and
all the steps of your messages before you start to connect
things—then build it, and finally test it all at once. Avoid
that temptation.

It’s good to plan the whole system out in advance, but
build it and test it in baby steps. Most of the errors that
occur when building these projects happen in the com-
munication between objects. Always send a quick “Hello
World!” message from one object to the others, and make
sure that the message got there intact before you proceed
to the more complex details. Keep that “Hello World!”
example on hand for testing when communication fails.

Getting the message wrong isn’t the only misstep you can
make. Most of the projects in this book involve building the
physical, software, and electrical elements of the interface.
One of the most common mistakes people make when
developing hybrid projects like these is to assume that
the problems are all in one place. Quite often, I’ve sweated
over a bug in the software transmission of a message,
only to find out later that the receiving device wasn’t even
connected, or wasn’t ready to receive messages. Don’t

THE TOOLS 5

assume that communication errors are in the element of
the system with which you’re most familiar. They’re most
often in the element with which you’re least familiar, and
therefore, are avoiding. When you can’t get a message
through, think about every link in the chain from sender
to receiver, and check every one. Then check the links you
overlooked.

Agree on How You Say Things
In good relationships, you develop a shared language
based on shared experience. You learn the best ways to
say things so that your partner will be most receptive,
and you develop shorthand for expressing things that you
repeat all the time. Good data communications also rely
on shared ways of saying things, or protocols. Sometimes
you make up a protocol for all the objects in your system,
and other times you have to rely on existing protocols.
If you’re working with a previously established protocol,
make sure you understand all the parts before you start
trying to interpret it. If you have the luxury of making
up your own protocol, make sure you’ve considered the
needs of both the sender and receiver when you define
it. For example, you might decide to use a protocol that’s
easy to program on your web server, but that turns out to
be impossible to handle on your microcontroller. A little
thought to the strengths and weaknesses on both sides of
the transmission, and a bit of compromise before you start
to build, will make things flow much more smoothly.

Ask Politely for Clarification
Messages get garbled in countless ways. Perhaps you hear
something that may not make much sense, but you act
on it, only to find out that your partner said something
entirely different from what you thought. It’s always best
to ask nicely for clarification to avoid making a stupid
mistake. Likewise, in network communications, it’s wise
to check that any messages you receive make sense.
When they don’t, ask for a repeat transmission. It’s also
wise to check, rather than assume, that a message was
sent. Saying nothing can be worse than saying something
wrong. Minor problems can become major when no one
speaks up to acknowledge that there’s an issue. The same
thing can occur in network communications. One device
may wait forever for a message from the other side, not
knowing, for example, that the remote device is unplugged.
When you don't receive a response, send another
message. Don’t resend it too often, and give the other
party time to reply. Acknowledging messages may seem
like a luxury, but it can save a whole lot of time and energy
when you’re building a complex system.
X

Tools
As you’ll be working with the physical, software, and electrical interfaces of objects,

you’ll need physical tools, software, and (computer) hardware.

Physical Tools
If you’ve worked with electronics or microcontrollers
before, chances are you have your own hand tools already.
Figure 1-1 shows the ones used most frequently in this
book. They’re common tools that can be obtained from
many vendors. A few are listed in Table 1-1.

In addition to hand tools, there are some common elec-
tronic components that you’ll use all the time. They’re
listed as well, with part numbers from the retailers
featured most frequently in this book. Not all retailers will
carry all parts, so there are many gaps in the table.

NOTE: You’ll find a number of component suppliers in this book. I

buy from different vendors depending on who’s got the best and

the least expensive version of each part. Sometimes it’s easier to

buy from a vendor that you know carries what you need, rather

than search through the massive catalog of a vendor who might

carry it for less. Feel free to substitute your favorite vendors. A list

of vendors can be found in the Appendix.

6 MAKING THINGS TALK

Figure 1-1 . See the list below for number references .

1

23

24

25

26
27

28

29

22

2

3

4

5

14

15

16

17

21

20

19

18

13

9

8

7 6

12

11

10

1 Soldering iron Middle-of-the-line is best
here. Cheap soldering irons die fast, but
a mid-range iron like the Weller WLC-100
works great for small electronic work.
Avoid the Cold Solder irons. They solder
by creating a spark, and that spark
can damage static-sensitive parts like
microcontrollers. Jameco (http://jameco.
com): 146595; Farnell (www.farnell.com):
1568159; RadioShack (http://radioshack.
com): 640-2801 and 640-2078

2 Solder 21-23 AWG solder is best. Get
lead-free solder if you can; it’s healthier
for you. Jameco: 668271; Farnell: 419266;
RadioShack: 640-0013

3 Desoldering pump This helps when you
mess up while soldering. Jameco: 305226;
Spark Fun (www.SparkFun.com): TOL-
00082; Farnell: 3125646

4 Wire stripper, Diagonal cutter, Needle-
nose pliers Avoid the 3-in-1 versions
of these tools. They’ll only make you
grumpy. These three tools are essential
for working with wire, and you don’t
need expensive ones to have good ones.
Wire stripper: Jameco: 159291; Farnell:
609195; Spark Fun: TOL-00089;
RadioShack: 640-2129A

Diagonal cutter: Jameco: 161411; Farnell:
3125397; Spark Fun: TOL-00070;
RadioShack: 640-2043
Needlenose pliers: Jameco: 35473;
Farnell: 3127199; Spark Fun: TOL-00079;
RadioShack: 640-2033

5 Mini-screwdriver Get one with both
Phillips and slotted heads. You’ll use it all
the time. Jameco: 127271; Farnell: 4431212;
RadioShack: 640-1963

6 Safety goggles Always a good idea when
soldering, drilling, or other tasks. Spark
Fun:SWG-09791; Farnell: 1696193

7 Helping hands These make soldering
much easier. Jameco: 681002; Farnell:
1367049

8 Multimeter You don’t need an
expensive one. As long as it measures
voltage, resistance, amperage, and con-
tinuity, it’ll do the job. Jameco: 220812;
Farnell: 7430566; Spark Fun: TOL-00078;
RadioShack: 22-182

9 Oscilloscope Professional oscilloscopes
are expensive, but the DSO Nano is
only about $100 and a valuable aid
when working on electronics. Spark Fun:

TOL-10244 (v2); Seeed Studio (www.seeed-
studio.com): (TOL114C3M; Maker SHED
(www.makershed.com): MKSEEED11

10 9–12V DC power supply You’ll use this
all the time, and you’ve probably got a
spare from some dead electronic device.
Make sure you know the polarity of the
plug so you don’t reverse polarity on
a component and blow it up! Most of
the devices shown in this book have a
DC power jack that accepts a 2.1mm
inner diameter/5.5mm outer diameter
plug, so look for an adapter with the
same dimensions. Jameco: 170245 (12V,
1000mA); Farnell: 1176248 (12V, 1000mA);
Spark Fun: TOL-00298; RadioShack: 273-355
(9V 800mA)

11 Power connector, 2.1mm inside
diameter/5.5mm outside diameter You’ll
need this to connect your microcon-
troller module or breadboard to a DC
power supply. This size connector is the
most common for the power supplies
that will work with the circuits you’ll be
building here. Jameco: 159610; Digi-Key
(www.digikey.com): CP-024A-ND; Farnell:
3648102

Handy hand tools for networking objects.

THE TOOLS 7

12 9V Battery snap adapter and 9V battery
When you want to run a project off
battery power, these adapters are a
handy way to do it. Spark Fun: PRT-
09518; Adafruit (http://adafruit.com):
80; Digi-Key: CP3-1000-ND and 84-4K-ND;
Jameco: 28760 and 216452; Farnell: 1650675
and 1737256; RadioShack: 270-324 and
274-1569

13 USB cables You’ll need both USB
A-to-B (the most common USB cables)
and USB A-to-mini-B (the kind that’s
common with digital cameras) for the
projects in this book. Spark Fun: CAB-
00512, CAB-00598; Farnell: 1838798,
1308878

14 Alligator clip test leads It’s often hard
to juggle the five or six things you have
to hold when metering a circuit. Clip
leads make this much easier. Jameco:
10444; RS (www.rs-online.com): 483-859;
Spark Fun: CAB-00501; RadioShack:
278-016

15 Serial-to-USB converter This converter
lets you speak TTL serial from a USB
port. Breadboard serial-to-USB modules,
like the FT232 modules shown here, are
cheaper than the consumer models and
easier to use in the projects in this book.
Spark Fun: BOB-00718; Arduino Store
(store.arduino.cc): A000014

16 Microcontroller module The microcon-
troller shown here is an Arduino Uno.
Available from Spark Fun and Maker
SHED (http://store.arduino.cc/ww/) in
the U.S., and from multiple distributors
internationally. See http://arduino.cc/en/
Main/Buy for details about your region.

17 Voltage regulator Voltage regulators
take a variable input voltage and output
a constant (lower) voltage. The two most
common you’ll need for these projects
are 5V and 3.3V. Be careful when using a
regulator that you’ve never used before.
Check the data sheet to make sure you
have the pin connections correct.
3.3V: Digi-Key: 576-1134-ND; Jameco:
242115; Farnell: 1703357; RS: 534-3021
5V: Digi-Key: LM7805CT-ND; Jameco: 51262;
Farnell: 1703357; RS: 298-8514

18 TIP120 Transistor Transistors act as
digital switches, allowing you to control
a circuit with high current or voltage
from one with lower current and voltage.
There are many types of transistors, the
TIP120 is one used in a few projects in
this book. Note that the TIP120 looks
just like the voltage regulator next to
it. Sometimes electronic components
with different functions come in the
same physical packages, so you need to
check the part number written on the
part. Digi-Key: TIP120-ND; Jameco: 32993;
Farnell: 9804005

19 Prototyping shields These are add-on
boards for the Arduino microcontroller
module that have a bare grid of holes to
which you can solder. You can build your
own circuits on them by soldering, or you
can use a tiny breadboard (also shown)
to test circuits quickly. These are handy
for projects where you need to prototype
quickly, as well as a compact form to the
electronics. Adafruit: 51; Arduino Store:
A000024; Spark Fun: DEV-07914; Maker
SHED: MSMS01
Breadboards for protoshields: Spark Fun:
PRT-08802; Adafruit: included with board;
Digi-Key: 923273-ND

20 Solderless breadboard Having a few
around can be handy. I like the ones
with two long rows on either side so that
you can run power and ground on both
sides. Jameco: 20723 (2 bus rows per side);
Farnell: 4692810; Digi-Key: 438-1045-ND;
Spark Fun: PRT-00137; RadioShack: 276-002

21 Spare LEDs for tracing signals LEDs
are to the hardware developer what
print statements are to the software
developer. They let you see quickly
whether there’s voltage between two
points, or whether a signal is going
through. Keep spares on hand. Jameco:
3476; Farnell: 1057119; Digi-Key: 160-1144-
ND; RadioShack: 278-016

22 Resistors You’ll need resistors of
various values for your projects. Common
values are listed in Table 1-1.

23 Header pins You’ll use these all the
time. It’s handy to have female ones
around as well. Jameco: 103377; Digi-Key:
A26509-20-ND; Farnell: 1593411

24 Analog sensors (variable resistors)
There are countless varieties of variable
resistors to measure all kinds of physical
properties. They’re the simplest of
analog sensors, and they’re very easy
to build into test circuits. Flex sensors

and force-sensing resistors are handy
for testing a circuit or a program. Flex
sensors: Jameco: 150551; Images SI (www.
imagesco.com): FLX-01
Force-sensing resistors: Parallax (www.
parallax.com): 30056; Images SI: FSR-400,
402, 406, 408

25 Pushbuttons There are two types
you’ll find handy: the PCB-mount type,
like the ones you find on Wiring and
Arduino boards, used here mostly as
reset buttons for breadboard projects;
and panel-mount types used for
interface controls for end users. But you
can use just about any type you want.
PCB-mount type: Digi-Key: SW400-ND;
Jameco: 119011; Spark Fun: COM-00097
Panel-mount type: Digi-Key: GH1344-ND;
Jameco: 164559PS

26 Potentiometers You’ll need potentiom-
eters to let people adjust settings in your
project. Jameco: 29081; Spark Fun: COM-
09939; RS: 91A1A-B28-B15L; RadioShack:
271-1715; Farnell: 1760793

27 Ethernet cables A couple of these
will come in handy. Jameco: 522781;
RadioShack: 55010852

28 Black, red, blue, yellow wire 22 AWG
solid-core hook-up wire is best for
making solderless breadboard connec-
tions. Get at least three colors, and
always use red for voltage and black for
ground. A little organization of your wires
can go a long way.
Black: Jameco: 36792
Blue: Jameco: 36767
Green: Jameco: 36821
Red: Jameco: 36856;
RadioShack: 278-1215
Yellow: Jameco: 36919
Mixed: RadioShack: 276-173

29 Capacitors You’ll need capacitors
of various values for your projects.
Common values are listed in Table 1-1.

 You're going to run across some hardware in the following chapters

that was brand new when this edition was written, including the

Arduino Ethernet board, the Arduino WiFi shield, wireless shield, RFID

shield, USB-to-Serial adapter, and more. The distributors listed here didn't

have part numbers for them as of this writing, so check for them by name.

By the time you read this, distributors should have them in stock.

!

http://www.rs-online.com

8 MAKING THINGS TALK

RESISTORS
100Ω D 100QBK-ND, J 690620, F 9337660,

R 707-8625
220Ω D 220QBK-ND, J 690700, F 9337792,

R 707-8842
470Ω D 470QBK-ND, J 690785, F 9337911,

R 707-8659
1K D 1.0KQBK, J 29663, F 1735061,

R 707-8669
10K D 10KQBK-ND, J 29911, F 9337687,

R 707-8906
22K D 22KQBK-ND, J 30453, F 9337814,

R 707-8729
100K D 100KQBK-ND, J 29997, F 9337695,

R 707-8940
1M D 1.0MQBK-ND, J 29698, F 9337709,

R 131-700

CAPACITORS
0.1µF ceramic D 399-4151-ND, J 15270, F 3322166,

R 716-7135
1µF electrolytic D P10312-ND, J 94161, F 8126933,

R 475-9009
10µF electrolytic D P11212-ND, J 29891, F 1144605,

R 715-1638
100µF electrolytic D P10269-ND, J 158394, F 1144642,

R 715-1657

VOLTAGE REGuLATORS
3.3V D 576-1134-ND, J 242115, F 1703357,

R 534-3021
5V D LM7805CT-ND, J 51262, F 1860277,

R 298-8514

ANALOG SENSORS
Flex sensors D 905-1000-ND, J 150551, R 708-1277
FSRs D 1027-1000-ND, J 2128260

Table 1-1 . Common components for electronic

and microcontroller work .

LED
T1, Green clear D 160-1144-ND, J 34761, F 1057119, R 247-1662
T1, Red, clear D 160-1665-ND, J 94511, F 1057129,

R 826-830

TRANSISTORS
2N2222A D P2N2222AGOS-ND, J 38236, F 1611371,

R 295-028
TIP120 D TIP120-ND, J 32993, F 9804005
DIODES
1N4004-R D 1N4004-E3, J 35992, F 9556109,

R 628-9029
3.3V zener (1N5226) D 1N5226B-TPCT-ND, J 743488, F 1700785

PuSHbuTTONS
PCB D SW400-ND, J 119011, F 1555981
Panel Mount D GH1344-ND, J 164559PS, F 1634684,

R 718-2213

SOLDERLESS bREADbOARDS
various D 438-1045-ND, J 20723, 20600, F 4692810

HOOKuP WIRE
red D C2117R-100-ND, J 36856, F 1662031
black D C2117B-100-ND, J 36792, F 1662027
blue J 36767, F 1662034
yellow J 36920, F 1662032

POTENTIOMETER
10K D 29081

HEADER PINS
straight D A26509-20-ND, J 103377, S PRT-00116
right angle D S1121E-36-ND, S PRT-00553

HEADERS
female S PRT-00115

bATTERy SNAP
9V D 2238K-ND, J 101470PS, S PRT-00091

D Digi-Key (http://digikey.com)
J Jameco (http://jameco.com)

R RS (www.rs-online.com)
F Farnell (www.farnell.com)

THE TOOLS 9

Figure 1-2

The Processing editor window.

Software Tools

Processing
The multimedia programming environment used in this
book is called Processing. Based on Java, it's made for
designers, artists, and others whowant to get something
done without having to know all the gory details of pro-
gramming. It’s a useful tool for explaining programming
ideas because it takes relatively little Processing code to
make big things happen, such as opening a network con-
nection, connecting to an external device through a serial
port, or controlling a camera. It’s a free, open source tool
available at www.processing.org. Because it’s based on
Java, you can include Java classes and methods in your

It’s not too flashy a program, but it’s a classic. It
should print Hello World! in the message box at
the bottom of the editor window. It’s that easy.

Programs in Processing are called sketches, and all the
data for a sketch is saved in a folder with the sketch’s
name. The editor is very basic, without a lot of clutter to

println("Hello World!");Here’s your first Processing
program. Type this into the editor
window, and then press the Run button
on the top lefthand side of the toolbar.

8

get in your way. The toolbar has buttons to run and stop
a sketch, create a new file, open an existing sketch, save
the current sketch, or export to a Java applet. You can also
export your sketch as a standalone application from the
File menu. Files are normally stored in a subdirectory of
your Documents folder called Processing, but you can save
them wherever you like.

Processing programs. It runs on Mac OS X, Windows,
and Linux, so you can run Processing on your favorite
operating system. There's also Processing for Android
phones and Processing for JavaScript, so you can use
it in many ways. If you don’t like working in Processing,
you should be able to use this book's code samples and
comments as pseudocode for whatever multimedia envi-
ronment you prefer. Once you’ve downloaded and installed
Processing on your computer, open the application. You’ll
get a screen that looks like Figure 1-2.

10 MAKING THINGS TALK

/*

 Triangle drawing program

 Context: Processing

 Draws a triangle whenever the mouse button is not pressed.

 Erases when the mouse button is pressed.

*/

// declare your variables:

float redValue = 0; // variable to hold the red color

float greenValue = 0; // variable to hold the green color

float blueValue = 0; // variable to hold the blue color

// the setup() method runs once at the beginning of the program:

void setup() {

 size(320, 240); // sets the size of the applet window

 background(0); // sets the background of the window to black

 fill(0); // sets the color to fill shapes with (0 = black)

 smooth(); // draw with antialiased edges

}

// the draw() method runs repeatedly, as long as the applet window

// is open. It refreshes the window, and anything else you program

// it to do:

void draw() {

 // Pick random colors for red, green, and blue:

 redValue = random(255);

 greenValue = random(255);

 blueValue = random(255);

 // set the line color:

 stroke(redValue, greenValue, blueValue);

 // draw when the mouse is up (to hell with conventions):

 if (mousePressed == false) {

 // draw a triangle:

 triangle(mouseX, mouseY, width/2, height/2,pmouseX, pmouseY);

 }

 // erase when the mouse is down:

 else {

 background(0);

 fill(0);

 }

}

Here’s a second program that’s
a bit more exciting. It illustrates

some of the main programming struc-
tures in Processing.

8

NOTE: All code examples in this book

will have comments indicating the

context in which they're to be used:

Processing, Processing Android mode,

Arduino, PHP, and so forth.

THE TOOLS 11

Processing is a fun language to play with
because you can make interactive graphics
very quickly. It’s also a simple introduction to

Java for beginning programmers. If you’re a Java pro-
grammer already, you can include Java directly in your
Processing programs. Processing is expandable through
code libraries. You’ll be using two of the Processing code
libraries frequently in this book: the serial library and the
networking library.

For more on the syntax of Processing, see the language
reference guide at www.processing.org. To learn more
about programming in Processing, check out Processing:
A Programming Handbook for Visual Designers and
Artists, by Casey Reas and Ben Fry (MIT Press), the
creators of Processing, or their shorter book, Getting
Started with Processing (O'Reilly). Or, read Daniel
Shiffman's excellent introduction, Learning Processing
(Morgan Kaufmann). There are dozens of other Processing
books on the market, so find one whose style you like best.

for (int myCounter = 0; myCounter <=10; myCounter++) {

 println(myCounter);

}

Here’s a typical for-next loop.
Try this in a sketch of its own (to
start a new sketch, select New from
Processing’s File menu).

8

Every Processing program has two main routines, setup()
and draw(). setup() happens once at the beginning of the
program. It’s where you set all your initial conditions, like
the size of the applet window, initial states for variables,
and so forth. draw() is the main loop of the program. It
repeats continuously until you close the applet window.

In order to use variables in Processing, you have to declare
the variable’s data type. In the preceding program, the
variables redValue, greenValue, and blueValue are all
float types, meaning that they’re floating decimal-point
numbers. Other common variable types you’ll use are ints

(integers), booleans (true or false values), Strings of text,
and bytes.

Like C, Java, and many other languages, Processing uses
C-style syntax. All functions have a data type, just like
variables (and many of them are the void type, meaning
that they don’t return any values). All lines end with a
semicolon, and all blocks of code are wrapped in curly
braces. Conditional statements (if-then statements),
for-next loops, and comments all use the C syntax as
well. The preceding code illustrates all of these except the
for-next loop.

Remote-Access Applications
One of the most effective debugging tools you’ll use
when making the projects in this book is a command-line
remote-access program, which gives you access to the
command-line interface of a remote computer. If you’ve
never used a command-line interface before, you’ll find it
a bit awkward at first, but you get used to it pretty quickly.
This tool is especially important when you need to log into
a web server, because you’ll need the command line to
work with PHP scripts that will be used in this book.

Most web hosting providers are based on Linux, BSD,
Solaris, or some other Unix-like operating system. So,
when you need to do some work on your web server, you
may need to make a command-line connection to your
web server.

NOTE: If you already know how to create PHP and HTML
documents and upload them to your web server, you
can skip ahead to the “PHP” section.

bASIC users: If you’ve never used a C-style for-next loop, it can seem forbidding. What this bit

of code does is establish a variable called myCounter. As long as a number is less than or equal

to 10, it executes the instructions in the curly braces. myCounter++ tells the program to add

one to myCounter each time through the loop. The equivalent BASIC code is:

for myCounter = 0 to 10

 Print myCounter

next

12 MAKING THINGS TALK

Figure 1-3

The main PuTTY window.

Although this is the most direct way to work with PHP,
some people prefer to work more indirectly, by writing text
files on their local computers and uploading them to the
remote computer. Depending on how restrictive your web
hosting service is, this may be your only option (however,
there are many inexpensive hosting companies that offer
full command-line access). Even if you prefer to work this
way, there are times in this book when the command line
is your only option, so it’s worth getting to know a little bit
about it now.

On Windows computers, there are a few remote access
programs available, but the one that you’ll use here is
called PuTTY. You can download it from www.puttyssh.org.
Download the Windows-style installer and run it. On Mac
OS X and Linux, you can use OpenSSH, which is included
with both operating systems, and can be run in the
Terminal program with the command ssh.

Before you can run OpenSSH, you’ll need to launch a
terminal emulation program, which gives you access to
your Linux or Mac OS X command line. On Mac OS X,
the program is called Terminal, and you can find it in the
Utilities subdirectory of the Applications directory. On Linux,
look for a program called xterm, rxvt, Terminal, or Konsole.

NOTE: ssh is a more modern cousin of a longtime Unix remote-

access program called telnet. ssh is more secure; it scrambles

all data sent from one computer to another before sending it, so

it can’t be snooped on en route. telnet sends all data from one

computer to another with no encryption. You should use ssh to

connect from one machine to another whenever you can. Where

telnet is used in this book, it’s because it’s the only tool that will

do what’s needed for the examples in question. Think of telnet as

an old friend: maybe he's not the coolest guy on the block, maybe

he’s a bit of a gossip, but he's stood by you forever, and you know

you can trust him to do the job when everyone else lets you down.

X

Mac OS X and Linux
Open your terminal program. These Terminal
applications give you a plain-text window with a
greeting like this:

Last login: Wed Feb 22 07:20:34 on ttyp1

ComputerName:~ username$

Type ssh username@myhost.com at the command
line to connect to your web host. Replace username
and myhost.com with your username and host
address.

Windows
On Windows, you’ll need to start up PuTTY (see Figure
1-3). To get started, type myhost.com (your web
host’s name) in the Host Name field, choose the SSH
protocol, and then click Open.

The computer will try to connect to the remote host,
asking for your password when it connects. Type it
(you won’t see what you type), followed by the Enter key.

Making the SSH Connection

THE TOOLS 13

Once you’ve connected to the remote web server, you
should see something like this:

Last login: Wed Feb 22 08:50:04 2006 from 216.157.45.215

[userid@myhost ~]$

Now you’re at the command prompt of your web host’s
computer, and any command you give will be executed on
that computer. Start off by learning what directory you’re
in. To do this, type:

pwd

which stands for “print working directory.” It asks the
computer to list the name and pathname of the directory
in which you’re currently working. (You’ll see that many
Unix commands are very terse, so you have to type less.
The downside of this is that it makes them harder to
remember.) The server will respond with a directory path,
such as:

/home/igoe

This is the home directory for your account. On many
web servers, this directory contains a subdirectory called
public_html or www, which is where your web files belong.
Files that you place in your home directory (that is, outside
of www or public_html) can’t be seen by web visitors.

NOTE: You should check with your web host to learn how the files

and directories in your home directory are set up.

To find out what files are in a given directory, use the list
(ls) command, like so:

ls –l .

NOTE: The dot is shorthand for “the current working directory.”

Similarly, a double dot is shorthand for the directory (the parent

directory) that contains the current directory.

The -l means “list long.” You’ll get a response like this:

total 44

drwxr-xr-x 13 igoe users 4096 Apr 14 11:42 public_html

drwxr-xr-x 3 igoe users 4096 Nov 25 2005 share

This is a list of all the files and subdirectories of the
current working directories, as well as their attributes. The
first column lists who’s got permissions to do what (read,
modify, or execute/run a file). The second lists how many
links there are to that file elsewhere on the system; most
of the time, this is not something you’ll have much need
for. The third column tells you who owns it, and the fourth
tells you the group (a collection of users) to which the file
belongs. The fifth lists its size, and the sixth lists the date it
was last modified. The final column lists the filename.

In a Unix environment, all files whose names begin with a
dot are invisible. Some files, like access-control files that
you’ll see later in the book, need to be invisible. You can get
a list of all the files, including the invisible ones, using the
–a modifier for ls, this way:

ls -la

To move around from one directory to another, there’s a
“change directory” command, cd. To get into the public_
html directory, for example, type:

cd public_html

To go back up one level in the directory structure, type:

cd ..

To return to your home directory, use the ~ symbol, which
is shorthand for your home directory:

cd ~

If you type cd on a line by itself, it also takes you to your
home directory.

If you want to go into a subdirectory of a directory,
for example the cgi-bin directory inside the public_html
directory, you’d type cd public_html/cgi-bin. You can type
the absolute path from the main directory of the server
(called the root) by placing a / at the beginning of the file’s
pathname. Any other file pathname is called a relative path.

To make a new directory, type:

mkdir directoryname

Using the Command Line

14 MAKING THINGS TALK

This command will make a new directory in the current
working directory. If you then use ls -l to see a list of files
in the working directory, you’ll see a new line with the new
directory. If you then type cd directoryname to switch to
the new directory and ls -la to see all of its contents, you’ll
see only two listings:

drwxr-xr-x 2 tqi6023 users 4096 Feb 17 10:19 .

drwxr-xr-x 4 tqi6023 users 4096 Feb 17 10:19 ..

The first file, . , is a reference to this directory itself. The
second, .. , is a reference to the directory that contains it.
Those two references will exist as long as the directory
exists. You can’t change them.

To remove a directory, type:

rmdir directoryname

You can remove only empty directories, so make sure that
you’ve deleted all the files in a directory before you remove
it. rmdir won’t ask you if you’re sure before it deletes your
directory, so be careful. Don’t remove any directories or
files that you didn’t make yourself.

Controlling Access to Files
Type ls –l to get a list of files in your current directory
and to take a closer look at the permissions on the files.
For example, a file marked drwx------ means that it’s a
directory, and that it’s readable, writable, and executable
by the system user who created the directory (also known
as the owner of the file). Or, consider a file marked -rw-rw-
rw. The - at the beginning means it’s a regular file (not a
directory) and that the owner, the group of users to which
the file belongs (usually, the owner is a member of this
group), and everyone else who accesses the system can
read and write to this file. The first rw- refers to the owner,
the second refers to the group, and the third refers to
the rest of the world. If you're the owner of a file, you can
change its permissions using the chmod command:

chmod go–w filename

The options following chmod refer to which users you want
to affect. In the preceding example, you’re removing write
permission (-w) for the group (g) that the file belongs
to, and for all others (o) besides the owner of the file. To
restore write permissions for the group and others, and to
also give them execute permission, you’d type:

chmod go +wx filename

A combination of u for user, g for group, and o for others,
and a combination of + and - and r for read, w for write,
and x for execute gives you the capability to change
permissions on your files for anyone on the system. Be
careful not to accidentally remove permissions from
yourself (the user). Also, get in the habit of not leaving files
accessible to the group and others unless you need to—
on large hosting providers, it’s not unusual for you to be
sharing a server with hundreds of other users!

Creating, Viewing, and Deleting Files
Two other command-line programs you’ll find useful are
nano and less. nano is a text editor. It’s very bare-bones,
so you may prefer to edit your files using your favorite
text editor on your own computer and then upload them
to your server. But for quick changes right on the server,
nano is great. To make a new file, type:

nano filename.txt

The nano editor will open up. Figure 1-4 shows how it looks
like after I typed in some text.

All the commands to work in nano are keyboard
commands you type using the Ctrl key. For example, to
exit the program, type Ctrl-X. The editor will then ask
whether you want to save, and prompt you for a filename.
The most common commands are listed along the bottom
of the screen.

While nano is for creating and editing files, less is for
reading them. less takes any file and displays it to the
screen one screenful at a time. To see the file you just
created in nano, for example, type:

less filename.txt

You’ll get a list of the file's contents, with a colon (:)
prompt at the bottom of the screen. Press the space bar
for the next screenful. When you’ve read enough, type q to
quit. There’s not much to less, but it’s a handy way to read
long files. You can even send other commands through
less (or almost any command-line program) using the pipe
(|) operator. For example, try this:

ls –la . | less

THE TOOLS 15

Once you’ve created a file, you can delete it using the rm
command, like this:

rm filename

Like rmdir, rm won’t ask whether you’re sure before it
deletes your file, so use it carefully.

There are many other commands available in the Unix
command shell, but these will suffice to get you started.
For more information, type help at the command prompt
to get a list of commonly used commands. For any
command, you can get its user manual by typing man
commandname. When you’re ready to close the con-
nection to your server, type: logout. For more on getting
around Unix and Linux systems using the command line,
see Learning the unix Operating System by Jerry Peek,
Grace Todino-Gonguet, and John Strang (O'Reilly).

PHP
The server programs in this book are mostly in PHP. PHP
is one of the most common scripting languages for appli-
cations that run on the web server (server-side scripts).
Server-side scripts are programs that allow you to do
more with a web server than just serve fixed pages of text
or HTML. They allow you to access databases through a
browser, save data from a web session to a text file, send
mail from a browser, and more. You’ll need a web hosting
account with an Internet service provider for most of the
projects in this book, and it’s likely that your host already
provides access to PHP.

To get started with PHP, you’ll need to make a remote
connection to your web hosting account using ssh as you
did in the last section. Some of the more basic web hosts
don’t allow ssh connections, so check to see whether
yours does (and if not, look around for an inexpensive
hosting company that does; it will be well worth it for the
flexibility of working from the command line). Once you’re
connected, type:

php -v

You should get a reply like this:

PHP 5.3.4 (cli) (built: Dec 15 2010 12:15:07)

Copyright (c) 1997-2010 The PHP Group

Zend Engine v2.3.0, Copyright (c) 1998-2010 Zend

Technologies

This tells what version of PHP is installed on your server.
The code in this book was written using PHP5, so as long
as you’re running that version or later, you’ll be fine. PHP
makes it easy to write web pages that can display results
from databases, send messages to other servers, send
email, and more.

Most of the time, you won’t be executing your PHP scripts
directly from the command line. Instead, you’ll be calling
the web server application on your server—most likely a
program called Apache—and asking it for a file (this is all
accomplished simply by opening a web browser, typing
in the address of a document on your web server, and
pressing Enter—just like visiting any other web page). If

Figure 1-4

The nano text editor.

16 MAKING THINGS TALK

the file you ask for is a PHP script, the web server applica-
tion will look for your file and execute it. It’ll then send a
message back to you with the results.

For more on this, see Chapter 3. For now, let’s get a
simple PHP program or two working. Here’s your first
PHP program. Open your favorite text editor, type in the
following code, and save it on the server with the name hello.
php in your public_html directory (your web pages may be
stored in a different directory, such as www or web/public):

<?php

echo "<html><head></head><body>\n";

echo "hello world!\n";

echo "</body></html>\n";

?>

Now, back at the command line, type the following to see
the results:

php hello.php

You should get the following response:

<html><head></head><body>

hello world!

</body></html>

Now, try opening this file in a browser. To see this program
in action, open a web browser and navigate to the file's
address on your website. Because you saved it in public_
html, the address is http://www.example.com/hello.php

Figure 1-5

The results of your first PHP script,

in a browser.

(replace example.com with your website and any addi-
tional path info needed to access your home files, such as
http://tigoe.net/~tigoe/hello.php). You should get a web
page like the one shown in Figure 1-5.

If it still doesn’t work, your web server may not be configured
for PHP. Another possibility is that your web server uses a
different extension for php scripts, such as .php4. Consult
with your web hosting provider for more information.

You may have noticed that the program is actually printing
out HTML text. PHP was made to be combined with HTML.
In fact, you can even embed PHP in HTML pages, by using
the <? and ?> tags that start and end every PHP script. If
you get an error when you try to open your PHP script in a
browser, ask your system administrator whether there are
any requirements as to which directories PHP scripts need
to be in on your server, or on the file permissions for your
PHP scripts.

If you see the PHP source code instead of what’s

shown in Figure 1-5, you may have opened up the

PHP script as a local file (make sure your web browser’s

location bar says http:// instead of file://).

!

THE TOOLS 17

Here’s a slightly more complex PHP script. Save it to your
server in the public_html directory as time.php:

<?php

/*

 Date printer

 Context: PHP

 Prints the date and time in an HTML page.

*/

// Get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

echo "hello world!
\n";

// Include the date:

echo "Today’s date: $date
\n";

// finish the HTML:

echo "</body></html>\n";

?>

To see it in action, type http://www.example.com/
time.php into your browser (replacing example.com as
before). You should get the date and time. You can see
this program uses a variable, $date, and calls a built-in
PHP function, date(), to fill the variable. You don’t have to
declare the types of your variables in PHP. Any simple, or
scalar, variable begins with a $ and can contain an integer,
a floating-point number, or a string. PHP uses the same
C-style syntax as Processing, so you’ll see that if-then
statements, repeat loops, and comments all look familiar.

Variables in PHP
PHP handles variables a little differently than Process-
ing and Arduino. In the latter two, you give variables any
name you like, as long as you don't use words that are
commands in the language. You declare variables by
putting the variable type before the name the first time
you use it. In PHP, you don't need to declare a variable's
type, but you do need to put a $ at the beginning of the
name. You can see it in the PHP script above. $date is a
variable, and you're putting a string into it using the date()
command.

There are a number of commands for checking variables
that you'll see in PHP. For example, isset() checks whether
the variable's been given a value yet, or is_bool(), is_int(),
and is_string() check to see whether the variable contains
those particular data types (boolean, integer, and string,
respectively).

In PHP, there are three important built-in variables, called
environment variables, with which you should be familiar:
$_REQUEST, $_GET, and $_POST. These give you the
results of an HTTP request. Whether your PHP script was
called by a HTML form or by a user entering a URL with a
string of variables afterwards, these variables will give you
the results. $_GET gives you the results if the PHP script
was called using an HTTP GET request, $_POST gives the
results of an HTTP POST request, and $_REQUEST gives
you the results regardless of what type of request was
made.

Since HTTP requests might contain a number of
different pieces of information (think of all the fields
you might fill out in a typical web form), these are all
array variables. To get at a particular element, you can
generally ask for it by name. For example, if the form
you filled out had a field called Name, the name you
fill in would end up in the $_REQUEST variable in an
element called $_REQUEST['Name']. If the form made an
HTTP POST request, you could also get the name from
$_POST['Name']. There are other environment variables
you'll learn about as well, but these three are the most
useful for getting information from a client—whether it's a
web browser or a microcontroller. You'll learn more about
these, and see them in action, later in the book.

For more on PHP, check out www.php.net, the main source
for PHP, where you’ll find some good tutorials on how to
use it. You can also read Learning PHP 5 by David Sklar
(O'Reilly) for a more in-depth treatment.

Serial Communication Tools
The remote-access programs in the earlier section were
terminal emulation programs that gave you access to
remote computers through the Internet, but that’s not all
a terminal emulation program can do. Before TCP/IP was
ubiquitous as a way for computers to connect to networks,
connectivity was handled through modems attached to
the serial ports of computers. Back then, many users con-
nected to bulletin boards (BBSes) and used menu-based
systems to post messages on discussion boards,
down-load files, and send mail to other users of the same
BBS.

Nowadays, serial ports are used mainly to connect to
some of your computer's peripheral devices. In micro-
controller programming, they’re used to exchange data
between the computer and the microcontroller. For the
projects in this book, you’ll find that using a terminal

18 MAKING THINGS TALK

Serial ports aren’t easily shared between applica-

tions. In fact, only one application can have control

of a serial port at a time. If PuTTY, CoolTerm, or the

screen program has the serial port open to an Arduino

module, for example, the Arduino IDE can’t download

new code to the module. When an application tries to

open a serial port, it requests exclusive control of it

either by writing to a special file called a lock file, or by

asking the operating system to lock the file on its behalf.

When it closes the serial port, it releases the lock on

the serial port. Sometimes when an application crashes

while it’s got a serial port open, it can forget to close

the serial port, with the result that no other application

can open the port. When this happens, the only thing

you can do to fix it is to restart the operating system,

which clears all the locks (alternatively, you could wait

for the operating system to figure out that the lock

should be released). To avoid this problem, make sure

that you close the serial port whenever you switch from

one application to another. Linux and Mac OS X users

should get in the habit of closing down screen with

Ctrl-A then Ctrl-\ every time, and Windows users should

disconnect the connection in PuTTY. Otherwise, you may

find yourself restarting your machine a lot.

Who’s Got the Port?
program to connect to your serial ports is indispens-
able. There are several freeware and shareware terminal
programs available. CoolTerm is an excellent piece of
freeware by Roger Meier available from http://freeware.
the-meiers.org. It works on Mac OS X and Windows, and
it's my personal favorite these days. If you use it, do the
right thing and make a donation because it's developed in
the programmer's spare time. For Windows users, PuTTY
is a decent alternative because it can open both serial and
ssh terminals. PuTTY is also available for Linux. Alterna-
tively, you can keep it simple and stick with a classic: the
GNU screen program running in a terminal window. OS X
users can use screen as well, though it's less full-featured
than CoolTerm.

Windows serial communication
To get started, you'll need to know the serial port name.
Click Start→Run (use the Search box on Windows 7), type
devmgmt.msc, and press Enter to launch Device Manager.
If you’ve got a serial device such as a Wiring or Arduino
board attached, you’ll see a listing for Ports (COM & LPT).
Under that listing, you’ll see all the available serial ports.
Each new Wiring or Arduino board you connect will get a
new name, such as COM5, COM6, COM7, and so forth.

Once you know the name of your serial port, open PuTTY.
In the Session category, set the Connection Type to Serial,
and enter the name of your port in the Serial Line box,
as shown in Figure 1-6. Then click the Serial category at
the end of the category list, and make sure that the serial
line matches your port name. Configure the serial line for
9600 baud, 8 data bits, 1 stop bit, no parity, and no flow
control. Then click the Open button, and a serial window
will open. Anything you type in this window will be sent out
the serial port, and any data that comes in the serial port
will be displayed here as ASCII text.

NOTE: Unless your Arduino is running a program that communi-

cates over the serial port (and you’ll learn all about that shortly),

you won’t get any response yet.

Mac OS X serial communication
To get started, open CoolTerm and click the Options icon.
In the Options tab, you'll see a pulldown menu for the port.
In Mac OS X, the port names are similar to this: /dev/tty.
usbmodem241241. To find your port for sure, check the
list when your Arduino is unplugged, then plug it in and
click Re-scan Serial Ports in the Options tab. The new
port listed is your Arduino's serial connection. To open the
serial port, click the Connect button in the main menu. To
disconnect, click Disconnect.

Adventurous Mac OS X users can take advantage of the
fact that it’s Unix-based and follow the Linux instructions.

Linux serial communication
To get started with serial communication in Linux (or Mac
OS X), open a terminal window and type:

ls /dev/tty.* # Mac OS X

ls /dev/tty* # Linux

This command will give you a list of available serial ports.
The names of the serial ports in Mac OS X and Linux are
more unique, but they're more cryptic than the COM1,
COM2, and so on that Windows uses. Pick your serial port
and type:

screen portname datarate.

THE TOOLS 19

Figure 1-6

Configuring a serial connection in PuTTY.

20 MAKING THINGS TALK

For example, to open the serial port on an Arduino board
(discussed shortly) at 9600 bits per second, you might
type screen /dev/tty.usbmodem241241 9600 on Mac OS
X. On Linux, the command might be screen /dev/ttyUSB0
9600. The screen will be cleared, and any characters you
type will be sent out the serial port you opened. They won’t
show up on the screen, however. Any bytes received in the
serial port will be displayed in the window as characters. To
close the serial port, type Ctrl-A followed by Ctrl-\.

In the next section, you’ll use a serial communications
program to communicate with a microcontroller.

Hardware

Arduino, Wiring, and Derivatives
The main microcontroller used in this book is the Arduino
module. Arduino and Wiring, another microcontroller
module, both came out of the Institute for Interaction
Design in Ivrea, Italy, in 2005. They're based on the same

microcontroller family, Atmel's ATmega series (www.
atmel.com), and they're both programmed in C/C++.
The "dialect" they speak is based on Processing, as is the
software integrated development environments (IDEs)
they use. You'll see that some Processing commands
have made their way into Arduino and Wiring, such as the
setup() and loop() methods (Processing's draw() method
was originally called loop()), the map() function, and more.

When this book was first written, there was one Wiring
board, four or five variants of Arduino, and almost no deriv-
atives. Now, there are several Arduino models, two new
Wiring models coming out shortly, and scores of Arduino-
compatible derivatives, most of which are compatible
enough that you can program them directly from the
Arduino IDE. Others have their own IDEs and will work with
some (but not all) of the code in this book. Still others are
compatible in their physical design but are programmed
with other languages. The derivatives cover a wide range
of applications.

Figure 1-7

The CoolTerm serial terminal program.

THE TOOLS 21

The following projects have been tested extensively on
Arduino boards and, when possible, on the classic Wiring
board. Though you'll find some differences, code written
for a Wiring board should work on an Arduino board,
and vice versa. For Arduino derivatives, check with the
manufacturer of your individual board. Many of them are
very active in the Arduino forums and are happy to lend
support.

You’ll find that the editors for Arudino and Wiring look very
similar. These free and open source programming environ-
ments are available through their respective websites:
www.arduino.cc and www.wiring.org.co.

The hardware for both is also open source, and you can
buy it from various online retailers, listed on the sites
above. Or, if you’re a hardcore hardware geek and like to
make your own printed circuit boards, you can download
the plans to do so. I recommend purchasing them online,

as it’s much quicker (and more reliable, for most people).
Figure 1-8 shows some of your options.

One of the best things about Wiring and Arduino is that
they are cross-platform; they work well on Mac OS X,
Windows, and Linux. This is a rarity in microcontroller
development environments.

Another good thing about these environments is that, like
Processing, they can be extended. Just as you can include
Java classes and methods in your Processing programs,
you can include C/C++ code, written in AVR-C, in your
Wiring and Arduino programs. For more on how to do this,
visit their respective websites.

For an excellent introduction to Arduino, see Massimo
Banzi’s book Getting Started with Arduino (O’Reilly).
X

Figure 1-8 . Varieties of Arduino, as well as a Wiring board: 1 . LilyPad Arduino 2 . Arduino uno SMD 3 . Arduino Fio 4 . Arduino

Pro Mini 5 . Arduino Mini 6 . Arduino Nano 7 . Arduino Mega 2560 8 . Arduino uno 9 . Wiring board 10 . Arduino Pro 11 . Arduino

Ethernet 12 . Arduino bluetooth 13 . Arduino Duemilanove .

1
2 3

10

5

6

7

4

12 13

98

11

22 MAKING THINGS TALK

One of the features that makes Arduino easy to work with

are the add-on modules called shields, which allow you to

add preassembled circuits to the main module. For most

applications you can think of, there's a third-party company

or individual making a shield to do it. Need a MIDI synthe-

sizer? There's a shield for that. Need NTSC video output?

There's a shield for that. Need WiFi or Ethernet? There's a

shield for that, and you'll be using them extensively in this

book.

The growth of shields has been a major factor in the spread

of Arduino, and the well-designed and documented ones

make it possible to build many projects with no electronic

experience whatsoever. You'll be using some shields in this

book, and for other projects, building the actual circuit

yourself.

The shields you'll see most commonly in this book are the

Ethernet shield, which gives you the ability to connect your

controller to the Internet; the wireless shield, which lets you

interface with Digi's XBee radios and other radios with the

same footprint; and some prototyping shields, which make it

easy to design a custom circuit for your project.

The shield footprint, like the board designs, is available

online at www.arduino.cc. If you've got experience making

printed circuit boards, try your hand at making your own

shield—it's fun.

Until recently, shields for Arduino weren't physically com-

patible with Wiring boards. However, Rogue Robotics (www.

roguerobotics.com) just started selling an adapter for the

Wiring board that allows it to take shields for Arduino.

Beware! Not every shield is compatible with every board.

Some derivative boards do not operate on the same voltage

as the Arduino boards, so they may not be compatible with

shields designed to operate at 5 volts. If you're using a

different microcontroller board, check with the manufac-

turer of your board to be sure it works with your shields.

X

Arduino Shields

Figure 1-9 . A sampling of shields for Arduino: 1 . Arduino prototyping shield 2 . Adafruit prototyp-

ing shield 3 . Arduino Ethernet shield 4 . TinkerKit DMX shield 5 . Arduino wireless shield

 6 . Oomlout Arduino/breadboard mount, manufactured by Adafruit 7 . Spark Fun microSD card

shield 8 . Adafruit motor driver shield 9 . Spark Fun musical instrument shield .

1

2 3

5

6

7

4

9

8

THE TOOLS 23

Though the examples in this book focus on Arduino,

there are many other microcontroller platforms that

you can use to do the same work. Despite differences

among the platforms, there are some principles that

apply to them all. They're basically small computers.

They communicate with the world by turning on or off

the voltage on their output pins, or reading voltage

changes on their input pins. Most microcontrollers can

read variable voltage changes on a subset of their I/O

pins. All microcontrollers can communicate with other

computers using one or more forms of digital communi-

cation. Listed below are a few other microcontrollers on

the market today.

8-bit controllers
The Atmel microcontrollers that are at the heart of both

Arduino and Wiring are 8-bit controllers, meaning that

they can process data and instructions in 8-bit chunks.

8-bit controllers are cheap and ubiquitous, and they can

sense and control things in the physical world very effec-

tively. They can sense simple physical characteristics at

a resolution and speed that exceeds our senses. They

show up in nearly every electronic device in your life,

from your clock radio to your car to your refrigerator.

There are many other 8-bit controllers that are great for

building physical devices. Parallax (www.parallax.com)

Basic Stamp and Basic Stamp 2 (BS-2) are probably

the most common microcontrollers in the hobbyist

market. They are easy to use and include the same basic

functions as Wiring and Arduino. However, the language

they're programmed in, PBASIC, lacks the ability to pass

parameters to functions, which makes programming

many of the examples shown in this book more difficult.

Revolution Education's PICAXE environment (www.

rev-ed.co.uk) is very similar to the PBASIC of the Basic

Stamp, but it's a less expensive way to get started than

the Basic Stamp. Both the PICAXE and the Stamp are

capable of doing the things shown in this book, but their

limited programming language makes the doing a bit

more tedious.

PIC and AVR
Microchip’s PIC (www.microchip.com) and Atmel’s AVR

are excellent microcontrollers. You’ll find the AVRs at the

heart of Arduino and Wiring, and the PICs at the heart

of the Basic Stamps and PICAXEs. The Basic Stamp,

PICAXE, Wiring, and Arduino environments are essen-

tially wrappers around these controllers, making them

easier to work with. To use PICs or AVRs on their own,

you need a hardware programmer that connects to your

computer, and you need to install a programming envi-

ronment and a compiler.

Though the microcontrollers themselves are cheap

(between $1 and $10 apiece), getting all the tools set

up for yourself can cost you some money. There’s also

a pretty significant time investment in getting set up,

as the tools for programming these controllers from

scratch assume a level of technical knowledge—both

in software and hardware—that's higher than the other

tools listed here.

32-bit controllers
Your personal computer is likely using a 64-bit processor,

and your mobile phone is likely using a 32-bit processor.

These processors are capable of more complex tasks,

such as multitasking and media control and playback.

Initially, 32-bit processors were neither affordable nor

easy to program, but that has been changing rapidly in

the last couple of years, and there are now several 32-bit

microcontroller platforms on the market. Texas Instru-

ments' BeagleBoard (http://beagleboard.org) is a 32-bit

processor board with almost everything you need to

make a basic personal computer: HDMI video out, USB,

SD card and connections for mass storage devices, and

more. It can run a minimal version of the Linux operating

system. Netduino (www.netduino.com) is a 32-bit

processor designed to take Arduino shields, but it's pro-

grammed using an open source version of Microsoft's

.NET programming framework. LeafLabs' Maple (http://

leaflabs.com) is another 32-bit processor that uses the

same footprint as the Arduino Uno, and is programmed

in C/C++ like the Arduino and Wiring boards. In addition

to these, there are several others coming on the market

in the near future.

The increasing ease-of-use of 32-bit processors is

bringing exciting changes for makers of physical inter-

faces, though not necessarily in basic input and output.

8-bit controllers can already sense simple physical

Other Microcontrollers

24 MAKING THINGS TALK

Getting Started
Because the installation process for Wiring and Arduino
is similar, I’ll detail only the Arduino process here. Wiring
users can follow along and do the same steps, substituting
“Wiring” for “Arduino” in the instructions. Download
the software from the appropriate site, then follow the
instructions below. Check the sites for updates on these
instructions.

Setup on Mac OS X
Double-click the downloaded file to unpack it, and you'll
get a disk image that contains the Arduino application
and an installer for FTDI USB-to-Serial drivers. Drag the
application to your Applications directory. If you're using
an Arduino Uno or newer board, you won't need the FTDI
drivers, but if you're using a Duemilanove or older board,
or a Wiring board, you'll need the drivers. Regardless of the
board you have, there's no harm in installing them—even
if you don't need them. Run the installer and follow the
instructions to install the drivers.

Like all microcontrollers, the Arduino and Wiring
modules are just small computers. Like every
computer, they have inputs, outputs, a power

supply, and a communications port to connect to other
devices. You can power these modules either through a
separate power supply or through the USB connection
to your computer. For this introduction, you’ll power the
module from the USB connection. For many projects,
you’ll want to disconnect them from the computer once
you’ve finished programming them. When you do, you'll
power the board from the external power supply.

Figure 1-10 shows the inputs and outputs for the Arduino
Uno. The other Arduino models and the Wiring module are
similar. Each module has the same standard features as
most microcontrollers: analog inputs, digital inputs and
outputs, and power and ground connections. Some of the
I/O pins can also be used for serial communication. Others
can be used for pulse-width modulation (PWM), which is a
way of creating a fake analog voltage by turning the pin on
and off very fast. The Wiring and Arduino boards also have
a USB connector that's connected to a USB-to-Serial con-
troller, which allows the main controller to communicate
with your computer serially over the USB port. They also
have a programming header to allow you to reprogram the
firmware (which you’ll never do in this book) and a reset
button. You’ll see these diagrams repeated frequently, as
they are the basis for all the microcontroller projects in the
book.

 Updates to the Arduino and Wiring software occur

frequently. The notes in this book refer to Arduino version

1.0 and Wiring version 1.0. By the time you read this, the

specifics may be slightly different, so check the Arduino and

Wiring websites for the latest details.

!

changes and control outputs at resolutions that exceed

human perception. However, complex-sensing features—

such as gesture recognition, multitasking, simpler

memory management, and the ability to interface

with devices using the same methods and libraries as

personal computers—will make a big difference. 32-bit

processors give physical interface makers the ability to

use or convert code libraries and frameworks developed

on servers and personal computers. There is where the

real excitement of these processors lies.

These possibilities are just beginning to be realized and

will easily fill another book, or several. However, basic

sensing and networked communications are still well

within the capabilities of 8-bit controllers, so I've chosen

to keep the focus of this book on them.

Other Microcontrollers (cont'd)

THE TOOLS 25

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Pins 0, 1:
Serial

Pins A0 - A5:
Analog inputs

(can also function
as digital I/O)

Pins 0 - 13:
Digital inputs

or outputs

Pins 3,5,6,9,10,11:
Analog Outputs

(PWM)Analog
Reference

input

Reset
(connect to ground

to reset)

Reset button

Voltage
outputs

Ground

Ground

Connected directly
to 9-15V DC

voltage input

R
ec

ei
ve

Tr
an

sm
it

USB

9-15V DC
voltage input

5V Voltage
regulator

USB-to-
serial

controller

Microcontroller

Figure 1-10

Functional parts of an Arduino.

Most microcontrollers have the

same or similar parts: power

connections, digital and analog

inputs, and serial communications.

You'll see a lot of circuit diagrams in this book, as well as

flowcharts of programs, system diagrams, and more. The

projects you'll make with this book are systems with many

parts, and you'll find it helps to keep diagrams of what's

involved, which parts talk to which, and what protocols they

use to communicate. I used three drawing tools heavily in

this book, all of which I recommend for documenting your

work:

Adobe Illustrator (www.adobe.com/products/illustrator.

html). You really can't beat it for drawing things, even

though it's expensive and takes time to learn well. There

are many libraries of electronic schematic symbols freely

available on the Web.

Inkscape (www.inkscape.org). This is an open source tool for

vector drawing. Though the GUI is not as well developed as

Illustrator, it's pretty darn good. The majority of the sche-

matics in this book were done in Illustrator and Inkscape.

Fritzing (www.fritzing.org). Fritzing is an open source tool for

documenting, sharing, teaching, and designing interactive

electronic projects. It's a good tool for learning how to read

schematics, because you can draw circuits as they physical-

ly look, and then have Fritzing generate a schematic of what

you drew. Fritzing also has a good library of vector graphic

electronics parts that can be used in other vector programs.

This makes it easy to move from one program to another in

order to take advantage of all three.

Figure 1-10 was cobbled together from all three tools,

combining the work of Jody Culkin and Giorgio Olivero,

with a few details from André Knörig and Jonathan Cohen's

Fritzing drawings. You'll see it frequently throughout the

book.

It's a good idea to keep notes on what you do as well, and

share them publicly so others can learn from them. I rely on

a combination of three note-taking tools: blogs powered by

Wordpress (www.wordpress.org) at www.makingthingstalk.

com, http://tigoe.net/blog, and http://tigoe.net/pcomp/

code; a github repository (https://github.com/tigoe); and a

stack of Maker’s Notebooks (www.makershed.com, part no.

9780596519414).

Document What You Make

26 MAKING THINGS TALK

 Figure 1-11

Toolbars for Arduino version 0022, Arduino 1.0, and Wiring

1.0.

Once you're installed, open the Arduino application and
you're ready to go.

Setup on Windows 7
Unzip the downloaded file. It can go anywhere on your
system. The Program Files directory is a good place. Next,
you'll need to install drivers, whether you have an Arduino
Uno board or an older board, or a Wiring board.

Plug in your Arduino and wait for Windows to begin its
driver installation process. If it's a Duemilanove or earlier,
it will need the FTDI drivers. These should install automati-
cally over the Internet when you plug your Duemilanove
in; if not, there is a copy in the drivers directory of the
Arduino application directory. If it's an Uno or newer, click
on the Start Menu and open up the Control Panel. Open
the "System and Security" tab. Next, click on System,

then open the Device Manager. Under Ports (COM & LPT),
you should see a port named Arduino UNO (COMxx).
Right-click on this port and choose the Update Driver
Software option. Click the "Browse my computer for Driver
software" option. Finally, navigate to and select the Uno's
driver file, named ArduinoUNO.inf, located in the drivers
directory. Windows will finish up the driver installation
from there.

Setup on Linux
Arduino for Linux depends on the flavor of Linux you're
using. See www.arduino.cc/playground/Learning/Linux
for details on several Linux variants. For Ubuntu users, it's
available from the Ubuntu Software Update tool.

Now you’re ready to launch Arduino. Connect the module
to your USB port and double-click the Arduino icon to
launch the software. The editor looks like Figure 1-12.

The environment is based on Processing and has New,
Open, and Save buttons on the main toolbar. In Arduino
and Wiring, the Run function is called Verify, and there is

THE TOOLS 27

Figure 1-12

The Arduino programming environment.

The Wiring environment looks similar,

except the color is different.

Figure 1-13

LED connected to pin 13 of an

Arduino board. Add 220-ohm cur-

rent-limiting resistor in series with

this if you plan to run it for more

than a few minutes.

an Upload button as well. Verify compiles your program
to check for any errors, and Upload both compiles
and uploads your code to the microcontroller module.
There’s an additional button, Serial Monitor, that you can
use to receive serial data from the module while you’re
debugging.

Changes to version 1.0
For Arduino users familiar with previous versions, you'll
see some changes in version 1.0. The toolbar has changed
a bit. Figure 1-11 compares the toolbars of Arduino version
0022 (pre-1.0), Arduino 1.0, and Wiring 1.0. Arduino 1.0
now saves files with the extension .ino instead of .pde, to
avoid conflict with Processing, which uses .pde. Wiring 1.0
still uses .pde. In addition, you can now upload sketches in
Arduino 1.0 using an external hardware programmer. The
Programmer submenu of the Tools menu lets you set your
programmer.
X

28 MAKING THINGS TALK

/* Blink

 Context: Arduino

 Blinks an LED attached to pin 13 every half second.

 Connections:

 Pin 13: + leg of an LED (- leg goes to ground)

*/

int LEDPin = 13;

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

}

void loop() {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 delay(500); // wait half a second

 digitalWrite(LEDPin, LOW); // turn the LED off

 delay(500); // wait half a second

}

Here’s your first program.

In order to see this run, you’ll need to connect an
LED from pin 13 of the board to ground (GND),
as shown in Figure 1-13. The positive (long) end

of the LED should go to 13, and the short end to ground.

Then type the code into the editor. Click on Tools→Board
to choose your Arduino model, and then Tools→Serial
Port to choose the serial port of the Arduino module. On
the Mac or Linux, the serial port will have a name like this:
/dev/tty.usbmodem241241. If it's an older board or a
Wiring board, it will be more like this: /dev/tty.usbserial-
1B1 (the letters and numbers after the dash will be slightly
different each time you connect it). On Windows, it should
be COMx, where x is some number (for example, COM5).

NOTE: On Windows, COM1–COM4 are generally reserved for

built-in serial ports, regardless of whether your computer has

them.

Once you’ve selected the port and model, click Verify
to compile your code. When it’s compiled, you’ll get
a message at the bottom of the window saying Done
compiling. Then click Upload. This will take a few
seconds. Once it’s done, you’ll get a message saying
Done uploading, and a confirmation message in the serial
monitor window that says:

 Try It

Binary sketch size: 1010 bytes (of a 32256 byte maximum)

Once the sketch is uploaded, the LED you wired to the
output pin will begin to blink. That’s the microcontroller
equivalent of “Hello World!”

NOTE: If it doesn't work, you might want to seek out some external

help. The Arduino Learning section has many tutorials (www.arduino.

cc/en/Tutorial). The Arduino (www.arduino.cc/forum) and Wiring

(http://forum.wiring.co) forums are full of helpful people who love

to hack these sort of things.

Serial communication
One of the most frequent tasks you’ll use a microcontroller
for in this book is to communicate serially with another
device, either to send sensor readings over a network or
to receive commands to control motors, lights, or other
outputs from the microcontroller. Regardless of what
device you’re communicating with, the commands you’ll
use in your microcontroller program will be the same. First,
you’ll configure the serial connection for the right data
rate. Then, you’ll read bytes in, write bytes out, or both,
depending on what device you’re talking to and how the
conversation is structured.

THE TOOLS 29

The USB serial port that’s associated with the Arduino

or Wiring module is actually a software driver that loads

every time you plug in the module. When you unplug,

the serial driver deactivates and the serial port will

disappear from the list of available ports. You might also

notice that the port name changes when you unplug

and plug in the module. On Windows machines, you may

get a new COM number. On Macs, you’ll get a different

alphanumeric code at the end of the port name.

Never unplug a USB serial device when you’ve got its

serial port open; you must exit the Wiring or Arduino

software environment before you unplug anything.

Otherwise, you’re sure to crash the application, and

possibly the whole operating system, depending on how

well behaved the software driver is.

Where’s My Serial Port?

/*

 Simple Serial

 Context: Arduino

 Listens for an incoming serial byte, adds one to the byte

 and sends the result back out serially.

 Also blinks an LED on pin 13 every half second.

 */

int LEDPin = 13; // you can use any digital I/O pin you want

int inByte = 0; // variable to hold incoming serial data

long blinkTimer = 0; // keeps track of how long since the LED

 // was last turned off

int blinkInterval = 1000; // a full second from on to off to on again

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

 Serial.begin(9600); // configure the serial port for 9600 bps

 // data rate.

}

void loop() {

 // if there are any incoming serial bytes available to read:

 if (Serial.available() > 0) {

 // then read the first available byte:

 inByte = Serial.read();

 // and add one to it, then send the result out:

This next Arduino program listens for
incoming serial data. It adds one to
whatever serial value it receives, and
then sends the result back out. It also
blinks an LED on pin regularly—on the
same pin as the last example—to let
you know that it’s still working.

»

NOTE: If you’ve got experience with the Basic Stamp or PicBasic

Pro, you will find Arduino serial communications a bit different

than what you are used to. In PBasic and PicBasic Pro, the

serial pins and the data rate are defined each time you send a

message. In Wiring and Arduino, the serial pins are unchangeable,

and the data rate is set at the beginning of the program. This

way is a bit less flexible than the PBasic way, but there are some

advantages, as you’ll see shortly.

 Try It

30 MAKING THINGS TALK

Continued from previous page .

 Serial.write(inByte+1);

 }

 // Meanwhile, keep blinking the LED.

 // after a half of a second, turn the LED on:

 if (millis() - blinkTimer >= blinkInterval / 2) {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 }

 // after a half a second, turn the LED off and reset the timer:

 if (millis() - blinkTimer >= blinkInterval) {

 digitalWrite(LEDPin, LOW); // turn the LED off

 blinkTimer = millis(); // reset the timer

 }

}

To send bytes from the computer to the micro-
controller module, first compile and upload this
program. Then click the Serial Monitor icon (the

rightmost icon on the toolbar). The screen will change to
look like Figure 1-14. Set the serial rate to 9600 baud.

Type any letter in the text entry box and press Enter or
click Send. The module will respond with the next letter in
sequence. For every character you type, the module adds
one to that character’s ASCII value, and sends back the
result.

Connecting Components to the
Module
The Arduino and Wiring modules don’t have many sockets
for connections other than the I/O pins, so you’ll need to
keep a solderless breadboard handy to build subcircuits
for your sensors and actuators (output devices). Figure 1-15
shows a standard setup for connections between the two.

Basic Circuits
There are two basic circuits that you’ll use a lot in this
book: digital input and analog input. If you’re familiar with
microcontroller development, you’re already familiar with
them. Any time you need to read a sensor value, you can
start with one of these. Even if you’re using a custom
sensor in your final object, you can use these circuits as
placeholders, just to see any changing sensor values.

Digital input
A digital input to a microcontroller is nothing more than a
switch. The switch is connected to voltage and to a digital
input pin of the microcontroller. A high-value resistor (10
kilohms is good) connects the input pin to ground. This is
called a pull-down resistor. Other electronics tutorials may
connect the switch to ground and the resistor to voltage. In
that case, you’d call the resistor a pull-up resistor. Pull-up
and pull-down resistors provide a reference to power
(pull-up) and ground (pull-down) for digital input pins.
When a switch is wired as shown in Figure 1-16, closing the
switch sets the input pin high. Wired the other way, closing
the switch sets the input pin low.

Analog input
The circuit in Figure 1-17 is called a voltage divider. The
variable resistor and the fixed resistor divide the voltage
between them. The ratio of the resistors’ values deter-
mines the voltage at this connection. If you connect the
analog-to-digital converter of a microcontroller to this
point, you’ll see a changing voltage as the variable resistor
changes. You can use any kind of variable resistor: pho-
tocells, thermistors, force-sensing resistors, flex-sensing
resistors, and more.

The potentiometer, shown in Figure 1-18, is a special
type of variable resistor. It’s a fixed resistor with a wiper
that slides along its conductive surface. The resistance
changes between the wiper and both ends of the resistor
as you move the wiper. Basically, a potentiometer (pot
for short) is two variable resistors in one package. If you
connect the ends to voltage and ground, you can read a
changing voltage at the wiper.

THE TOOLS 31

 Figure 1-14

The Serial monitor in Arduino, running the

previous sketch. The user typed BCDEFGH.

RX

RESET
ICSP

D
IG

ITAL
 (PW

M
~)

AN
ALO

G
 IN

TX
2
3
4
5
6

A 0
A 1
A 2
A 3
A 4
A 5

7

8
9

10
11
12
13

GND

Vin

AREF

RESET

3.3V

5V
PO

W
ER

GND

GND

0
1

M
A

D
E

IN
 ITA

LY

A
R
D
U
IN

O

U
N
O

-
+

O
N

TXRX

RESET-EN

W W W.ARDUINO.CC

L
1

5
10

15
20

25
30

1
5

10
15

20
25

30

ABCDEFGHIJ
Figure 1-15

Arduino connected to a breadboard. +5V and

ground run from the module to the long rows of

the board. This way, all sensors and actuators can

share the +5V and ground connections of the board.

Control or signal connections from each sensor

or actuator run to the appropriate I/O pins. In this

example, two pushbuttons are attached to digital

pins 2 and 3 as digital inputs.

32 MAKING THINGS TALK

There are many other circuits you’ll learn in the projects
that follow, but these are the staples of all the projects in
this book.

Specialty circuits and modules
You'll see a number of specialty circuits and modules
throughout this book, like the Bluetooth Mate and the
XBee radios. These are devices that allow you to send
serial data wirelessly. You'll also build a few of your own
circuits for specific projects. All of the circuits will be
shown on a breadboard like these, but you can build them
any way you like. If you're familiar with working on printed
circuit boards and prefer to build your circuits that way,
feel free to do so.
X

1
5

10
15

20
25

30

1
5

10
15

20
25

30

ABCDEFGHIJ

To Microcontroller
digital input

To ground

To +V

Figure 1-16

Digital input to a microcontroller.

Top: breadboard view.

Bottom: schematic view.

Input voltage

To microcontroller
digital input

You will encounter variations on many of the

modules and components used in this book. For

example, the Arduino module has several variations, as

shown in Figure 1-8. The FTDI USB-to-Serial module used in

later chapters has at least three variations. Even the voltage

regulators used in this book have variations. Be sure to

check the data sheet on whatever component or module

you’re using, as your version may vary from what is shown

here.

!

THE TOOLS 33

1
5

10
15

20
25

30

1
5

10
15

20
25

30

ABCDEFGHIJ

To Microcontroller
analog input

To ground

To +V
1

5
10

15
20

25
30

1
5

10
15

20
25

30

ABCDEFGHIJ

To Microcontroller
analog input

To ground

To +V

Figure 1-17

Voltage divider used as analog input to a microcontroller.

Top: breadboard view.

Bottom: schematic view.

Figure 1-18

Potentiometer used as analog input to a microcontroller.

Top: breadboard view.

Bottom: schematic view.

Input voltage

To microcontroller
analog input

Variable resistor
(photocell, flex
sensor, etc.)

Fixed resistor

Input voltage

To microcontroller
analog inputPotentiometer

34 MAKING THINGS TALK

Most of what you'll be building in this book involves
computer circuits that read a changing voltage over time.
Whether your microcontroller is reading a digital or analog
input, controlling the speed of a motor, or sending data to
a personal computer, it's either reading a voltage or gener-
ating a voltage that changes over time. The time intervals
it works in are much faster than yours. For example, the
serial communication you just saw involved an electrical
pulse changing at about 10,000 times per second. You
can't see anything that fast on a multimeter. This is when
an oscilloscope is useful.

An oscilloscope is a tool for viewing the changes in an
electrical signal over time. You can change the sensitivity
of its voltage reading (in volts per division of the screen)
and of the time interval (in seconds, milliseconds, or
microseconds per division) at which it reads. You can
also change how it displays the signal. You can show it in
real time, starting or stopping it as you need, or you can
capture it when a particular voltage threshold (called a
trigger) is crossed.

Oscilloscopes were once beyond the budget of most
hobbyists, but lately, a number of inexpensive ones have
come on the market. The DSO Nano from Seeed Studio,
shown in Figure 1-19, is a good example. At about $100,
it's a really good value if you're a dedicated electronic
hobbyist. It doesn't have all the features that a full profes-
sional 'scope has, but it does give you the ability to change
the volts per division and seconds per division, and to set
a voltage trigger for taking a snapshot. It can sample up
to 1 million times a second, which is more than enough to
measure most serial applications. The image you see in
Figure 1-19 shows the output of an Arduino sending the
message "Hello World!" Each block represents one bit of

Using an Oscilloscope

Figure 1-19

DSO Nano oscilloscope reading a

serial data stream.

data. The vertical axis is the voltage measurement, and the
horizontal measurement is time. The Nano was sampling
at 200 microseconds per division in this image, and 1 volt
per division vertically. The 'scopes leads are attached to
the ground pin of the Arduino and to digital pin 1, which is
the serial transmit pin.

Besides inexpensive hardware 'scopes, there are also
many software 'scopes available, both as freeware and
as paid software. These typically use the audio input
of your computer to sample the incoming voltage. The
danger, of course, is that if you send in too much voltage
you can damage your computer. For this reason, I prefer
a hardware 'scope. But if you're interested in software
'scopes, a web search on software oscilloscope and your
operating system will yield plenty of useful results.
X

THE TOOLS 35

It Ends with the Stuff You Touch
Though most of this book is about the fascinating world of making things talk to each

other, it’s important to remember that you’re most likely building your project for the

enjoyment of someone who doesn’t care about the technical details under the hood.

Even if you’re building it only for yourself, you don’t want
to have to fix it all the time. All that matters to the person
using your system are the parts that she can see, hear,
and touch. All the inner details are irrelevant if the physical
interface doesn’t work. So don’t spend all of your time
focusing on the communication between devices and
leave out the communication with people. In fact, it’s best
to think about the specifics of what the person does and
sees first.

There are a number of details that are easy to overlook
but are very important to humans. For example, many
network communications can take several seconds or
more. In a screen-based operating system, progress bars
acknowledge a person’s input and keep him informed as to
the task's progress. Physical objects don’t have progress
bars, but they should incorporate some indicator as to
what they’re doing—perhaps as simple as playing a tune
or pulsing an LED gently while the network transfer’s
happening.

Find your own solution, but make sure you give some
physical indication as to the invisible activities of your
objects.

Don’t forget the basic elements, either. Build in a power
switch or a reset button. Include a power indicator. Design
the shape of the object so that it’s clear which end is up.
Make your physical controls clearly visible and easy to
operate. Plan the sequence of actions you expect a person
to take, and lay out the physical affordances for those
actions sensibly. You can’t tell people what to think about
your object—you can only show them how to interact with
it through its physical form. There may be times when you
violate convention in the way you design your controls—
perhaps in order to create a challenging game or to make
the object seem more “magical"—but make sure you’re
doing it intentionally. Always think about the participant’s
expectations first.

By including the person’s behavior in your system planning,
you solve some problems that are computationally difficult
but easy for human intelligence. Ultimately, the best reason
to make things talk to each other is to give people more
reasons to talk to each other.
X

36 MAKING THINGS TALK

The Simplest Network
The most basic network is a one-to-one connection between two

objects. This chapter covers the details of two-way communication,

beginning with the characteristics that have to be agreed upon in

advance. You’ll learn about some of the logistical elements of network

communications: data protocols, flow control, and addressing. You’ll

practice all of this by building two examples using one-to-one serial

communication between a microcontroller and a personal computer.

You’ll also learn about modem communications and how you can

replace the cable connecting the two with Bluetooth radios.

2
MAKE: PROJECTS

Joo youn Paek’s Zipper Orchestra (2006)

This is a musical installation that lets you control video and music using zippers. The zippers are wired to a micro-

controller using conductive thread, and the microcontroller communicates serially with a multimedia computer that

drives the playback of the zipper movies and sounds as you zip.

Photo courtesy of Joo Youn Paek.

38 MAKING THINGS TALK

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww/)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• RS RS (www.rs-online.com)
• SF Spark Fun (www.SparkFun.com)
• SS Seeed Studio (www.seeedstudio.com)

PROJECT 1: Type brighter RGb LED Serial Control
 » 1 Arduino module Get something based on the Arduino

Uno, but the project should work on other Arduino and
Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950, A A000046,
AF 50, F 1848687, RS 715-4081, SS ARD132D2P,
MS MKSP4

Supplies for Chapter 2

 » 1 RGb LED, common cathode It's like three LEDs in one!
This emits red, green, and blue on separate channels.
D 754-1492-ND, J 2125181, SF COM-00105, F 8738661,
RS 713-4888

 » 1 personal computer
 » All necessary converters to communicate serially
from microcontroller to computer For the Arduino
and Wiring modules, all you’ll need is a USB cable. For
other microcontrollers, you’ll probably need a USB-to-
serial converter and a connector to connect to your
breadboard.

 » 1 ping-pong ball Get a white one from your local sports
store.

Figure 2-1 . New parts for this chapter: 1 . Project box 2 . Bluetooth Mate 3 . RGB LED 4 . Pushbuttons 5 . Flex sensors 6 . Prototyping

shield, 7. 9V battery snap connector and female power plug. Don't forget plenty of male header pins for the breakout boards.

1

2

3

4

5

7

6

THE SIMPLEST NETWORK 39

PROJECT 2: Monski Pong
 » 1 Arduino module An Arduino Uno or something based

on the Arduino Uno, but the project should work on
other Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046,AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 2 flex sensor resistors D 905-1000-ND, J 150551,
SF SEN-10264, AF 182, RS 708-1277, MS JM150551

 » 2 momentary switches Available from any electronics
retailer. Pick the one that makes you the happiest.
D GH1344-ND, J 315432, SF COM-09337, F 1634684,
RS 718-2213, MS JM315432

 » 4 10-kilohm resistors D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 1 solderless breadboard D 438-1045-ND, J 20723
or 20601, SF PRT-00137, F 4692810, AF 64, SS
STR101C2M or STR102C2M, MS MKKN2

 » 1 personal computer
 » All necessary converters to communicate serially
from microcontroller to computer Just like the
previous project.

 » 1 small pink monkey aka Monski. You may want
a second one for a two-player game.

PROJECT 3: Wireless Monski Pong
 » 1 completed Monski pong project from project 2.
 » 1 9V battery and snap connector D 2238K-ND, J

101470, SF PRT-09518, F 1650675
 » Female power plug, 2 .1mm ID, 5 .5mm OD If you got

the Spark Fun battery connector, you don't need this part.
D CP-024A-ND, J 159506, F 1737256

 » 1 bluetooth Mate module SF WRL-09358 or WRL-
10393

 » 1 project box to house the microcontroller, battery, and
radio board.

PROJECT 4: Negotiating in bluetooth
 » 1 bluetooth Mate module the same one used in

project 3. SF WRL-09358 or WRL-10393
 » 1 FTDI-style uSb-to-Serial adapter Both the 5V

or 3.3V versions will work; these come as cables or
standalone modules. SF DEV-09718 or DEV-09716, AF
70 or 284, A A000059, MS MKAD22, D TTL-232R-3V3
or TTL-232R-5V

Figure 2-2

FTDI USB-to-TTL cable. This cable comes in handy for connecting

to all sorts of serial devices. When plugged into a USB port, it can

even provide power for the device with which it's communicat-

ing. The adapter boards shown here also act as USB-to-Serial

adapters and can replace this cable. L to R: Arduino USB-to-Serial;

Spark Fun FTDI Basic Breakout; Adafruit FTDI Friend. They require

an additional USB-A-to-Mini-B cable (the kind that comes with

most digital cameras), but have built-in LEDs attached to the

transmit and receive lines. These LEDs flash when data's going

through those lines, and they can be handy for troubleshooting

serial problems.

The Arduino adapter, unlike the others, does not use the FTDI

drivers. On Mac OS X and Linux, it needs no drivers. On Windows,

it uses the same INF file as the Arduino Uno. Photos courtesy of

Spark Fun and Adafruit.

40 MAKING THINGS TALK

Layers of Agreement
Before you can get things to talk to each other, you have to lay some ground rules for

the communication between them. These agreements can be broken down into five

layers, each of which builds on the previous ones:

• Physical
How are the physical inputs and outputs of each device
connected to the others? How many connections between
the two devices do you need to get messages across?

• Electrical
What voltage levels will you send to represent the bits of
your data?

• Logical
Does an increase in voltage level represent a 0 or a 1?
When high voltage represents 1 and low voltage represents
0, it's called true logic. When it's reversed—high voltage
represents 0 and low voltage represents 1—it's called
inverted logic. You'll see examples of both in the pages that
follow.

• Data
What’s the timing of the bits? Are the bits read in groups
of 8, 9, or 10? More? Are there bits at the beginning or end
of each group to punctuate the groups?

• Application
How are the groups of bits arranged into messages? What
is the order in which messages have to be exchanged for
something to get done?

This is a simplified version of a common model for thinking
about networking, called the Open Systems Interconnect
(OSI) model. Networking issues are never really this neatly
separated, but if you keep these elements distinct in your
mind, troubleshooting any connection will be much easier.
Thinking in layers like this gives you somewhere to start
looking for the problem, and a way to eliminate parts of the
system that are not the problem.

No matter how complex the network gets, never forget
that the communication between electronic devices is all
about pulses of energy. Serial communication involves
changing the voltage of an electrical connection between
the sender and receiver at a specific rate. Each interval
of time represents one bit of information. The sender
changes the voltage to send a value of 0 or 1 for the bit
in question, and the receiver reads whether the voltage
is high or low. There are two methods (see Figure 2-3)
that the sender and receiver can use to agree on the rate
at which bits are sent. In asynchronous serial commu-
nication, the rate is agreed upon mutually and clocked
independently by sender and receiver. In synchronous
serial communication, it’s controlled by the sender, who
pulses a separate connection high and low at a steady
rate. Synchronous serial communication is used mostly
for communication between integrated circuits (such as
the communication between a computer processor and its
memory chips). This chapter concentrates only on asyn-
chronous serial communication, because that’s the form
of serial communication underlying the networks in the
rest of the book.
X

THE SIMPLEST NETWORK 41

Figure 2-3

Types of serial communication.

Figure 2-4

Physical connections: USB,

RS-232 serial.

Asynchronous Serial Communication

Synchronous Serial Communication

Sender

Master

Receiver

Slave

Data goes this way

Data goes this way

Data goes this way

Data goes this way

Clock signal goes this way

Clock pulses
5V

0V

RX

TX

Ground

Chip Select

Master out,
slave in

Master in,
slave out

Clock

TX

RX

Ground

CS

MOSI

MISO

CLK

USB Type A RS-232

1 – +5V
2 – Data-
3 – Data+
4 – Ground

2 – PC Receive
3 – PC Transmit
5 – PC Ground

5 4 3 2 1

9 8 7 6

1 2 3 4

USB Type B

2 1

3 4

1 2 3 4 51 – +5V
2 – Data-
3 – Data+
4 – ID
5 – Ground

USB Type Mini B

42 MAKING THINGS TALK

First, there’s the protocol that the microcontroller speaks,
called TTL serial:

• Physical layer
What pins is the controller using to communicate? The
Arduino module receives data on digital I/O pin 0, and
sends it out on pin 1.

• Electrical layer
It uses pulses of 5 volts or 0 volts to represent bits. Some
microcontrollers use 3.3 volts instead of 5 volts.

• Logical layer
A high-voltage (5 volt) signal represents the value 1, and a
0-volt signal represents the value 0.

• Data layer
Data is typically sent at 9600 bits per second. Each byte
contains 8 bits, preceded by a start bit and followed by a
stop bit (which you never have to bother with).

• Application layer
At this layer, you sent one byte from the PC to the Arduino
and processed it, and the Arduino sent back one byte to
the PC.

But wait, that’s not all that’s involved. The 5-volt and 0-volt
pulses didn’t go directly to the PC. First, they went to a
serial-to-USB chip on the board that communicates using
TTL serial on one side, and USB on the other.

Second, there's USB, the Universal Serial Bus protocol.
It differs from TTL serial in many ways:

• Physical layer
USB sends data on two wires, Data+ and Data-. Every
USB connector also has a 5-volt power supply line and a
ground line.

Making the Connection: The Lower Layers
You’re already familiar with one example of serial communication, between a microcon-

troller and a personal computer. In Chapter 1, you connected an Arduino module to a

personal computer through the computer’s USB port. If you’ve worked with a different

microcontroller, such as Parallax’s Basic Stamp, you probably made the connection

using a serial-to-USB converter or an older PC that still had a 9-pin RS-232 serial port.

That simple connection involved two serial protocols.

• Electrical layer
The signal on Data – is always the polar opposite of what’s
on Data+, so the sum of their voltages is always zero.
Because of this, a receiver can check for electrical errors
by adding the two data voltages together. If the sum isn’t
zero, the receiver can disregard the signal at that point.

• Logical layer
A +5-volt signal (on Data+) or -5-volt signal (on Data-)
represents the value 1, and a 0-volt signal represents the
value 0.

• Data layer
The data layer of USB is more complex than TTL serial.
Data can be sent at up to 480 megabits per second. Each
byte contains 8 bits, preceded by a start bit and followed
by a stop bit. Many USB devices can share the same pair
of wires, sending signals at times dictated by the control-
ling PC. This arrangement is called a bus (the B in USB). As
there can be many devices on the same bus, the operating
system gives each one its own unique address, and sees
to it that the bytes from each device on the bus go to the
applications that need them.

• Application layer
At the application layer, the USB-to-Serial converter on the
Arduino boards sends a few bytes to the operating system
to identify itself. The operating system then associates
the hardware with a library of driver software that other
programs can use to access data from the device.

All that control is transparent to you because the computer’s
USB controller only passes you the bytes you need. The
USB-to-Serial chip on your Arduino board presents itself
to the operating system as a serial port, and it sends data
through the USB connection at the rate you choose (9600
bits per second in the example in Chapter 1).

THE SIMPLEST NETWORK 43

One more protocol: if you use a BASIC Stamp or another
microcontroller with a non-USB serial interface, you
probably have a 9-pin serial connector connecting your
microcontroller to your PC or to a USB-to-Serial adapter.
You can see it in Figure 2-4. This connector, called a DB-9
or D-sub-9, is a standard connector for another serial
protocol, RS-232. RS-232 was the main serial protocol for
computer serial connections before USB, and it’s still seen
on some older computer peripheral devices:

• Physical layer
A computer with an RS-232 serial port receives data on
pin 2, and sends it out on pin 3. Pin 5 is the ground pin.

• Electrical layer
RS-232 sends data at two levels: 5 to 12 volts, and –5 to
–12 volts.

• Logical layer
A 5- to 12- volt signal represents the value 0, and a –5 to
–12 volt signal represents the value 1. This is inverted logic.

One of the great things about microcontrollers is that,

because they’re cheap, you can use many of them. For

example, in a project with many sensors, you can either

write a complex program on the microcontroller to read

them all, or you can give each sensor its own microcon-

troller. If you’re trying to get all the information from those

sensors into a personal computer, you might think it’s easier

to use one microcontroller because you’ve got a limited

number of serial ports. Thanks to USB, however, that’s not

the case.

If your microcontroller speaks USB, or if you’ve got a USB-

to-Serial adapter for it, you can just plug it in and it will show

up in the operating system as another serial port.

For example, if you plug three Arduino modules into the

same computer through a USB hub, you’ll get three new

serial ports, named something like this on Mac OS X:

/dev/tty.usbmodem241441
/dev/tty.usbmodem241461
/dev/tty.usbmodem241471

In Windows, you’d see something like COM8, COM9, COM10.

The Arduino boards come with their own USB-to-Serial

adapter on board, but other microcontrollers and devices

usually don't. You can buy a USB-to-Serial converter for about

$15 to $40—Keyspan (www.keyspan.com) and IOGear (www.

iogear.com) sell decent models. Most consumer models like

these are USB-to-RS-232, because RS-232 was the standard

serial connector for PCs before USB came along. USB-to-RS-

232 adapters won't work directly with TTL serial devices.

FTDI makes a USB-to-TTL-Serial cable with a breadboard

connector that's handy for interfacing to TTL serial devices.

It's available from the Maker SHED, Spark Fun, Adafruit, and

many other vendors. It comes in 5-volt and 3.3-volt versions.

Arduino, Spark Fun, and Adafruit all make breakout boards

with the same cable pin connections. Spark Fun's FTDI Basic

Board has LEDs that flash when data is being transmitted.

Adafruit's version is called the FTDI Friend. The Arduino

USB-to-Serial adapter is based on a different chip but has

the same pin connections. Any of these can be used for

USB-to-Serial connections throughout this book. You can

see them all at the beginning of this chapter. The pin con-

nections are shown in Figure 2-6.

USB: An Endless Source of Serial Ports

• Data layer
This is the same as TTL—8 bits per byte with a start and
stop bit.

So why is it possible to connect some microcontrollers,
like the BASIC Stamp or the BX-24, directly to RS-232
serial ports? It is because the voltage levels of TTL serial,
0 to 5 volts, are just barely enough to register in the higher
RS-232 levels, and because you can invert the bits when
sending or receiving from the microcontroller. RS-232
doesn’t carry any of the addressing overhead of USB,
so it’s an easier protocol to deal with. Unfortunately, it’s
mostly obsolete, so USB-to-Serial converters are increas-
ingly common tools for microcontroller programmers.
Because the Arduino boards have an integrated USB-to-
Serial converter, you can just plug them into a
USB port.

When you’re lucky, you never have to think about this kind
of protocol mixing, and you can just use converters to do
the job for you. You’re not always lucky, though, so it’s
worth knowing a little about what’s happening behind the

44 MAKING THINGS TALK

1
5

10
15

20
25

30

1
5

10
15

20
25

30

ABCDEFGHIJ

 M
A

X
2

3
2

 RX

TX

4 DTR

 GND

6 DSR

 RTS

CTS

FTDI
USB-to-Serial

Cable

DB-9
Serial

Connector

Figure 2-5

The MAX3232 chip. This circuit

is really handy when you need

to get any 3.3- to 5-volt TTL

device to talk to a personal

computer with an RS-232 serial

port. This will also work for the

MAX232.

scenes. For example, one of the most common problems
in getting a serial device to communicate with a personal
computer is converting the device’s serial signals to USB
or RS-232. A handy chip that does the TTL-to-RS-232
conversion for you is the MAX3232, available from Maxim
Technologies (www.maxim-ic.com). It takes in RS-232
serial and spits out 3.3-V to 5-volt TTL serial, and vice
versa. If you power it from a 3.3V source, you get 3.3V TTL
serial output, and if you power it from 5V, you get 5V TTL
serial output. Figure 2-5 shows the typical schematic for a
MAX3232.

If you’ve done a lot of serial projects, you may know the
MAX232, which preceded the MAX3232. In fact, the
MAX232 was so common that the name became
synonymous with all TTL-to-RS-232 converters, whether
Maxim made them or not. The MAX232 worked only at
5 volts, but the MAX 3232 works at 3.3 to 5 volts. Because
3.3 volts is beginning to replace 5 volts as a standard supply
voltage for electronic parts, it’s handy to use a chip that
can do both.
X

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in R2out

T2in

T1In

R1Out

R1In

T1Out

Gnd

Vcc

RS-232 Rx

RS-232 Tx

MAX3232

+
5

V

0.1µF

0.1µF

0.1µF

0.1µF

TTL Tx

TTL Rx

FTDI
USB-to-Serial

Cable

T
T

L
Tx

T
T

L
R

x

G
n

d

C
TS

R
TS

1

2

3

4

5

6

7

8

9

DB-9
Serial connector

THE SIMPLEST NETWORK 45

To microcontroller RX

To microcontroller TX

Provides voltage output
when plugged into USB port

GND

CTS

Vcc

TX

RX

RTS

FTDI
USB-to-TTL Serial Cable

Black

Brown

Red

Orange

Yellow

Green

Ground

Clear-to-send

Request-to-send

Figure 2-6

FTDI USB-to-TTL cable. In addition to the transmit, receive,

voltage, and ground connections, it also has connections for

hardware flow control, labeled Request to Send (RTS) and Clear

to Send (CTS). Some devices use this to manage the flow of serial

data.

Arduino boards have a built-in USB-to-serial adapter so that

the microcontroller can communicate with your personal

computer serially. The USB-to-Serial adapter's transmit

pin (TX) is attached to the microcontroller's receive pin

(RX), and vice versa. This means you can bypass the micro-

controller and use the Arduino board as a USB-to-Serial

adapter. There are times when this is handy, like when you

want to communicate directly with the Bluetooth radios

you'll see later in this chapter. To do this, either remove the

microcontroller carefully, or put a sketch on it that does

nothing, like so:

void setup() {}
void loop() {}

Then connect the desired external serial device as follows:

External serial device's receive pin → Pin 0 of the Arduino

board

External serial device's transmit pin → Pin 1 of the Arduino

board

Now your serial device will communicate directly with the

USB-to-Serial adapter on the Arduino, and the microcon-

troller will be bypassed. When you're ready to use the micro-

controller again, just disconnect the external serial device

and upload a new sketch.

Using an Arduino As a USB-to-Serial Adapter

46 MAKING THINGS TALK

Saying Something: The Application Layer
Now that you’ve got a sense of how to make the connections between devices,

it's time to build a couple of projects to understand how to organize the data you send.

Project 1

Type Brighter
In this example, you’ll control the

output of a microcontroller with key-

strokes from your computer. It's a very

simple example with minimal parts, so

you can focus on the communication.

MATERIALS

 » 1 RGb LED, common cathode
 » 1 Arduino microcontroller module
 » 1 personal computer
 » All necessary converters to communicate
serially from microcontroller to computer

 » 1 ping-pong ball

Every application needs a communications protocol, no
matter how simple it is. Even turning on a light requires
that both the sender and receiver agree on how to say
"turn on the light."

For this project, you'll make a tiny colored lamp. You'll
be able to control the brightness and color of the lamp
by sending it commands from your computer. The
RGB LED at the heart of the lamp is actually three
LEDs in one package: one red, one green, and one blue.
They share a common cathode, or negative terminal.
Connect the cathode, which is the longest leg, to the
ground of your Arduino module, and connect the three
other legs (called the anodes, one for each color) to
pins 9, 10, and 11, as shown in Figure 2-7. Bend the
cathode leg so it will fit, but make sure it's not touching
the last leg, or it will create a short circuit.

When you've got the LED on the board, drill a small
hole in the pong-pong ball, slightly larger than the LED.
Fit the ball over the LED, as shown in Figure 2-10. It will
act as a nice lampshade. If the LEDs form too harsh
a spot on the ball, you can diffuse them slightly by
sanding the top of the LED case.

The Protocol
Now that you've got the circuit wired up, you need
to decide how you're going to communicate with the
microcontroller to control the LEDs. You need a com-
munications protocol. This one will be very simple:

• To choose a color of LED to control, send the first
letter of the color, in lower-case (r, g, b).

• To set the brightness for that color, send a single
digit, 0 through 9.

For example, to set red at 5, green at 3, and blue at (on
a scale from 0 to 9), you'd send:

r5g3b7

THE SIMPLEST NETWORK 47

Figure 2-7

RGB LED attached to pins 9, 10, 11, and ground. The ground leg is

bent back so that it doesn't touch the leg connected to pin 11, which

it crosses. In theory, this LED should have a resistor on each of the

anodes to limit the current going through the LEDs. In practice,

however, I've run this for several hours without the resistor with no

damage to the Arduino or LED. When in doubt, be safe and add a

220-ohm resistor to each anode.

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE

T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Read received
byte

Set LED
channel

Set
brightness

Fade current LED
channel to current

brightness

'0' - '9' 'r', 'g', or 'b'

Check for
serial data

Figure 2-8

Flowchart for the program.

That's about as simple a protocol as you could imagine.
However, you still need to write a program for the micro-
controller to read the data one byte at a time, and then
decide what to do based on the value of each byte.

The program flow is shown in Figure 2-8.

48 MAKING THINGS TALK

To start, you need to set up the
constants to hold the pin numbers.

You'll also need a variable to hold the
number of the current pin to be faded,
and one for the brightness.

The setup() method opens serial
communications and initializes the

LED pins as outputs.

In the main loop, everything
depends on whether you have

incoming serial bytes to read.

If you do have incoming data, there
are only a few values you care

about. When you get one of the values
you want, use if statements to set the
pin number and brightness value.

/*

 Serial RGB LED controller

 Context: Arduino

 Controls an RGB LED whose R, G and B legs are

 connected to pins 11, 9, and 10, respectively.

*/

// constants to hold the output pin numbers:

const int greenPin = 9;

const int bluePin = 10;

const int redPin = 11;

int currentPin = 0; // current pin to be faded

int brightness = 0; // current brightness level

void setup() {

 // initiate serial communication:

 Serial.begin(9600);

 // initialize the LED pins as outputs:

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

}

void loop() {

 // if there's any serial data in the buffer, read a byte:

 if (Serial.available() > 0) {

 int inByte = Serial.read();

 // respond to the values 'r', 'g', 'b', or '0' through '9'.

 // you don't care about any other value:

 if (inByte == 'r') {

 currentPin = redPin;

 }

 if (inByte == 'g') {

 currentPin = greenPin;

 }

 if (inByte == 'b') {

 currentPin = bluePin;

 }

 if (inByte >= '0' && inByte <= '9') {

 // map the incoming byte value to the range of

 // the analogRead() command:

 brightness = map(inByte, '0', '9', 0, 255);

 // set the current pin to the current brightness:

 analogWrite(currentPin, brightness);

 }

 }

}

 Try It

Finally, set the current pin to the
current brightness level using the

analogWrite() command.

8

8

8

8

8

THE SIMPLEST NETWORK 49

Upload the sketch to your Arduino, then open the Serial
Monitor by clicking on the icon at the top of the editor, as
shown in Figure 2-9.

Once it's open, type:

r9

Then click send. You should see the ball light up red. Now
try:

r2g7

The red will fade and the green will come up. Now try:

g0r0b8

The blue will come on. Voila, you've made a tiny serially
controllable lamp!

If the colors don't correspond to the color you type, you
probably bought an LED of a different model than the one
specified above, so the pin numbers are different. You
can fix this by changing the pin number constants in your
sketch.

You don't have to control the lamp from the Serial Monitor.
Any program that can control the serial port can send your
protocol to the Arduino to control the lamp. Once you've
finished the next project, try writing your own lamp con-
troller in Processing.
X

Figure 2-9

Arduino toolbar, highlighting the Serial Monitor.

Notice in the program how the characters you type are in single quotes? That's because you're using the
ASCII values for those characters. ASCII is a protocol that assigns numeric values to letters and numbers.
For example, the ASCII value for the letter 'r' is 114. The ASCII value for '0' is 48. By putting the characters

in single quotes, you're programming the Arduino to use the ASCII value for that character, not the character itself. For
example, this line:

brightness = map(inByte, '0', '9', 0, 255);

could also be written like this:

brightness = map(inByte, 48, 57, 0, 255);

because in ASCII, the character '0' is represented by the value 48, and the character '9' is represented by the value 57.
Using the character value in single quotes instead of the actual values isn't essential to make your program run, but it
makes it easier to read. In the first version of the line above, you're using the ASCII characters to represent the values
to map; in the second version, you're using the raw values themselves. You'll see examples in this book that use both
approaches. For more on ASCII, see "What's ASCII?" on page 54.

Figure 2-10

LED with a ping-pong ball on top to diffuse the light.

50 MAKING THINGS TALK

Complex Conversations
In the previous project, you controlled the microcontroller from the computer using

a very simple protocol. This time, the microcontroller will control an animation on the

computer. The communications protocol is more complex as well.

Monski Pong
In this example, you’ll make a replacement

for a mouse. If you think about the mouse

as a data object, it looks like Figure 2-11.

MATERIALS

 » 2 flex sensor resistors
 » 2 momentary switches
 » 4 10-kilohm resistors
 » 1 solderless breadboard
 » 1 Arduino microcontroller module
 » 1 personal computer
 » All necessary converters to communicate
serially from microcontroller to computer

 » 1 small pink monkey

Project 2

What the computer does with the mouse’s data depends
on the application. For this application, you’ll make a small
pink monkey play pong by waving his arms. He’ll also have
the capability to reset the game by pressing a button, and
to serve the ball by pressing a second button.

Connect long wires to the flex sensors so that you can
sew the sensors into the arms of the monkey without
having the microcontroller in his lap. Use flexible wire; old
telephone cable works well. A couple of feet should be fine
for testing.

Connect long wires to the buttons as well, and mount
them in a piece of scrap foam-core or cardboard until
you’ve decided on a final housing for the electronics. Label
the buttons “Reset” and “Serve.” Wire the sensors to the
microcontroller, as shown in Figure 2-12.

Output – 4 values:
– x coordinate, 10 bits
– y coordinate, 10 bits
– button 1, 1 bit
– button 2, 1 bit

Input: y movement

Input:
x movement

1 2
Input buttons

Figure 2-11

The mouse as a

data object.

THE SIMPLEST NETWORK 51

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE

T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A

B

C

D

E

F

G

H

I

J

+5V

Gnd

Gnd

+9V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

+5V

+5V

To breadboard +5V

To breadboard Ground

To Battery Ground

To Battery +9V

reset serve

10KΩ

15KΩ flex

15KΩ flex

10KΩ

10KΩ

10KΩ

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

Figure 2-12

The Monski Pong circuit. Sensors are

shown here with short wires so that

the image is clear. You should attach

longer wires to your sensors, though.

52 MAKING THINGS TALK

Figure 2-13

A stable support for the sensors is essential if you want good

readings from them. Once you know your support works,

move it inside the monkey and test it.

Cut a small slit in each of the monkey’s armpits to insert
the sensors. If you don’t want to damage the monkey, you
can use tie-wraps or tape to secure the sensors to the
outsides of his arms, as shown in Figure 2-13. Position the
sensors so that their movement is consistent. You should
add some sort of support that keeps them in position
relative to each other—a piece of flexible modeling wire
will do the job nicely. Make sure that both sensors are
facing the same direction, because flex sensors give
different readings when flexed one direction than they do
when flexed the other direction. Insulate the connections
well, because the foam inside the monkey might generate
considerable static electricity when he’s moving. Hot glue
will work well.

Make sure that the sensors and electrical connections
are stable and secure before you start to work on code.
Debugging is much harder if the electrical connections
aren’t consistent.
X

THE SIMPLEST NETWORK 53

/*

 Sensor Reader

 Context: Arduino

 Reads two analog inputs and two digital inputs and outputs

 their values.

 Connections:

 analog sensors on analog input pins 0 and 1

 switches on digital I/O pins 2 and 3

 */

const int leftSensor = 0; // analog input for the left arm

const int rightSensor = 1; // analog input for tht right arm

const int resetButton = 2; // digital input for the reset button

const int serveButton = 3; // digital input for the serve button

int leftValue = 0; // reading from the left arm

int rightValue = 0; // reading from the right arm

int reset = 0; // reading from the reset button

int serve = 0; // reading from the serve button

void setup() {

 // configure the serial connection:

 Serial.begin(9600);

 // configure the digital inputs:

 pinMode(resetButton, INPUT);

 pinMode(serveButton, INPUT);

}

void loop() {

 // read the analog sensors:

 leftValue = analogRead(leftSensor);

 rightValue = analogRead(rightSensor);

 // read the digital sensors:

 reset = digitalRead(resetButton);

 serve = digitalRead(serveButton);

 // print the results:

 Serial.print(leftValue);

 Serial.print(",");

 Serial.print(rightValue);

 Serial.print(",");

 Serial.print(reset);

 Serial.print(",");

 // print the last sensor value with a println() so that

 // each set of four readings prints on a line by itself:

 Serial.println(serve);

}

Now use the following
code on the Arduino

module to confirm that the sensors
are working.

If you open the Serial Monitor in
Arduino—or your preferred serial
terminal application at 9600 bits per
second, as you did in Chapter 1—you’ll
see a stream of results like this:

284,284,1,1,

285,283,1,1,

286,284,1,1,

289,283,1,1,

Just as you programmed it, each value
is separated by a comma, and each set
of readings is on a line by itself.

 Test It

54 MAKING THINGS TALK

What’s going on? The original example uses
the Serial.print() command, which displays
the values of the sensors as their ASCII code

values: this modification sends out the raw binary values
using Serial.write(). The Serial Monitor and serial terminal
applications assume that every byte they receive is an
ASCII character, so they display the ASCII characters
corresponding to the raw binary values in the second
example. For example, the values 13 and 10 correspond
to the ASCII return and newline characters, respec-
tively. The value 44 corresponds to the ASCII comma
character. Those are the bytes you’re sending in between
the sensor readings in the second example. The sensor

ASCII is the American Symbolic Code for Information Inter-

change. The scheme was created in 1967 by the American

Standards Association (now ANSI) as a means for all

computers, regardless of their operating systems, to be

able to exchange text-based messages. In ASCII, each letter,

numeral, or punctuation mark in the Roman alphabet is

assigned a number. Anything an end user types is converted

to a string of numbers, transmitted, and then reconverted

on the other end. In addition to letters, numbers, and punc-

tuation marks, certain page-formatting characters—like the

linefeed and carriage return (ASCII 10 and 13, respectively)—

have ASCII values. That way, not only the text of a the display

format of the message could be transmitted along with the

text. These are referred to as control characters, and they

take up the first 32 values in the ASCII set (ASCII 0 31).

All of the numbers, letters, punctuation, and control char-

acters are covered by 128 possible values. However, ASCII

is too limited to display non-English characters, and its few

control characters don’t offer enough control in the age of

graphic user interfaces. Unicode—a more comprehensive

code that’s a superset of ASCII—has replaced ASCII as the

standard for text interchange, and markup languages like

PostScript and HTML have replaced ASCII’s page formatting,

but the original ASCII code still lingers on.

What’s ASCII?

 // print the results:

 Serial.write(leftValue);

 Serial.write(44);

 Serial.write(rightValue);

 Serial.write(44);

 Serial.write(reset);

 Serial.write(44);

 // print the last sensor value with a println() so that

 // each set of four readings prints on a line by itself:

 Serial.write(10);

 Serial.write(13);

 Serial.write(serve);

Try replacing the part of your code
that prints the results with the code

to the right.

When you view the results in the Serial
Monitor or terminal, you’ll get some-
thing that looks like this:

.,P,,

(,F,,

(,A,,

),I,,

variables (leftValue, rightValue, reset, and serve) are the
source of the mystery characters. In the third line of the
output, when the second sensor’s value is 65, you see the
character 'A' because the ASCII character 'A' has the value
65. For a complete list of the ASCII values corresponding
to each character, see www.asciitable.com.

Which way should you format your sensor values: as
raw binary or as ASCII? It depends on the capabilities of
the system that’s receiving the data, and of those that
are passing it through. When you’re writing software on
a personal computer, it’s often easier for your software
to interpret raw values. However, many of the network

Before you go to the next section, where you’ll

be writing some Processing code to interpret

the output of this program, you must undo this change.

!

8

THE SIMPLEST NETWORK 55

Open the Processing
application and enter

this code.

/*

 Serial String Reader

 Context: Processing

 */

import processing.serial.*; // import the Processing serial library

Serial myPort; // The serial port

String resultString; // string for the results

void setup() {

 size(480, 130); // set the size of the applet window

 println(Serial.list()); // List all the available serial ports

 // get the name of your port from the serial list.

 // The first port in the serial list on my computer

 // is generally my Arduino module, so I open Serial.list()[0].

 // Change the 0 to the number of the serial port

 // to which your microcontroller is attached:

 String portName = Serial.list()[0];

 // open the serial port:

 myPort = new Serial(this, portName, 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil('\n');

}

void draw() {

 // set the background and fill color for the applet window:

 background(#044f6f);

 fill(#ffffff);

 // show a string in the window:

 if (resultString != null) {

 text(resultString, 10, height/2);

 }

}

// serialEvent method is run automatically by the Processing sketch

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String inputString = myPort.readStringUntil('\n'); »

 Try It

protocols you’ll use in this book are ASCII-based. In
addition, ASCII is readable by humans, so you may find it
easier to send the data as ASCII. For Monski Pong, use the
ASCII-formatted version (the first example); later in this
chapter you’ll see why it’s the right choice.

If you haven't already done so, undo the changes you
made on page 54 to the Sensor Reader program and make
sure that it’s working as it did originally. Once you’ve got
the microcontroller sending the sensor values consistently
to the terminal, it’s time to send them to a program where
you can use them to display a pong game. This program
needs to run on a host computer that’s connected to your
Arduino board. Processing will do this well.

56 MAKING THINGS TALK

Now that you’ve got data going from one device (the microcontroller attached to the monkey) to another (the computer

running Processing), take a closer look at the sequence of bytes you’re sending to exchange the data. Generally, it’s

formatted like this (with a comma, ASCII 44, between each field):

Left-arm sensor
(0–1023)

Right-arm sensor
(0–1023)

Reset button
(0 or 1)

Serve button
(0 or 1)

Return character,
linefeed character

1–4 bytes 1–4 bytes 1 byte 1 byte 2 bytes

Data Packets, Headers, Payloads, and Tails

Continued from previous page .

 // trim the carrige return and linefeed from the input string:

 inputString = trim(inputString);

 // clear the resultString:

 resultString = "";

 // split the input string at the commas

 // and convert the sections into integers:

 int sensors[] = int(split(inputString, ','));

 // add the values to the result string:

 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++) {

 resultString += "Sensor " + sensorNum + ": ";

 resultString += sensors[sensorNum] + "\t";

 }

 // print the results to the console:

 println(resultString);

}

Each section of the sequence is separated by a single

byte whose value is ASCII 44 (a comma). You’ve just

made another data protocol. The bytes representing

your sensor values and the commas that separate them

are the payload, and the return and newline characters

are the tail. The commas are the delimiters. This data

protocol doesn’t have a header, but many do.

A header is a sequence of bytes identifying what’s

to follow. It might also contain a description of the

sequence to follow. On a network, where many possible

devices could receive the same message, the header

might contain the address of the sender, the receiver,

or both. That way, any device can just read the header

to decide whether it needs to read the rest of the

message. Sometimes a header is as simple as a single

byte of a constant value, identifying the beginning of

the message. In this example, where there is no header,

the tail performs a similar function, separating one

message from the next.

On a network, many messages like this are sent out all

the time. Each discrete group of bytes is called a packet

and includes a header, a payload, and usually a tail. Any

given network has a maximum packet length. In this

example, the packet length is determined by the size

of the serial buffer on the personal computer. Process-

ing can handle a buffer of a few thousand bytes, so

this 16-byte packet is easy for it to handle. If you had a

much longer message, you’d have to divide the message

into several packets and reassemble them once they

all arrived. In that case, the header might contain the

packet number so the receiver knows the order in which

the packets should be reassembled.

THE SIMPLEST NETWORK 57

Let's take a break from writing code
and test out the sketch. Make sure
you’ve closed the Serial Monitor or
serial port in your serial terminal appli-
cation so that it releases the serial port.
Then run this Processing application.
You should see a list of the sensor
values in the console and in the applet
window, as shown on the right.

float leftPaddle, rightPaddle; // variables for the flex sensor values

int resetButton, serveButton; // variables for the button values

int leftPaddleX, rightPaddleX; // horizontal positions of the paddles

int paddleHeight = 50; // vertical dimension of the paddles

int paddleWidth = 10; // horizontal dimension of the paddles

float leftMinimum = 120; // minimum value of the left flex sensor

float rightMinimum = 100; // minimum value of the right flex sensor

float leftMaximum = 530; // maximum value of the left flex sensor

float rightMaximum = 500; // maximum value of the right flex sensor

void setup() {

 size(640, 480); // set the size of the applet window

 String portName = Serial.list()[0];

 // open the serial port:

 myPort = new Serial(this, portName, 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil('\n');

 // initialize the sensor values:

 leftPaddle = height/2;

 rightPaddle = height/2;

 resetButton = 0;

 serveButton = 0;

 // initialize the paddle horizontal positions:

 leftPaddleX = 50;

 rightPaddleX = width - 50;

 // set no borders on drawn shapes:

 noStroke();

}

Next, it’s time to use the data to
play pong. First, add a few variables at
the beginning of the Processing sketch
before the setup() method, and change
the setup() to set the window size and
initialize some of the variables (the new
lines are shown in blue).

NOTE: The variables relating to the paddle

range in this example are floating-point

numbers (floats), because when you divide

integers, you get integer results only. For

example, 480/400, gives 1, not 1.2, when

both are integers. Likewise, 400/480

returns 0, not 0.8333. Using integers when

you’re dividing two numbers that are in the

same order of magnitude produces useless

results. Beware of this when using scaling

functions like map().

8

58 MAKING THINGS TALK

Finally, change the draw() method
to draw the paddles (new lines are

shown in blue).

void draw() {

 // set the background and fill color for the applet window:

 background(#044f6f);

 fill(#ffffff);

 // draw the left paddle:

 rect(leftPaddleX, leftPaddle, paddleWidth, paddleHeight);

 // draw the right paddle:

 rect(rightPaddleX, rightPaddle, paddleWidth, paddleHeight);

}

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String inputString = myPort.readStringUntil('\n');

 // trim the carriage return and linefeed from the input string:

 inputString = trim(inputString);

 // clear the resultString:

 resultString = "";

 // split the input string at the commas

 // and convert the sections into integers:

 int sensors[] = int(split(inputString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length == 4) {

 // scale the flex sensors' results to the paddles' range:

 leftPaddle = map(sensors[0], leftMinimum, leftMaximum, 0, height);

 rightPaddle = map(sensors[1], rightMinimum, rightMaximum, 0, height);

 // assign the switches' values to the button variables:

 resetButton = sensors[2];

 serveButton = sensors[3];

 // add the values to the result string:

 resultString += "left: "+ leftPaddle + "\tright: " + rightPaddle;

 resultString += "\treset: "+ resetButton + "\tserve: " + serveButton;

 }

}

Now, replace the serialEvent()
method with this version, which puts
the serial values into the sensor
variables.

8

8

THE SIMPLEST NETWORK 59

int ballSize = 10; // the size of the ball

int xDirection = 1; // the ball's horizontal direction.

 // left is –1, right is 1.

int yDirection = 1; // the ball's vertical direction.

 // up is –1, down is 1.

int xPos, yPos; // the ball's horizontal and vertical positions

Finally, it’s time to add the ball.
The ball will move from left to right
diagonally. When it hits the top or
bottom of the screen, it will bounce off
and change vertical direction. When it
reaches the left or right, it will reset to
the center. If it touches either of the
paddles, it will bounce off and change
horizontal direction. To make all that
happen, you’ll need five new variables
at the top of the program, just before
the setup() method.

At the end of the setup() method,
you need to give the ball an initial
position in the middle of the window.

 // initialize the ball in the center of the screen:

 xPos = width/2;

 yPos = height/2;

8

You may not see the paddles until you flex
the sensors. The range of your sensors will be
different, depending on how they're physically

attached to the monkey, and how far you can flex his arms.
The map() function maps the sensors' ranges to the range
of the paddle movement, but you need to determine what
the sensors' range is. For this part, it’s important that
you have the sensors embedded in the monkey’s arms,
as you’ll be fine-tuning the system, and you want the
sensors in the locations where they’ll actually get used.

Once you’ve set the sensors’ positions in the monkey,
run the Processing program again and watch the left and
right sensor numbers as you flex the monkey’s arms.
Write down the maximum and minimum values on each
arm. Then, fill them into the four variables, leftMinimum,
leftMaximum, rightMinimum, and leftMaximum, in the
setup() method. Once you've adjusted these variables, the
paddles' movement should cover the screen height when
you move the monkey's arms.

void animateBall() {

 // if the ball is moving left:

 if (xDirection < 0) {

 // if the ball is to the left of the left paddle:

 if ((xPos <= leftPaddleX)) {

 // if the ball is in between the top and bottom

 // of the left paddle:

 if((leftPaddle - (paddleHeight/2) <= yPos) &&

 (yPos <= leftPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball is moving right:

 else {

 // if the ball is to the right of the right paddle:

 if ((xPos >= (rightPaddleX + ballSize/2))) {

 // if the ball is in between the top and bottom

 // of the right paddle:

 if((rightPaddle - (paddleHeight/2) <=yPos) &&

Now, add two methods at the end of
the program, one called animateBall()
and another called resetBall(). You’ll
call these from the draw() method
shortly.

8

»

8

60 MAKING THINGS TALK

Continued from previous page .

boolean ballInMotion = false; // whether the ball should be moving

int leftScore = 0;

int rightScore = 0;

You’re almost ready to set the
ball in motion. But first, it’s time to do
something with the reset and serve
buttons. Add another variable at the
beginning of the code (just before
the setup() method with all the other
variable declarations) to keep track of
whether the ball is in motion. Add two
more variables to keep score.

8

 (yPos <= rightPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball goes off the screen left:

 if (xPos < 0) {

 resetBall();

 }

 // if the ball goes off the screen right:

 if (xPos > width) {

 resetBall();

 }

 // stop the ball going off the top or the bottom of the screen:

 if ((yPos - ballSize/2 <= 0) || (yPos +ballSize/2 >=height)) {

 // reverse the y direction of the ball:

 yDirection = -yDirection;

 }

 // update the ball position:

 xPos = xPos + xDirection;

 yPos = yPos + yDirection;

 // Draw the ball:

 rect(xPos, yPos, ballSize, ballSize);

}

void resetBall() {

 // put the ball back in the center

 xPos = width/2;

 yPos = height/2;

}

THE SIMPLEST NETWORK 61

 // calculate the ball's position and draw it:

 if (ballInMotion == true) {

 animateBall();

 }

 // if the serve button is pressed, start the ball moving:

 if (serveButton == 1) {

 ballInMotion = true;

 }

 // if the reset button is pressed, reset the scores

 // and start the ball moving:

 if (resetButton == 1) {

 leftScore = 0;

 rightScore = 0;

 ballInMotion = true;

 }

Now you’re ready to animate the
ball. It should move only if it’s been
served. This code goes at the end
of the draw() method. The first if()
statement starts the ball in motion
when the serve button is pressed. The
second moves it if it’s in service. The
third resets the ball to the center, and
resets the score when the reset button
is pressed.

8

 // if the ball goes off the screen left:

 if (xPos < 0) {

 rightScore++;

 resetBall();

 }

 // if the ball goes off the screen right:

 if (xPos > width) {

 leftScore++;

 resetBall();

 }

Modify the animateBall() method
so that when the ball goes off the
screen left or right, the appropriate
score is incremented (added lines are
shown in blue).

8

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontSize);

 textFont(myFont);

int fontSize = 36; // point size of the scoring font

 // print the scores:

 text(leftScore, fontSize, fontSize);

 text(rightScore, width-fontSize, fontSize);

To include the scoring display, add
a new global variable before the

setup() method.

8

Then add two lines before the
end of the setup() method to initial-

ize the font.

8

Finally, add two lines before the
end of the draw() method to

display the scores.

Now you can play Monski Pong! Figure
2-14 shows the game in action. For
added excitement, get a second pink
monkey and put one sensor in each
monkey so you can play with a friend.

8

62 MAKING THINGS TALK

while (Serial.available() <= 0) {

 Serial.println("hello"); // send a starting message

}

To make this happen, first add the
following lines to the startup() of

the Arduino sketch. This makes the
Arduino send out a serial message until
it gets a response from Processin.:

8

Flow Control
You may notice that the paddles don’t always move as smoothly onscreen as Monski’s

arms move. Sometimes the paddles don't seem to move for a fraction of a second,

and sometimes they seem to lag behind the actions you’re taking. This is because

the communication between the two devices is asynchronous.

Although the devices agree on the rate at which data is
exchanged, it doesn’t mean that the receiving computer’s
program has to use the bits as they’re sent. Monitoring the
incoming bits is actually handled by a dedicated hardware
circuit, and the incoming bits are stored in a memory
buffer, called the serial buffer, until the current program
is ready to use them. Most personal computers allocate a
buffer for each serial port that can hold a couple thousand
bytes. The program using the bits (Processing, in the
previous example) is juggling a number of other tasks, like
redrawing the screen, handling the math that goes with it,

and sharing processor time with other programs through
the operating system. It may get bytes from the buffer less
than a hundred times a second—even though the bytes
are coming in much faster.

There’s another way to handle the communication
between the two devices that can alleviate this problem.
If Processing asks for data only when it needs it, and if
the microcontroller only sends one packet of data when
it gets a request for data, the two will be in tighter sync.

Figure 2-14

The completed Monski Pong Pro-

cessing sketch.

THE SIMPLEST NETWORK 63

void loop() {

 // check to see whether there is a byte available

 // to read in the serial buffer:

 if (Serial.available() > 0) {

 // read the serial buffer;

 // you don't care about the value of

 // the incoming byte, just that one was

 // sent:

 int inByte = Serial.read();

 // the rest of the existing main loop goes here

 // ...

 }

}

Next, wrap the whole of the loop()
method in the Arduino program
(the Sensor Reader program shown
back in the beginning of the “Project
#1: Monski Pong” section) in an if()
statement like this (new lines are
shown in blue).

In the next step, you'll add some code
to the Monski Pong Processing sketch.

8

void serialEvent(Serial myPort) {

 // rest of the serialEvent goes here

 myPort.write('\r'); // send a carriage return

}

Add the following lines at the
end of serialEvent() in the Processing
sketch (new lines are shown in blue).

8

Now, the paddles should move much more
smoothly. Here's what’s happening: the
microcontroller is programmed to send

out a "hello" string until it receives any serial data.
When it does, it goes into the main loop. There, it reads
the byte just to clear the serial buffer, then sends
out its data once, then waits for more data to arrive.
Whenever it gets no bytes, it sends no bytes.

Processing, meanwhile, starts its program by waiting
for incoming data. When it gets any string ending in a
newline, serialEvent() is called, just as before. It reads
the string, and if there are commas in it, it splits the
string up and extracts the sensor values, like before. If
there are no commas in the string (for example, if the
string is "hello"), Processing doesn't do anything with
it.

The change in the Processing sketch is at the end of the
serialEvent(). There, it sends a byte back to the micro-
controller, which, seeing a new byte coming in, sends out
another packet of data, and the whole cycle repeats itself.
This way, the serial buffer on Processing's side never fills
up, and it's always got the freshest sensor readings.

The value of the byte that the microcontroller receives is
irrelevant. It’s used only as a signal from the Processing
sketch to let the microcontroller know when it’s ready for
new data. Likewise, the "hello" that the controller sends
is irrelevant—it's only there to trigger Processing to send
an intial byte—so Processing discards it. This method of
handling data flow control is sometimes referred to as a
handshake method, or call-and-response. Whenever you’re
sending packets of data, call-and-response flow control
can be a useful way to ensure consistent exchange.
X

64 MAKING THINGS TALK

Wireless Monski Pong
Monski Pong is fun, but it would be more

fun if Monski didn’t have to be tethered to

the computer through a USB cable. This

project breaks the wired connection

between the microcontroller and the

personal computer, and introduces a few

new networking concepts: the modem

and the address.

NOTE: If your computer doesn’t have built-in Bluetooth, you’ll

need a Bluetooth adapter. Most computer retailers carry USB-to-

Bluetooth adapters.

Bluetooth: A Multilayer Network Protocol
The new piece of hardware in this project is the Bluetooth
module. This module has two interfaces: two of its pins,
marked RX and TX, are an asynchronous serial port that
can communicate with a microcontroller. It also has a
radio that communicates using the Bluetooth communica-
tions protocol. It acts as a modem, translating between
the Bluetooth and regular asynchronous serial protocols.

MATERIALS

 » 1 completed Monski Pong project
 » 1 9V battery and snap connector
 » Female power plug, 2 .1mm ID, 5 .5mm OD
 » 1 bluetooth Mate module
 » 1 project box

NOTE: The first digital modems converted data signals to audio

to send them across a telephone connection. They modulated the

data on the audio connection, and demodulated the audio back

into data. Now increasingly rare, their descendants are every-

where, from set-top boxes that modulate and demodulate between

a cable TV signal and Internet connection, to the sonar modems

that convert data into ultrasonic pings used in marine research.

 Bluetooth is a multilayered communications protocol,
designed to replace wired connections for a number of
applications. As such, it’s divided into a group of possible
application protocols called profiles. The simplest
Bluetooth devices are serial devices, like the module used
in this project. These implement the Bluetooth Serial
Port Profile (SPP). Other Bluetooth devices implement
other protocols. Wireless headsets implement the audio
Headset Profile. Wireless mice and keyboards implement
the Human Interface Device (HID) Profile. Because there
are a number of possible profiles a Bluetooth device might
support, there is also a Service Discovery Protocol, by
which radios exchange information about what they can
do. Because the protocol is standardized, you get to skip
over most of the details of making and maintaining the
connection, letting you concentrate on exchanging data.
It’s a bit like how RS-232 and USB made it possible for
you to ignore most of the electrical details necessary to
connect your microcontroller to your personal computer,
which let you focus on sending bytes in the last project.

Add the Bluetooth module to the Monski pong breadboard,
as shown in Figure 2-16. Connect the module's ground
and VCC to the breadboard ground and +5V, respectively.
Connect Arduino's TX to the module's RX, and vice versa,
Connect the battery, and the module will start up.

Pairing Your Computer with the
Bluetooth Module

To make a wireless connection from your computer to the
module, you have to pair them. To do this, open your com-
puter’s Bluetooth control panel to browse for new devices.

Project 3

THE SIMPLEST NETWORK 65

If you're using Mac OS X, choose the Apple menu→System
Preferences, then click Bluetooth. Make sure Bluetooth
is turned on and Discoverable, and click "Show Bluetooth
status in the menu bar." At the bottom of the list of
devices, click the + sign to launch the Bluetooth Setup
Assistant. The computer will search for devices and
find one called FireFly-XXX (Bluetooth Mate Gold) or
RN42-XXX (Silver), where XXX is the Bluetooth module’s
serial number. If you have no other Bluetooth devices on,
it will be the only one. Choose this device, and on the next
screen, click Passkey Options. Choose "Use a Specific
Passcode," and enter 1234. Click Continue. A connection
will be established, as will a serial port. When you look for
the serial port in CoolTerm, the Arduino serial port menu,
or the Processing serial port list, it will be FireFly-XXX-SPP
or RN42-XXX-SPP.

For Windows 7 users, there are different Bluetooth radios
in different Windows-based PCs. If your PC doesn't have
a built-in Bluetooth radio, any Bluetooth adapter that
supports the Windows Bluetooth Stack will do. Most
Bluetooth USB dongles on the market support it. Install
the drivers according to your radio's instructions, and
when it's done, click on the Show Hidden Icons icon in the
taskbar (the small triangle in the lower-right-hand corner).
When you do, you'll see the Bluetooth Devices icon, as
shown in Figure 2-15. Click on this to add a new Bluetooth
Device.

The system will search for new devices and present you
with a list, which should include one called FireFly-XXX,
where XXX is the serial number of your Bluetooth module.
If you have no other Bluetooth devices nearby, it will be the
only one. When prompted for the device's pairing code,
enter 1234. This step will add a new serial port to your
list of serial ports. Make note of the port name (mine is
COM14) so you can use it later.

Ubuntu Linux's Bluetooth manager for version 1.0 is a bit
limited, so it's easier to install BlueMan instead. Go to the
Ubuntu Software center, search for BlueMan, and install
it. When it's installed, open the System control panel and
you'll see Bluetooth Manager, in addition to the default
Bluetooth control panel. Open Bluetooth Manager, and it
will scan for available devices and show them, including
one called FireFly-XXX or RN42-XXX, where XXX is the
serial number of your Bluetooth module. When prompted
for the device's pairing code, enter 1234. Once it's added,
click Setup, and you'll get a dialog asking you if you want
to connect to a serial port. Click Forward, and it will tell you
the name of the serial port for the Bluetooth module, /dev/
rfcomm0.

Adjusting the Monski Pong Program
Once your computer has made contact with the Bluetooth
module, you can connect to it like a serial port. Run the
Monski Pong Processing sketch and check the list of serial
ports. You should see the new port listed along with the
others. Take note of which number it is, and change these
lines in the setup() method:

 String portName = Serial.list()[0];

 // open the serial port:

 myPort = new Serial(this, portName, 9600);

For example, if the Bluetooth port is the ninth port in your list,
change the first line to open Serial.list[8]. Then change the
data rate in the second line as follows:

 myPort = new Serial(this, portName, 115200);

Likewise, you'll need to change your Arduino sketch so that
the Serial.begin() line reads as follows:

 Serial.begin(115200);

Disconnect the Bluetooth module from the Arduino before
you upload the modified sketch, as it will interfere with the
upload. You can re-connect it once you've uploaded the new
code. With no other changes in code, you should now be
able to connect wirelessly. Monski is free to roam around
the room as you play pong. When the Processing program
makes a connection to the Bluetooth module, the green
LED on the module will turn on.

Figure 2-15

Where to find the Windows Bluetooth Devices icon (it's well hidden!).

Click Customize... if you want to add it to your taskbar.

If you plug or unplug any serial devices after you

do this, including the Arduino, you’ll need to quit and

restart the Processing program, as the count of serial ports

will have changed.

!

66 MAKING THINGS TALK

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

S
tat

C
onnect

R
N
-42

G
N
D

CT
S

VC
C

TX RX RT
S

+5V

Gnd

Gnd

+9V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

CTS

+5V

GND

TX

RX

RTS

BlueSMiRF
Module

+5V

+5V

+5V

To breadboard +5V

To breadboard Ground

To Battery Ground

To Battery +9V

reset serve

10KΩ

15KΩ flex

15KΩ flex

10KΩ

10KΩ

10KΩ

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

Figure 2-17

If you didn't buy a battery snap with DC

power adapter like the Spark Fun one,

you'll need to solder the connector onto

your battery snap, as shown here.

Figure 2-16

Monski pong board, with Bluetooth

module added. Once you’ve built the

circuit for this, drill holes in the project

box for the buttons and the wires

leading to the flex sensors. Mount

the breadboard, Arduino module, and

battery in the project box.

If you haven’t modified your Arduino and Processing code to match the call-and-response version of the Monski Pong
program shown in the “Flow Control” section earlier, you might have a problem making a connection through the radio. If
so, make the changes from that section first. Once you do, Monski Pong should operate as before, only now it's wireless.
X

THE SIMPLEST NETWORK 67

Figure 2-18 .

You might want to shrink

Monski Pong so it's more

compact. This figure shows the

Monski Pong circuit on a bread-

board shield. This is the same

circuit as the one in Figure

2-16, it's just on a different

breadboard so it can fit in a

project box.

Figure 2-19 .

Kitchen storage containers

make excellent project boxes.

Here’s the Monski Pong con-

troller with Monski attached.

Finishing Touches: Tidy It up, box It up

68 MAKING THINGS TALK

The Bluetooth module is essentially a modem in that it
converts from one communications medium (TTL serial
carried over wires) to another (Bluetooth serial carried
over radio). Modems are designed to open a connection
to another modem, negotiate the terms of data exchange,
carry on an exchange, and then disconnect. To do this,
they must have two operating modes, usually referred
to as command mode, in which you talk to the modem,
and data mode, in which you talk through the modem.
Bluetooth modems are no different in this respect.

Most Bluetooth modems (and many other communica-
tions devices) use a set of commands based on the those
designed originally for telephone modems, known as the
Hayes AT command protocol. All commands in the Hayes
command protocol (and therefore in Bluetooth command
protocols as well) are sent using ASCII characters. Devices

Negotiating in Bluetooth
The steps you went through to pair your

Bluetooth module with your computer

negotiated a series of exchanges that

included discovering other radios, learning

the services offered by those radios, and

pairing to open a connection. It’s very

convenient to be able to do this from the

graphical user interface, but it would be

even better if the devices could negotiate

this exchange themselves. In the section

that follows, you’ll negotiate some parts of

that exchange directly, in order to under-

stand how to program devices to handle

that negotiation.

MATERIALS

 » 1 bluetooth Mate module
 » 1 FTDI uSb-to-Serial converter

using this protocol all have a command mode and a data
mode. To switch from data mode to command mode in the
Hayes protocol, send the string +++. There’s a common
structure to all the commands. Each command sent from
the controlling device (like a microcontroller or personal
computer) to the modem begins with the ASCII string AT,
followed by a short string of letters and numbers repre-
senting the command, followed by any parameters of the

Project 4

Figure 2-20

Bluetooth Mate module connected to an FT232RL USB-to-Serial converter. The Mate is designed to be a drop-in replacement for the FTDI

cable, so it has the same pin configuration. As a result, you have to cross the transmit and receive connections to make the connection work.

Stat

Connect

RN-42

FTDI
USB-to-Serial

Cable

Bluetooth
Mate

RX
TX

Vcc

Gnd

RX
TX

Vcc

Gnd

command, separated by commas. The command ends
with an ASCII carriage return. The modem then responds
to the command with the message OK, followed by any
information it's expected to return.

The Bluetooth Mate doesn't use AT commands, but its
protocol is similar. The commands are all ASCII-based.

THE SIMPLEST NETWORK 69

There is a command mode and a data mode. In data
mode, you send the string $$$ to switch to command
mode.

The commands are all short strings, and the modem
responds with the response AOK. To exit command mode,
send the string ---\r (the \r is a carriage return, ASCII 13),
and the Bluetooth modem switches back to data mode. In
data mode, any bytes you send the modem are sent out
over the radio, and any bytes received over the radio get
sent out the serial connection.

Controlling the Bluetooth Module
Wire the Bluetooth module to the USB-to-Serial converter,
as shown in Figure 2-20. Since the converter and the cable
have identical pin configurations, you'll need to cross
the TX and RX lines to make them connect. Connect the
converter to a USB port on your computer.

For this project, you'll need a serial terminal program that
can open two serial ports at the same time, so the Arduino
Serial Monitor won't do. One serial port will be the wired
connection to the Bluetooth module through the USB-to-
serial adapter. The other will be the wireless connection
via Bluetooth.

For Mac OS X and Windows users, CoolTerm will work well.
For Ubuntu Linux users, GNU screen or PuTTY will do.
Open a connection to the USB-to-Serial adapter at 115200
bits per second.

When you first power the Bluetooth Mate, it will be in data
mode. To switch to command mode, send the string:

$$$

The module will respond like so:

CMD

You're now in command mode. Any time you want to
check that the module is working and in command mode,
type enter or return, and send it. It will respond with ?.
To see a list of all possible commands, type H and then
enter. There’s a list of all the commands available for this
module at www.SparkFun.com or www.rovingnetworks.
com (the Bluetooth Mate Gold module uses the Roving

Networks RN-41 radio, if you're searching their site, and
the Bluetooth Mate Silver uses the RN-42 radio). A few of
the commands are covered here. Each Bluetooth modem
manufacturer has its own set of commands; unfortunately,
they’re all different. But they all have the same basic
structure as the one you see here.

Currently, the module is in command mode. One of the
first things you’d like is to see its settings. Type D and hit
return or enter. You'll get a list of the radio's settings, which
looks like this:

Settings

BTA=000666112233

BTName=FireFly-7256

Baudrt(SW4)=115K

Parity=None

Mode=Slav

Authen=0

Encryp=0

PinCod=1234

Bonded=0

Rem=NONE SET

The first setting is the Bluetooth address. That’s the part
you need in order to make a connection to it. Manufactur-
ers of Bluetooth devices agree on a standard addressing
scheme so no two devices get the same address. The
settings that follow give you information about the radio's
configuration, such as the serial data rate (or baudrate),
whether authentication's turned on, and what the
passcode or PIN code is.

You may have noticed that you can't see what you type.
That's because the keystrokes in a serial terminal program
aren't echoed back to the screen—they're sent straight
to the serial port. However, the Bluetooth Mate will echo
your characters back to you if you type +\r. This turns
Echo Mode on or off. It's useful to have on while issuing
commands.

Now that you know something about your own module,
you want it to give you a list of other Bluetooth-enabled
devices in the area. Type I for inquiry. After several
seconds, it will come back with a list like this:

70 MAKING THINGS TALK

?

Inquiry, COD=0

Found 9

0010C694AFBD,,1C010C

0023125C2DBE,tigoebook,3A010C

0017F29F7A67,screen1,102104

002241CE2E79,residents,380104

002241D70127,admints Mac mini,380104

0014519266B8,ERMac,102104

002241CE7839,VideoMac05,380104

E806889B12DD,,A041C

00236CBAC2F0,Fred Mac mini,302104

Inquiry Done

This is a list of all the other Bluetooth devices it found. The first part of every string is the device’s unique address.
The second, when there is one, is the device’s name; the third is the device class, or what type of device it is (you can
probably pick out the device class number for Mac minis from the list above). Names don’t have to be unique, but
addresses do, which is why you always use the address to connect.

You can’t initiate a connection from the Bluetooth

Mate to the computer unless you’ve previously paired

with the Mate from the computer. This is because Bluetooth

radios can’t initiate a serial connection unless they’ve already

made a pairing with the other device. You’ll see more on these

radios in Chapter 6.

!

USB-to-serial connector

Bluetooth Mate's
 serial port

Bluetooth Mate's
Bluetooth Radio

Computer's
Bluetooth Radio

Bluetooth Mate

USB

Serial Bluetooth RF

Computer's USB
port

C, 002241CE3F79

 Bluetooth Mate

hi there

 Computer's Bluetooth

Figure 2-21

How the Bluetooth Mate is talking to your computer's

Bluetooth serial port.

THE SIMPLEST NETWORK 71

Now that you’ve got a list of connections, you're going to
try to connect to the one that represents your computer.
You must already be paired with the Bluetooth module
for this to work, so if you aren't, go back to the previous
project and do that now. Then, you need to open the serial
port on your computer that’s connected to its Bluetooth
radio.

In Mac OS X, it’s the Bluetooth PDA-Sync port. Open a
second window in your terminal program, and connect to
that serial port at 115200 bps.

For Windows 7 users, click on the Show Hidden Icons
icon in the taskbar to get to the Bluetooth Devices. Click
the Bluetooth Devices Icon and, from the menu, choose
Open Settings. In the Settings window, choose the Options
pane—and make sure that you've allowed other devices
to find this computer, and that you've allowed them to
connect as well. Then click the COM ports pane. If you've
paired with your Bluetooth module before, there will be
two ports indicated for it, one outgoing and one incoming.
You're not using those, though, because Windows tries
to initiate contact when you do. You want the Bluetooth
modem to initiate contact. Add a new incoming port.
Note the port number, then open that port in your serial
terminal program at 115200 bps.

For Ubuntu Linux users, the Bluetooth Manager doesn't
support binding a serial port to a discoverable Bluetooth
serial port protocol (SPP) connection, so you'll need to
make the connection outbound from Ubuntu, as described
in the earlier section, "Pairing Your Computer with the
Bluetooth Module." Once you're paired, however, the
procedure to send and receive data, or to switch from
command mode to data mode on the Bluetooth Mate, will
be the same as for other platforms.

Once you've opened the serial port on your computer,
go back to the window with the serial connection to the
Bluetooth module, and send the following command:

C, address\r

where address is the Bluetooth address of your
computer that you discovered earlier. When you
get a good connection, the LED on the Mate will
turn on, and you can type back and forth between
the windows. This is more exciting if you have two
computers and connect them via Bluetooth, but it
works on one computer nonetheless.

You’re now out of command mode and into data
mode. You should be able to type directly from one
window to the other.

To get out of data mode (to check the modem’s
status, for example), type (\r indicates that you
should hit Enter or Return; don't type the \ or the r):

$$$\r

This will give you a CMD prompt again. You can now
type any of the commands you want and get replies.
To return to data mode, type:

---\r

Finally, when you’re in command mode, you can type
K,\r to disconnect. If you want to connect to another
device, go into command mode and start over again.

Because these commands are just text strings, you
can easily use them in microcontroller programs to
control the module, make and break connections,
and exchange data. Because all the commands are
in ASCII, it’s a good idea to exchange data in ASCII
mode, too. So, the data string you set up earlier to
send Monski’s sensor readings in ASCII would work
well over this modem.
X

72 MAKING THINGS TALK

Second, remember that serial data can be sent either as
ASCII or as raw binary values, and which you choose to
use depends both on the capabilities and limitations of all
the connected devices. It might not be wise to send raw
binary data, for example, if the modems or the software
environments you program in are optimized for ASCII data
transfer.

Third, when you think about your project, think about the
messages that need to be exchanged, and come up with
a data protocol that adequately describes all the informa-
tion you need to send. This is your data packet. You might
want to add header bytes, separators, or tail bytes to make
reading the sequence easier.

Conclusion
The projects in this chapter have covered a number of ideas that are central to all

networked data communication. First, remember that data communication is based on

a layered series of agreements, starting with the physical layer; then the electrical, the

logical, the data layers; and finally, the application layer. Keep these layers in mind as

you design and troubleshoot your projects, and you’ll find it's easier to isolate problems.

Fourth, consider the flow of data, and look for ways to
ensure a smooth flow with as little overflowing of buffers
or waiting for data as possible. A simple call-and-response
approach can make data flow much smoother.

Finally, get to know the modems and other devices that
link the objects at the end of your connection. Understand
their addressing schemes and any command protocols
they use so that you can factor their strengths and limita-
tions into your planning, and eliminate those parts that
make your life more difficult. Whether you’re connecting
two objects or two hundred, these same principles will
apply.
X

The Jitterbox by Gabriel barcia-Colombo

The JitterBox is an interactive video Jukebox created from a vintage 1940s radio restored to working condition. It features a tiny video-

projected dancer who shakes and shimmies to the music. The viewer can tune the radio and the dancer will move in time with the tunes. The

JitterBox uses serial communication from an embedded potentiometer tuner—which is connected to an Arduino microcontroller—in order to

select from a range of vintage 1940s songs. These songs are linked to video clips and played back out of a digital projector.

The dancer trapped in the JitterBox is Ryan Myers.

THE SIMPLEST NETWORK 73

74 MAKING THINGS TALK

A More Complex
Network
Now that you’ve got the basics of network communications, it’s time

to tackle something more complex. The best place to start is with

the most familiar data network: the Internet. It’s not actually a single

network, but a collection of networks owned by different network

service providers and linked using some common protocols. This

chapter describes the structure of the Internet, the devices that hold

it together, and the shared protocols that make it possible. You’ll get

hands-on experience with what’s going on behind the scenes when your

web browser or email client is doing its job, and you’ll use the same

messages those tools use to connect your own objects to the Net.

3
MAKE: PROJECTS

Networked Flowers by Doria Fan, Mauricio Melo, and Jason Kaufman

Networked Flowers is a personal communication device for sending someone digital blooms. Each bloom has a

different lighting animation. The flower sculpture has a network connection. The flower is controlled from a website

that sends commands to the flower when the web visitor chooses a lighting animation.

76 MAKING THINGS TALK

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• RS RS (www.rs-online.com)
• RSH RadioShack (www.radioshack.com)
• SF SparkFun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

PROJECT 5: Networked Cat
 » between 2 and 4 force sensing resistors, Interlink
400 series (www.interlinkelec.com). The Interlink
model 402 is shown in this project, but any of the 400
series will work well. D 1027-1000-ND, J 2128260, SF
SEN-09673

 » One 1-Kilohm resistor Any model will do.
D 1.0KQBK-ND, J 29663, F 1735061, RS 707-8669

Supplies for Chapter 3
 » 1 Arduino module An Arduino Uno or something based

on the Arduino Uno, but the project should work on
other Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 1 solderless breadboard D 438-1045-ND, J 20723 or
20601, SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M, MS MKKN2

 » 1 personal computer
 » 1 web camera
 » 1 cat A dog will do if you have no cat.
 » 1 cat mat
 » 2 thick pieces of wood or thick cardboard, about the
size of the cat mat

 » Wire-wrapping wire
D K445-ND, J 22577, S PRT-08031, F 150080

 » Wire-wrapping tool J 242801, F 441089,
RSH 276-1570, S TOL-00068

 » Male header pins D A26509-20-ND, J 103377, S PRT-0011,
F 1593411

Figure 3-1 . New parts for this chapter: 1 . Interlink Series 402 force-sensing resistors (FSRs) 2 . 30AWG wire-wrapping wire

3 . Wire-wrapping pins (or long female headers) 4 . New tool: wire-wrapping tool. The wire stripper to the left of the tool lives inside

the handle. Don’t forget plenty of male header pins for the breakout boards.

1

2

3

4

A MORE COMPLEX NETWORK 77

Network Maps and Addresses
In the previous chapter, it was easy to keep track of where messages went because

there were only two points in the network you built: the sender and the receiver. In any

network with more than two objects—from three to three billion—you need a map

to keep track of which objects are connected to which. You also need an addressing

scheme to know how a message gets to its destination.

Network Maps: How
Things Are Connected
The arrangement of a network's physical connections
depends on how you want to route its messages. The
simplest way is to make a physical connection from each
object in the network to every other object. That way,
messages can get sent directly from one point to another.
The problem with this approach, as you can see from
the directly connected network in Figure 3-2, is that the
number of connections gets large very fast, and the con-
nections get tangled. A simpler alternative to this is to put
a central controller in the middle and pass all messages
through this hub, as seen in the star network shown
in Figure 3-2. This way works great as long as the hub
continues to function, but the more objects you add, the
faster the hub must be to process all the messages. A third
alternative is to daisy-chain the objects, connecting them
together in a ring. This design makes for a small number
of connections, and it means that any message has two
possible paths, but it can take a long time for messages to
get halfway around the ring to the most distant object.

Figure 3-2

Three types of network: direct connections between all elements,

a star network, and a ring network.

In practice (such as on the Internet), a multitiered star
model, like the one shown in Figure 3-3, works best. Each
connector (symbolized by a light-colored circle) has a few
objects connected to it, and each connector is linked to
a more central connector. At the more central tier (the
dark-colored circles in Figure 3-3), each connector may be
linked to more than one other connector, so that enabling
messages to pass from one endpoint to another via
several different paths. This system takes advantage of the
redundancy of multiple links between central connectors,
but avoids the tangle caused by connecting every object
to every other object.

If one of the central connectors isn’t working, messages
are routed around it. The connectors at the edges are the
weakest points. If they aren’t working, the objects that
depend on them have no connection to the network. As

Star networkDirectly connected network Ring network

78 MAKING THINGS TALK

long as the number of objects connected to each of these
is small, the effect on the whole network is minimal. It may
not seem minimal when you’re using the object whose
connector fails, but the rest of the network remains stable,
so it’s easy to reconnect when your connector is working
again.

If you’re using the Internet as your network, you can
take this model for granted. If you’re building your own
network, however, it’s worth comparing all these models
to see which is best for you. In simpler systems, one of the
three networks shown in Figure 3-2 might do the job just
fine, saving you some complications. As you get further
into the book, you’ll see some examples of these; for the
rest of this chapter, you’ll work with the multitiered model
by relying on the Internet as your infrastructure.
X

Figure 3-3

A complex, multitiered network.

The connectors in Figure 3-3 represent several different

types of devices on the Internet. The most common among

these are modems, hubs, switches, and routers. Depending

on how your network is set up, you may be familiar with one

or more of these. There’s no need to go into detail as to the

differences, but some basic definitions are in order:

A modem is a device that converts one type of signal into

another, and connects one object to one other object. Your

home cable or DSL modem is an example. It takes the digital

data from your home computer or network, converts it to

a signal that can be carried across the phone line or cable

line, and connects to another modem on the other end of

the line. That modem is connected to your Internet Service

Provider’s network. By this definition, the Bluetooth radios

from Chapter 2 could be considered modems, as they

convert electrical signals into radio signals and back.

A hub is a device that multiplexes data signals from several

devices and passes them upstream to the rest of the net.

It doesn’t care about the recipients of the messages it’s

carrying—it just passes them through in both directions.

All the devices attached to a hub receive all the messages

that pass through the hub, and each one is responsible for

filtering out any messages that aren’t addressed to it. Hubs

are cheap and handy, but they don’t really manage traffic.

A switch is like a hub, but it's more sophisticated. It keeps

track of the addresses of the objects attached to it, and it

passes along messages addressed to those objects only.

Objects attached to a hub don’t get to see messages that

aren’t addressed

to them.

Modems, hubs, and switches generally don’t actually have

their own addresses on the network (though most cable and

DSL modems do). A router, on the other hand, is visible to

other objects on the network. It has an address of its own,

and it can mask the objects attached to it from the rest

of the net. It can give them private addresses, meaningful

only to the other objects attached to the router, and pass

on their messages as if they come from the router itself. It

can also assign IP addresses to objects that don’t have one

when they’re first connected to the router.

Modems, Hubs, Switches, and Routers

Multitiered network

A MORE COMPLEX NETWORK 79

Hardware Addresses
and Network Addresses

Whether you’re using a simple network model where
all the objects are directly connected, a multitiered
model, or anything in between, you need an address-
ing scheme to get messages from one point to another
on the network. When you’re making your own network
from scratch, you have to create your own addressing
scheme. For the projects you’re making in this book,
however, you’re relying on existing network technologies,
so you get to use the addressing schemes that come with
them. For example, when you used the Bluetooth radios
in Chapter 2, you used the Bluetooth protocol address-
ing scheme. When you connect Internet devices, you use
the Internet Protocol (IP) addressing scheme. Because
most of the devices you connect to the Internet also rely
on a protocol called Ethernet, you also use the Ethernet
address protocol. A device’s IP address can change when
it’s moved from one network to another, but its hardware
address, or Media Access Control (MAC) address, is
burned into the device’s memory and doesn’t change.
It’s a unique ID number assigned by the manufacturer
that differentiates that device from all the other Ethernet
devices on the planet. WiFi adapters also have hardware
addresses.

Figure 3-4

Network settings panels for Mac OS X and Windows.

You’re probably already familiar with your computer’s IP
address and maybe even its hardware address. In Mac OS
X, click Apple Menu→Location→Network Preferences to
open the Network control panel. Here you’ll get a list of the
possible network interfaces through which your computer
can connect to the Internet. It’s likely that you have at least
a built-in Ethernet interface and an AirPort interface. The
built-in Ethernet and AirPort interfaces both have hardware
addresses, and if you select either, you can find out that
interface’s hardware address. In either interface, click
on the Advanced button to get to both the Ethernet tab
(where you can see the hardware address), and the TCP/IP
tab (where you can see the machine’s IP address if you’re
connected to a network).

In Windows 7, click the Start Menu→Control Panel, then
double-click "Network and Internet". Each network
interface has its own icon in this control panel. Click Local
Area Connection for your built-in Ethernet connection, or
Wireless Network Connection for your WiFi connection.
Under the Support tab, click Details to see the IP settings
and hardware address.

80 MAKING THINGS TALK

encoded in its subnet mask. You may have encountered a
subnet mask when configuring your personal computer.
A typical subnet mask looks like this: 255.255.255.0.

You can read the number of machines in the subnet
by reading the value of the last octets of the subnet
mask. It’s easiest if you think of the subnet in terms of
bits. Four bytes is 32 bits. Each bit you subtract from
the subnet increases the number of machines it can
support. Basically, you “subtract” the subnet mask
from its maximum value of 255.255.255.255 to get the
number of machines. For example, if the subnet were
255.255.255.255, there could be only one machine in the
subnet: the router itself. If the last octet is 0, as it is above,
there can be up to 255 machines in the subnet in addition
to the router. A subnet of 255.255.255.192 would support
63 machines and the router (255 – 192 = 64), and so
forth. There are a few other reserved addresses, so the real
numbers are a bit lower. Table 3-1 shows a few other repre-
sentative values to give you an idea.

Knowing the way IP addresses are constructed helps you
to manage the flow of messages you send and receive.
Normally, all of this is handled for you by the software you
use: browsers, email clients, and so forth. But when you’re
building your own networked objects, it’s necessary to
know at least this much about the IP addressing scheme
so you can find your router and what’s beyond it.

Numbers into Names
You’re probably thinking this is ridiculous because you
only know Internet addresses by their names, like www.
makezine.com or www.archive.net. You never deal with
numerical addresses, nor do you want to. There’s a

For Ubuntu Linux, click the System menu, then
Preferences→Network Connections. You’ll see a list of
network interfaces. Click Edit to see their details.

Figure 3-4 shows the network connection settings for Mac
OS X and Windows. No matter what platform you’re on,
the hardware address and the Internet address will take
these forms:

• The hardware address is made up of six numbers
written in hexadecimal notation, like this:
00:11:24:9b:f3:70

• The IP address is made up of four numbers written in
decimal notation, like this: 192.168.1.20

You’ll need to know the IP address to send and receive
messages, and you’ll need to know the hardware address
in order to get an IP address on some networks. So,
whenever you begin working on a new project, note both
addresses for every device you’re using.

Street, City, State, Country: How
IP Addresses Are Structured

Geographic addresses can be broken down into layers of
detail, starting with the most specific (the street address)
and moving to the most general (the country). Internet
Protocol (IP) addresses are also multilayered. The most
specific part is the final number, which tells you the
address of the computer itself. The numbers that precede
this tell you the subnet that the computer is on. Your
router shares the same subnet as your computer, and its
number is usually identical except for the last number. The
numbers of an IP address are called octets, and each octet
is like a section of a geographic address. For example,
imagine a machine with this number: 217.123.152.20. The
router that this machine is attached to most likely has this
address: 217.123.152.1.

Each octet can range from 0–255, and some numbers are
reserved by convention for special purposes. For example,
the router is often the address xxx.xxx.xxx.1. The subnet
can be expressed as an address range, for example,
217.123.152.xxx. Sometimes a router manages a larger
subnet or even a group of subnets, each with its own local
router. The router that this router is connected to might
have the address 217.123.1.1.

Each router controls access for a defined number of
machines below it. The number of machines it controls is

Table 3-1 . The relationship between subnet mask and maximum
number of machines on a network.

Subnet mask
Maximum number of machines on
the subnet, including the router
(accounting for reserved addresses)

255.255.255.255 1 (just the router)

255.255.255.192 62

255.255.255.0 254

255.255.252.0 1022

255.255.0.0 65,534

A MORE COMPLEX NETWORK 81

separate protocol, the Domain Name System (DNS),
for assigning names to the numbers. Machines on the
network called nameservers keep track of which names
are assigned to which numbers. In your computer’s
network configuration, you’ll notice a slot where you can
enter the DNS address. Most computers are configured
to obtain this address from a router using the Dynamic
Host Control Protocol (DHCP) , which also provides their
IP address, so you don’t have to worry about configuring
DNS. In this chapter’s project, you won’t be going out to
the Internet at large, so your devices won’t have names,
just numbers. When that happens, you’ll need to know
their numerical addresses.

Packet Switching: How Messages
Travel the Net
So how does a message get from one machine to another?
Imagine the process as akin to mailing a bicycle. The
bike’s too big to mail in one box, so first you break it into
box-sized pieces. On the network, this is initially done at
the Ethernet layer—also called the datalink layer—where
each message is broken into chunks of more or less the
same size, and given a header containing the packet
number. Next, you’d put the address (and the return
address) on the bike’s boxes. This step is handled at the
IP layer, where the sending and receiving addresses are
attached to the message in another header. Finally, you
send it. Your courier might want to break up the shipment
among several trucks to make sure each truck is used

to its best capacity. On the Internet, this happens at the
transport layer. This is the layer of the network responsible
for making sure packets get to their destination. There are
two main protocols used to handle transport of packets
on the Internet: Transmission Control Protocol (TCP), and
User Datagram Protocol (UDP). You’ll learn more about
these later. The main difference is that TCP provides more
error-checking from origin to destination, but is slower
than UDP. On the other hand, UDP trades off error-checking
in favor of speed.

Each router sends off the packets one at a time to the
routers to which it’s connected. If it’s attached to more
than one other router, it sends the packets to whichever
router is least busy. The packets may each take a different
route to the receiver, and they may take several hops
across several routers to get there. Once the packets
reach their destination, the receiver strips off the headers
and reassembles the message. This method of sending
messages in chunks across multiple paths is called
packet switching. It ensures that every path through the
network is used most efficiently, but sometimes packets
are dropped or lost. On the whole, though, the network
is reliable enough that you can forget about dropped
packets.

There’s a command-line tool, ping, that can be useful in
determining whether your messages are getting through.It
sends a message to another object on the Net to say “Are
you there?”, and then waits for a reply.

Not every object on the Internet can be addressed by every

other object. Sometimes, in order to support more objects,

a router hides the addresses of the objects attached to it,

sending all their outgoing messages to the rest of the net as

if they came from the router itself. There are special ranges

of addresses set aside in the IP addressing scheme for use

as private addresses. For example, all addresses in the range

192.168.xxx.xxx (as well as 10.xxx.xxx.xxx, and 172.16.xxx.

xxx–172.31.xxx.xxx) are to be used for private addressing

only. This address range is used commonly in home routers,

so if you have one, all the devices on your home network

probably show up with addresses in this range. When

they send messages to the outside world, though, those

messages show up as if they came from your router’s public

IP address. Here’s how it works:

My computer, with the address 192.168.1.45 on my home

network, makes a request for a web page on a remote

server. That request goes first to my home router. On my

home network, the router’s address is 192.168.1.1, but to the

rest of the Internet, my router presents a public address,

66.187.145.75. The router passes on my message, sending

it from its public address, and requesting that any replies

come back to its public address. When it gets a reply, it

sends the reply to my computer. Thanks to private address-

ing and subnet masks, multiple devices can share a single

public IP address, which expands the total number of things

that can be attached to the Internet.

Private and Public IP Addresses

82 MAKING THINGS TALK

To use it, open up the command-line application on your
computer (Terminal on Mac OS X, the command prompt
on Windows, and xterm or similar on Linux/Unix). On Mac
OS X or Linux, type the following:

ping -c 10 127.0.0.1

On Windows, type this:

ping -n 10 127.0.0.1

This sends a message to address 127.0.0.1 and waits for a
reply. Every time it gets a reply, it tells you how long it took,
like this:

64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.166 ms

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.157 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.182 ms

After counting 10 packets (that’s what the -c 10 on Mac
and -n 10 on Windows means), it stops and gives you a
summary, like this:

--- 127.0.0.1 ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.143/0.164/0.206/0.015 ms

It gives you a good picture of not only how many packets
got through, but also how long they took. It’s a useful way
to learn quickly whether a given device on the Internet
is reachable or not, as well as how reliable the network
is between you and that device. Later on, you’ll be using
devices that have no physical interface on which you can
see activity, so ping is a handy way to check whether
they’re working.

NOTE: 127 .0 .0 .1 is a special address called the loopback address

or localhost address. Whenever you use it, the computer you’re

sending it from loops back and sends the message to itself. You

can also use the name localhost in its place. You can test many

network applications using this address, even when you don’t have

a network connection.

X

How Web Browsing Works
Figure 3-5 is a map of the routes web pages take to reach
your computer. Your browser sends out a request for a
page to a web server, and the server sends the page back.
Which route the request and the reply take is irrelevant,
as long as there is a route. The web server itself is just a
program running on a computer somewhere else on the
Internet. A server is a program that provides a service to
other programs on the Net. The computer that a server
runs on, also referred to as a server, is expected to be

online and available at all times so that the service is not
disrupted. In the case of a web server, the server provides
access to a number of HTML files, images, sound files, and
other elements of a website to clients from all over the
Net. Clients are programs that take advantage of services.
Your browser, a client, makes a connection to the server
to request a page. The browser makes a connection to the
server computer, the server program accepts the connec-
tion and delivers the files representing the page, and the
exchange is made.

Clients, Servers, and Message Protocols
Now you know how the Internet is organized, but how do things get done on the Net?

For example, how does an email message get from you to your friend? Or how does

a web page get to your computer when you type a URL into your browser or click on

a link? It’s all handled by sending messages back and forth between objects using the

transport scheme just described. Once you know how that works, you can take it for

granted and concentrate on the messages.

A MORE COMPLEX NETWORK 83

Figure 3-5

The path from a website to your

browser. Although the physical

computers are in many different

locations, that doesn’t matter as

long as you know the websites’

addresses.

The server computer shares its IP address with every
server program running on it by assigning each program
a port number. For example, every connection request
for port 80 is passed to the web server program. Every
request for port 25 is passed to the email server program.
Any program can take control of an unused port, but only
one program at a time can control a given port. In this way,
network ports work much like serial ports. Many of the
lower port numbers are assigned to common applications,
such as mail, file transfer, telnet, and web browsing. Higher
port numbers are either disabled or left open for custom
applications (you’ll write one of those soon). A specific
request goes like this:

1. Type http://www.makezine.com/index.html into your
browser.

2. The browser program contacts www.makezine.com on
port 80.

3. The server program accepts the connection.

4. The browser program asks for a specific file name,
index.html.

5. The server program looks up that file on its local file
system, and prints the file out via the connection to the
browser. Then, it closes the connection.

6. The browser reads the file, looks up any other files it
needs (like images, movies, style sheets, and so forth),
and repeats the connection request process, getting all
the files it needs to display the page. When it has all the
files, it strips out any header information and displays
the page.

All the requests from browser to server, and all the
responses from server to browser (except the images and
movie files), are just strings of text. To see this process
in action, you can duplicate the request process in the
terminal window. Open up your terminal program again,
just as you did for the ping example shown earlier (on
Windows 7, use PuTTY).

Internet

Your
Computer

Your router
Your cable

or DSL
modem

Your
Network
provider

Website's
network
provider

Website's
server

Website's
network
provider

Website's
server

84 MAKING THINGS TALK

The built-in Windows version of telnet is not very good. For

example, you won’t be able to see what you type without

setting the localecho option, and the informative “Trying . . .

Connected” prompts do not appear. Use PuTTY instead (http://

www.chiark.greenend.org.uk/~sgtatham/putty).

!

telnet www.google.com 80Type the code at right.

The server will respond as follows
(on Windows,use PuTTY and open a
connection to www.google.com, port
80, Connection Type: Raw):

Trying 64.233.161.147...

Connected to www.l.google.com.

Escape character is '̂]'.

GET /index.html HTTP/1.1

Host: www.google.com

Connection: Close

Type the code to the right.

Press the Return key twice after this last
line. The server will then respond with
something like this:

HTTP/1.1 200 OK

Date: Mon, 18 Jul 2011 00:04:06 GMT

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

Server: gws

Connection: Close

8

After the header, the next thing you’ll see is a
lot of HTML that looks nowhere near as simple
as the normal Google web interface. This is the

HTML of the index page of Google. This is how browsers
and web servers talk to each other, using a text-based
protocol called the Hypertext Transport Protocol (HTTP).
The http:// at the beginning of every web address tells
the browser to communicate using this protocol. The stuff
that precedes the HTML is the HTTP header information.
Browsers use it to learn the types of files that follow, how

the files are encoded, and more. The end user never needs
this information, but it’s very useful in managing the flow of
data between client and server.

Remember the PHP time example from Chapter 1?
It should still be sitting on your own web server, at
www.example.com/time.php (replace www.example.com
with the address of your server). Try getting this
file from the command line.

NOTE: If telnet doesn’t close on its own, you

may need to press Ctrl-] to get to the telnet

prompt, where you can type q followed by

Enter to exit.

 Try It

<?php

/* Date page

 Context: PHP

 Prints the date. */

// get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// include the date:

echo "< $date >\n";

?>

Modify the PHP program
slightly, removing all the

lines that print any HTML, like the code
on the right.

Now, telnet into your web server on
port 80 and request the file from the
command line. Don’t forget to specify
the HOST in your request, as shown
earlier in the request to Google.

You should get a much more abbrevi-
ated response.

 Try It

A MORE COMPLEX NETWORK 85

Even though the results of this approach aren’t
as pretty in a browser, it’s very simple to extract
the date from within a Processing program—

or even a microcontroller program. Just look for the <
character in the text received from the server, read every-
thing until you get to the > character, and you’ve got it.

HTTP requests don’t just request files. You can add param-
eters to your request. If the URL you’re requesting is
actually a program (like a PHP script), it can do something
with those parameters. To add parameters to a request,
add a question mark at the end of the request and param-
eters after that. Here’s an example:

http://www.example.com/get-parameters.php?name=tom&age=14

In this case, you’re sending two parameters, name and
age. Their values are “tom” and “14”, respectively. You can
add as many parameters as you want, separating them
with the ampersand (&).

There are predefined variables in PHP that give you access
to these parameters and other aspects of the exchange
between client and server. The variable $_REQUEST, used
below, is an example that returns the parameters after
the question mark in an HTTP request. Other predefined
variables give you information about the client’s browser
and operating system, the server’s operating system, any
files the client’s trying to upload, and much more.

<?php

/*

 Parameter reader

 Context: PHP

 Prints any parameters sent in using an HTTP GET command.

*/

// print out all the variables:

foreach ($_REQUEST as $key => $value)

 {

 echo "$key: $value
\n";

 }

?>

Here’s a PHP script that
reads all the values sent

in via a request and prints them out.

Save this script to your server as get-
parameters.php, and view it in a browser
using the URL shown earlier (you may
need to modify the path to the file if
you’ve put it in a subdirectory). You
should get a page that says:

name: tom

age: 14

You could also request it from
telnet or PuTTY like you did

earlier (be sure to include the
?name=tom&age=14 at the end of
the argument to GET, as in GET /get-
parameters.php?name=tom&age=14).
You’d get something similar to the code
at right, shown here with the HTTP
header.

HTTP/1.1 200 OK

Date: Thu, 15 Mar 2007 15:10:51 GMT

Server: Apache

X-Powered-By: PHP/5.1.2

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=UTF-8

name: tom

age: 14

8

 Test It

86 MAKING THINGS TALK

<?php

/*

 Age checker

 Context: PHP

 Expects two parameters from the HTTP request:

 name (a text string)

 age (an integer)

 Prints a personalized greeting based on the name and age.

*/

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value)

 {

 if ($key == "name") {

 $name = $value;

 }

 if ($key == "age") {

 $age = $value;

 }

 }

if ($age < 21) {

 echo "<p> $name, You're not old enough to drink.</p>\n";

} else {

 echo "<p> Hi $name. You're old enough to have a drink, ";

 echo "but do so responsibly.</p>\n";

}

?>

Of course, because PHP is a
programming language, you can do
more than just print out the results.
Try the script to the right.

Try requesting this script with the same
parameter string as the last script,
?name=tom&age=14, and see what
happens. Then change the age to a
number greater than 21.

NOTE: One great thing about PHP is that

it automatically converts ASCII strings of

numbers like “14” to their numerical values.

Because all HTTP requests are ASCII-based,

PHP is optimized for ASCII-based exchanges

like this.

8

HTTP GET and POST
The ability to respond to parameters sent in an HTTP
request opens all kinds of possibilities. For example,
you can write a script that lets you choose the address
to which you send an email message, or what message
to send. You’d just add parameters to the URL after the
question mark, read them in PHP, and use them to set the
various mail variables.

The method for sending variables in the URL after a
question mark is called GET, and it’s one of HTTP’s four
commands. Besides GET, you can also POST, PUT, and
DELETE. Many browsers don’t support PUT or DELETE,
however, so stick to GET and POST for now.

POST is the method usually used to post data from a web
form. Instead of adding the parameters on the end of the
URL path as GET does, POST adds the parameters to the
end of the whole HTTP request. There are a couple other
parameters you need to add to a POST request too, like
the content type and the content length. POST is a little
more work to set up, but it’s really useful for hiding the
messy business of passing parameters, keeping your URLs
tidy and easy to remember. Instead of the previous URL,
all the user has to see is:

http://www.example.com/get-parameters.php

The rest can get delivered via POST.

A MORE COMPLEX NETWORK 87

POST /age_checker.php HTTP/1.0

Host: example.com

Connection: Close

Content-Type: application/x-www-form-urlencoded

Content-length: 16

name=tom&age=14

Telnet into your web server
on port 80 and request the

file again from the command line. This
time, type the POST request as shown
here.

You'll get the same response as you did
using GET, but now you can put all the
parameters in one place, at the end.

 Try It

if (isset($name) && isset($age)) {

 if ($age < 21) {

 echo "<p> $name, You're not old enough to drink.</p>\n";

 } else {

 echo "<p> Hi $name. You're old enough to have a drink, but do ";

 echo "so responsibly.</p>\n";

 }

}

?>

<html>

<body>

<form action="age_checker.php" method="post"

enctype="application/x-www-form-urlencoded">

Name: <input type="text" name="name" />

Age: <input type="age" name="age" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

Now make a couple changes to
the script. First, wrap the section that
checks name and age in another if
statement, like so (new lines are shown
in blue).

Add the following HTML to the age_
checker.php file after the closing PHP
tag.

When you reload this script in the
browser, you will see a form as shown
in Figure 3-6. The if statement you
added makes sure the message about
age doesn’t show up unless you’ve
entered values for name and age. And
the HTML form calls the same script
again when you submit your values,
using an HTTP POST request.

8

Figure 3-6

The PHP age-checker form.

 8 The content length is the length of this string,
plus a linefeed. If your name is longer than three
letters, or your age is greater or fewer than two
digits, change the content length to match.

88 MAKING THINGS TALK

How Email Works
Transferring mail also uses a client-server model. It
involves four applications: your email program and your
friend’s, and your email server (also called the mail host)
and your friend’s email server. Your email program adds a
header to your message to say that this is a mail message,
who the message is to and from, and what the subject
is. Next, it contacts your mail server, which then sends
the mail on to your friend’s mail server. When your friend
checks her mail, her mail program connects to her mail
server and downloads any waiting messages. The mail
servers are online all the time, waiting for new messages
for all of their users.

The transport protocol for sending mail is called SMTP,
the Simple Mail Transport Protocol. It’s paired with two
retrieval protocols: POP (Post Office Protocol) and IMAP
(Internet Message Access Protocol). Just like HTTP, it’s
text-based. PHP has excellent functionality for sending
and retrieving mail, and you can use it as an intermediary
between any local application, like the Processing sketch
that will follow, or some microcontroller applications you’ll
see later on.

<?php

/*

 mailer

 Context: PHP

 sends an email.

*/

// set up your variables for mailing. Change to and from

// to your mail address:

$to = "you@example.com";

$subject = "Hello world!";

$from = "From: you@example.com";

$message = "Hi there, how are you?";

// send the mail:

mail($to, $subject, $message, $from);

// give notification in the browser:

echo "I mailed " . $to . "
";

echo $from . "
";

echo $subject. "

";

echo $message;

?>

Here’s a PHP script that
sends a mail to you.

Save this script to your server as mailer.
php, and view it in a browser as you did
with the last script. You should get two
results. In the browser, you’ll get a page
that says:

I mailed you@example.com

From: you@example.com

Hello world!

Hi there, how are you?

 In your mail client, you’ll get a
message like this:

From: You <you@example.com>

Subject: Hello world!

Date: May 8, 2013 2:57:42 PM EDT

To: you <you@example.com>

Hi there, how are you?

 Try It

Make sure your server is properly configured to send mail here. If you're using a web hosting service, the settings for mail
will be part of your account settings. Also, make sure your from: address is one for which the mail server will relay mail.
That typically means you can only send mail from your own domain. For example, if your domain name is example.com,
then you can't send mail from cat@ohaikitteh.com.

As you can see, sending mail from PHP is very simple. So in addition to using it to serve web pages, you can use it to send
messages via mail. As long as you have a device or program that can make a GET or POST, you can use PHP or other
server-side programming languages to start a sequence of messages in many different applications across the Net. Now
that you’ve got the basics of HTTP requests and mail sending, it’s time to put them into action in a project.

A MORE COMPLEX NETWORK 89

Networked Cat
Web browsing and email are all very simple

for humans because we’ve developed

computer interfaces that work well with

our bodies. Keyboards work great with our

fingers, and mice glide smoothly under

our hands. It’s not so easy for a cat to

send email, though. This project attempts

to remedy that while showing you how to

build your first physical interface for the

Internet.

MATERIALS

 » between 2 and 4 force-sensing resistors,
Interlink 400 series

 » 1 1-kilohm resistor
 » 1 solderless breadboard
 » 1 Arduino microcontroller module
 » 1 personal computer
 » 1 web camera
 » 1 cat mat
 » 1 cat
 » 2 thin pieces of wood or thick cardboard,
about the size of the cat mat

 » Wire-wrapping wire
 » Male header pins

If you’re a cat lover, you know how cute they can be when
they curl up in their favorite spot for a nap. You might find
it useful during stressful times at work to think of your cat,
curled up and purring away. Wouldn’t it be nice if the cat
sent you an email when he lays down for a nap? It would
be even better if you could then check in on the cat’s
website to see him at his cutest. This project makes that
possible.

The system works like this: force-sensing resistors are
mounted under the cat mat and attached to a micro-
controller. The microcontroller is attached to a personal
computer, as is a camera. When the cat lies down on the
mat, his weight will cause a change in the sensor readings.
The microcontroller then sends a signal to a program on
the personal computer, which takes a picture with the
camera and uploads it to a web server via a PHP script.
Then the program calls another PHP script that sends you
an email, letting you know that your cat is being particu-
larly cute. Figure 3-7 shows the whole system.

You’ll do this project in several parts:

1. Write an Arduino sketch to read sensors in the cat’s mat
and send the results serially to Processing.

2. Write a Processing sketch to read the serial data and
when appropriate, call a PHP script that sends mail.

3. Write a PHP script to send mail.
4. Make a web page for the cat cam.
5. Write a second PHP script to accept new image uploads

for the web page.
6. Modify the Processing sketch to take new images and

upload them via the second PHP script.

Project 5

Putting Sensors in the Cat Mat
First, you need a way to sense when the cat is on the mat.
The simplest way to do this is to put force sensors under
the mat and sense the difference in weight when he sits on
it. How you do this depends on what kinds of force-sensing
resistors you use. Interlink’s 400 series FSRs work well for
this project. Mount the sensors on something with a firm
backing, like masonite, or another type of wood or firm
cardboard.

There are some FSRs that are long and thin, like Interlink’s
408 series. Long sensors aren’t all that common, though,
so you’re more likely to have small round sensors like the
400 or 402 series. If you’re using those or other smaller
FSRs from another company like CUI or FlexiForce, you’ll
need to make a larger sensing pad. First, cut two pieces of
wood or firm cardboard slightly smaller than the cat’s mat.
Don’t use a really thick or hard piece of wood. You just need
something firm enough to provide a relatively inflexible
surface for the sensors. Attach the sensors to the corners
of one of the pieces of wood or cardboard. Sandwich the
sensors between the two boards. Tape the two boards
together at the edges loosely, so that the weight of the
cat can press down to affect the sensors. If you tape too
tightly, the sensors will always be under force; too loose,
and the boards will slide around too much and make the
cat uncomfortable. If the sensors don’t give enough of
a reaction, get some little rubber feet—available at any
electronics or hardware store—and position them on the

90 MAKING THINGS TALK

panel opposite the sensors so that they press down on the
sensors. If the wood or cardboard panels have some flex
in them, position an extra rubber foot or two at the center
of the panel to reduce the flex. Figures 3-8, 3-9, and 3-10
show a working version of the sensor board.

Next, attach long wires to the force-sensing resistors to
reach from the mat to the nearest possible place to put the
microcontroller module.

You’re using multiple sensors so you can sense a
large area under the mat, but it doesn’t matter much
which one gets triggered. Connect the sensors to an
analog input of the microcontroller in parallel with
each other, using the voltage divider circuit shown in
Figure 3-10. This circuit combines the input from all
four into one input.
X

Figure 3-7

The networked cat system.

A MORE COMPLEX NETWORK 91

Figure 3-8

Because the force-sensing resistors melt easily, I used 30AWG wire

wrap instead of solder. Wire-wrapping tools are inexpensive and

easy to use, but make a secure connection. After wire wrapping,

I insulated the connections with heat shrink. (Heat shrink not

shown.)

Figure 3-9

The cat-sensing panel. The four FSRs are wired in parallel. Note the

rubber feet that press down more precisely on the sensors. Make

sure to insulate the connections before taping the panels together.

The connector is just a pair of female wire-wrap headers.

92 MAKING THINGS TALK

A MORE COMPLEX NETWORK 93

Figure 3-10

The cat-sensing circuit.

Because all of the force-

sensing resistors are wired

in parallel, there are only

two connections for all

of them. This circuit is

simple enough that you

can just solder a resistor to

a header pin to make the

connection to ground.

1KΩ

4 force-sensing
resistors

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

You may need a

higher value depending on the

resistance range of your force-

sensing resistors and the weight

of your cat. If a 1K resistor

doesn’t give you good values,

try a 4.7K or a 10K resistor. The

photo here shows a 10K resistor.

!

94 MAKING THINGS TALK

/*

 Analog sensor reader

 Context: Arduino

 Reads an analog input on Analog in 0, prints the result

 as an ASCII-formatted decimal value.

 Connections:

 FSR analog sensors on Analog in 0

*/

void setup()

{

 // start serial port at 9600 bps:

 Serial.begin(9600);

}

void loop()

{

 // read analog input:

 int sensorValue = analogRead(A0);

 // send analog value out in ASCII decimal format:

 Serial.println(sensorValue, DEC);

}

Once you’ve got the
sensor panel together

and connected to the microcontroller,
run this code on the Arduino board to
test the sensors.

To see the results, open the Serial
Monitor at 9600 bits per second. Now,
position the cat on the panel and note
the number change. This can be tricky,
as cats are difficult to command. You
may want to put some cat treats or
catnip on the pad to encourage the cat
to stay there. When you’re satisfied
that the system works and that you can
see a significant change in the value
when the cat sits on the panel, you’re
ready to move on to the next step.

/*

 Serial String Reader

 Context: Processing

 Reads in a string of characters until it gets a linefeed (ASCII 10).

 Then converts the string into a number.

 */

import processing.serial.*;

Serial myPort; // the serial port

float sensorValue = 0; // the value from the sensor

float xPos = 0; // horizontal position of the graph

void setup() {

 size(400,300);

 // list all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my Mac is always my

 // Arduino, so I open Serial.list()[0]. Open whatever port you're using

 // (the output of Serial.list() can help; they are listed in order

 // starting with the one that corresponds to [0]).

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a newline (ASCII 10):

Next, send the
sensor readings

serially to Processing, which will send
an email and trigger the camera to take
a picture when the cat is on the mat.
This sketch will look familiar to you
because it’s similar to the one you used
to read the sensor values for Monski
Pong in Chapter 2.

»

 Test It

 Connect It

A MORE COMPLEX NETWORK 95

void drawGraph(float prevValue, float currentValue) {

 // subtract the values from the window height

 // so that higher numbers get drawn higher

 // on the screen:

 float yPos = height - currentValue;

 float lastYPos = height - prevValue;

 // draw the line in a pretty color:

 stroke(#C7AFDE);

 line(lastXPos, lastYPos, xPos, yPos);

 // at the edge of the screen, go back to the beginning:

 if (xPos >= width) {

Next, add a new method called
drawGraph().

8

Continued from previous page .

 myPort.bufferUntil('\n');

 // set initial background and smooth drawing:

 background(#543174);

 smooth();

}

void draw () {

 // nothing happens here

}

void serialEvent (Serial myPort) {

 // get the ASCII string:

 String inString = myPort.readStringUntil('\n');

 if (inString != null) {

 // trim off any whitespace:

 inString = trim(inString);

 // convert to an int and map to the screen height:

 sensorValue = float(inString);

 sensorValue = map(sensorValue, 0, 1023, 0, height);

 println(sensorValue);

 }

 }

You don’t want Processing sending a
message constantly, because you’d
get several thousand emails every time
the cat sits on the mat. Instead, you
want to recognize when the cat’s there,
send an email, and don’t send again
until he’s left and returned to the mat.
If he jumps on and off and on again in a
minute or less, you don’t want another
email.

What does that look like in sensor
terms? To find out, you need to do
one of two things: get the cat to jump
on and off the mat on cue (difficult to
do without substantial bribery, using
treats or a favorite toy), or weigh the
cat and use a stand-in of the same
weight. The advantage to using the cat
is that you can see what happens when
he’s shifting his weight, preparing the
bed by kneading it with his claws, and
so forth. The advantage of the stand-in
weight is that you don’t have to herd
cats to finish the project.

float prevSensorValue = 0; // previous value from the sensor

float lastXPos = 0; // previous horizontal position

If your system is
working correctly,

you should notice a difference of several
points in the sensor readings when the
cat gets on the mat. It helps to graph
the results so you can see clearly what
the difference looks like. To do that, add
a few extra variables to the variable list
at the beginning of your Processing
program.

 Refine It

»

96 MAKING THINGS TALK

 xPos = 0;

 lastXPos = 0;

 background(#543174);

 }

 else {

 // increment the horizontal position:

 xPos++;

 // save the current graph position

 // for next time:

 lastXPos = xPos;

 }

}

 println(sensorValue);

 sensorValue = map(sensorValue, 0, 1023, 0, height);

 drawGraph(prevSensorValue, sensorValue);

 // save the current value for the next time:

 prevSensorValue = sensorValue;

 }

}

Finally, add the following to the
serialEvent() method, right after

you print the sensor value (new lines
are shown in blue).

NOTE: Once you’ve got the serial con-

nection between the microcontroller and the

computer working, you might want to add in

the Bluetooth radio from the Monski Pong

project in Chapter 2. It will make your life

easier if your computer doesn’t have to be

tethered to the cat mat in order to program.

8

8

Figure 3-11

Output of the sensor-graphing program.

When you run the program, you’ll see a graph
of the sensor values, as shown in Figure 3-11.
When the cat jumps on the mat, you should

see a sudden increase, and when he jumps off, you’ll see
the graph decrease. You’ll also see any small changes,
which you might need to filter out. If the changes are
small relative to the difference between the two states
you’re looking for, you can ignore them. Using the sensor
values, you have enough knowledge to start defining the
cat’s presence on the mat as an event. The event you care
about is when the sensor reading increases significantly,
because that's when the cat sat on the mat. To do this,
pick a threshold number in between the two states. When
the sensor reading changes from being less than threshold
to greater than or equal to it, that’s your first event. When
the sensor value goes below the threshold, the cat has left
the mat. That’s your second event.

A MORE COMPLEX NETWORK 97

When you run the program, you should see messages
in the console area saying when the cat jumps on or
off the mat, and when a mail would be sent. Your cat
may be fickle or may take his time settling on the mat,
which can result in several mail messages as he gets
comfortable. To avoid this, you want to change the

int threshold = 250; // above this number, the cat is on the mat.Add the following new variable
to the beginning of your program.
Determine the threshold value by
watching the sensor value without the
cat on the mat, and picking a number
that’s higher.

8

 drawGraph(prevSensorValue, sensorValue);

 if (sensorValue > threshold) {

 // if the last reading was less than the threshold,

 // then the cat just got on the mat.

 if (prevSensorValue <= threshold) {

 println("cat on mat");

 sendMail();

 }

 }

 else {

 // if the sensor value is less than the threshold,

 // and the previous value was greater, then the cat

 // just left the mat

 if (prevSensorValue > threshold) {

 println("cat not on mat");

 }

 }

Then put this code in your serialEv-
ent() method, right after drawGraph()
(new lines are shown in blue). Remove
or comment out the line in the serialEv-
ent() method that prints the sensor
value.

8

void sendMail() {

 println("This is where you'd send a mail.");

}

Finally, add a method that sends
mail. For now, it will just print a place-
holder to the message window. After
the next section, you'll write code to
make it send mail for real. Add this
method to the end of your program.

8

You don’t just want to respond to events, though. You
might have a fickle cat who jumps on and off the mat a
lot. Once you’ve sent a message, you don’t want to send
another one right away, even if the cat gets off the mat and

back on. Decide on an appropriate interval, wait that long,
and don’t respond to any input during that time. Once the
interval’s over, start looking for input again.

sketch so that once it sends a message, it doesn’t send
any others for an acceptable period. You can do this by
modifying the sendMail() method to keep track of when
the last message was sent. Here’s how to do it.

98 MAKING THINGS TALK

void sendMail() {

 // how long has passed since the last mail:

 int timeDifference = currentTime - lastMailTime;

 if (timeDifference > mailInterval) {

 String[] mailScript = loadStrings(mailUrl);

 println("results from mail script:");

 println(mailScript);

 // save the current minute for next time:

 lastMailTime = currentTime;

 }

}

Now, modify the sendMail()
method as shown in the code at

right.

Once you’re sure it works, adjust mail-
Interval to an appropriate minimum
number of seconds between emails.

8

Sending Mail from the Cat
Processing doesn’t have any libraries for sending and
receiving email, so you can call a PHP script to do the
job. Processing has a simple command to make HTTP
GET requests: loadStrings(). The same technique can
be used to call other PHP scripts or web URLs from
Processing. POST requests are a little more complicated;
you’ll see how to do that later.

Save the following PHP script to your server with the
name cat-script.php. Test it from a browser. When you
call it, you should get an email in your inbox. Some mail
servers may require that you send mail only from your
proper account name. If that’s the case, replace cat@
example.com with the email address for your account
name on the server on which the script is running.

Once you’ve confirmed that this script is running, go back
to the Processing sketch. Double-check that the mailUrl
variable is the URL of the script, and run the sketch. When
the cat sits on the mat now, the sketch will call the mailer
script and you should get an email from the cat. The
console output will look like this:

cat on mat

results from mail script:

[0] “TO: you@example.com”

[1] “FROM: cat@example.com”

[2] “SUBJECT:the cat”

[3] “”

[4] “The cat is on the mat at http://www.example.com/

catcam.”

[5] “”

int currentTime = 0; // the current time as a single number

int lastMailTime = 0; // last time you sent a mail

int mailInterval = 60; // minimum seconds between mails

String mailUrl = "http://www.example.com/cat-script.php";

void draw() {

 currentTime = hour() * 3600 + minute() * 60 + second();

Every time the
program sends a mail

message, it should take note of the
time. Add a few new variables at the
beginning of the program.

Add one line at the beginning of
the draw() method to update current-
Time continuously.

 Tame It

When you run the sketch this time, you’ll see an error message like this when you cross the threshold:

cat on mat

results from mail script:The file “http://www.example.com/cat-script.php” is missing or inaccessible, make sure the URL is

valid or that the file has been added to your sketch and is readable.

The sketch is now making an HTTP GET request to call a PHP script that’s not there. In the next section, you’ll write that
script.

8

A MORE COMPLEX NETWORK 99

<?php

/*

 Mail sender

 Context: PHP

 Sends an email if sensorValue is above a threshold value.

*/

 // form the message:

 $to = "you@example.com";

 $subject = "the cat";

 $message = "The cat is on the mat at http://www.example.com/catcam.";

 $from = "cat@example.com";

 // send the mail:

 mail($to, $subject, $message, "From: $from");

 // reply to processing:

 echo "TO: " .$to;

 echo "\nFROM: " .$from;

 echo "\nSUBJECT:" .$subject;

 echo "\n\n" .$message . "\n\n";

?>

 8 You’ll need to change these email
addresses.

Now that you’re sending emails from

a program, you need to be very careful

about how often it happens. You really don’t

want 10,000 messages in your inbox because

you accidentally called the mail command in a

repeating loop.

!

8

<html>

<head>

 <title>Cat Cam</title>

 <meta http-equiv="refresh" content="5">

</head>

<body>

 <center>

 <h2>Cat Cam</h2>

 </center>

</body>

</html>

Now you’re getting somewhere! You’re able to send
mail triggered by a physical event—the cat sitting on
the mat. This is a good moment to stop and celebrate
your achievement and pet the cat. In the next section,
you’re going to use a webcam to make your cat Internet-
famous.
X

Making a Web Page for the
Cat Cam

Next, you need a web page for the cat cam. Take
a picture of your cat and upload the image to the

directory containing your script with the filename
catcam.jpg. Once you know the image is there and visible,
frame it with a web page in the same directory, called
index.html. Here is a bare-bones page that will auto-
matically refresh itself in the user’s browser every five
seconds, as indicated by the meta tag in the head of the
document. Feel free to make the page as detailed as you
want, but keep the meta tag in place.

8

100 MAKING THINGS TALK

<html>

<head>

 <title>Cat Cam</title>

 <script type="text/javascript">

 function refresh() {

 var refreshTime = 5 * 1000; // 5000 ms

 var thisImage = "catcam.jpg"; // the image location

 var today = new Date(); // the current time

 // add the time to the end of the image string

 //to make a unique URL:

 document.images["pic"].src=thisImage+"?"+today;

 // reload if the images are loaded:

 if(document.images) {

 window.onload=refresh;

 }

 // if the time is up reload the image

 t=setTimeout('refresh()',refreshTime);

 }

 </script>

</head>

<body onload="refresh()">

 <center>

 <h2>Cat Cam</h2>

 </center>

</body>

</html>

The previous page
is really simple, but

as you can see, it reloads the entire
page each time. However, if you want
only the image to reload, you can do
something fancier with some CSS DIV
tags and a little JavaScript.

This page is a bit more complex. Only
the image reloads in this page. The
other elements stay stable.

Once you’ve made the Cat Cam page
to your liking, it’s time to automate
the process of taking the picture
and uploading it. First, you’ll make
an uploader PHP script. Then you’ll
modify the Processing sketch to take
a picture and upload it via the PHP
script. Figure 3-12 shows the image
uploaded to the Cat Cam page.
X

 Refine It

Figure 3-12

Regardless of which option you use, the Cat

Cam page will look like this.

A MORE COMPLEX NETWORK 101

Uploading Files to a Server
Using PHP

Next, you’re going to write a script that uploads images
to the server. PHP has a predefined variable, $_FILES,
that allows you to get information about any files the user
attempts to upload via HTTP. Like $_REQUEST, which

<?php

if (isset($_FILES)) {

 print_r($_FILES);

}

?>

<html>

<body>

<form action="save2web.php" method="post"

enctype="multipart/form-data">

<label for="file">Filename:</label>

<input type="file" name="file" id="file" />

<input type="submit" name="submit" value="Upload" />

</form>

</body>

</html>

Here’s a PHP script
with an HTML form that

uploads a file. The PHP script doesn’t
do anything much so far—it just shows
you the results of the HTTP request.
Save this to your server as save2web.
php.

View this in a browser, and you’ll get a
simple form with a file chooser button
and an upload button. Choose a JPEG
image file and upload, and you’ll get a
response that looks like this:

Array ([file] => Array ([name] =>

catcam.jpg [type] => image/jpeg [tmp_

name] => /tmp/phpoZT3BS [error] => 0

[size] => 45745))

This is the $_FILES variable printed out
for you.

 Try It

you saw earlier, $_FILES is an array, and each of the array
elements is a property of the file. You can get the name of
the file, the size of the file, and the file type, which will be
useful when you write a script that takes only JPEG files
below a certain size.

<?php

if (isset($_FILES)) {

 // put the file parameters in variables:

 $fileName = $_FILES['file']['name'];

 $fileTempName = $_FILES['file']['tmp_name'];

 $fileType = $_FILES['file']['type'];

 $fileSize = $_FILES['file']['size'];

 $fileError = $_FILES['file']['error'];

 // if the file is a JPEG and under 100K, proceed:

 if (($fileType == "image/jpeg") && ($fileSize < 100000)){

 // if there's a file error, print it:

 if ($fileError > 0){

 echo "Return Code: " . $fileError . "
";

 }

Replace the PHP part of this script
(the part between <?php and ?>) with
the following. This script checks to see
that the uploaded file is a JPEG file with
fewer than 100 kilobytes, and it saves it
in the same directory as the script.

8

»

102 MAKING THINGS TALK

Capturing an Image and
Uploading It Using Processing

Now that you’ve got an uploader script on the server,
you need a program on your local computer to capture a
picture of the cat and to call the script. There are several
automated webcam applications on the market, but it’s
fun to do it on your own. This section will describe how
you can do it in Processing using two external libraries: the
Processing video library and the Processing net library.

Before you get going, there are a few things you’ll need
to do. First, make sure your webcam can be read by both
your computer and by Processing.

If you’re using Mac OS X, you’re all set. The Process-
ing video library works with QuickTime, which comes
with your computer. Open a video applicatio,n like Photo
Booth, just to make sure it’s working, then you’re ready to
program.

For Windows 7 users, you’ll need to install QuickTime, if
you don’t have it already. Download it from http://www.
apple.com/quicktime and follow the installer directions.
You’ll also need a VDIG, which is a software library that
allows Processing to connect to the webcam through
QuickTime. You can download WinVDIG from http://
www.eden.net.nz/7/20071008/. Use version 1.0.1, as it’s
the most stable as of this writing. Finally, you’ll need to
change the Compatibility settings for Processing. Open
the Processing application directory, right-click on the
Processing application icon, and choose Properties. In
the application’s Properties window, choose the Compat-
ibility tab. In that tab, click the checkbox marked “Run this
program in compatibility mode for:”, and from the associ-
ated drop-down menu, choose “Windows XP (service pack
3)”. Then click Apply, and you’re ready to move on. The
Processing team hopes to change this soon, so it may be
much simpler by the time you read this.

For Ubuntu Linux users, you’re out of luck this time. The
Processing video library is not currently supported under
Linux, though the developers welcome patches for this.

 // if there's no file error, print some HTML about the file:

 else {

 echo "Upload: " . $fileName . "
";

 echo "Type: " . $fileType . "
";

 echo "Size: " . ($fileSize / 1024) . " Kb
";

 echo "Temp file: " . $fileTempName . "
";

 // if the file already exists,

 // delete the previous version:

 if (file_exists($fileName)) {

 unlink($fileName);

 }

 // move the file from the temp location to

 // this directory:

 move_uploaded_file($fileTempName, $fileName);

 echo "Uploaded file stored as: ".$fileName;

 }

 }

 // if the file's not a JPEG or too big, say so:

 else {

 echo "File is not a JPEG or too big.";

 }

}

?>

Continued from previous page .Now when you load this script in a
browser and upload a file, you’ll be able
to see the file in the directory after-
wards. Try uploading a new JPEG of the
cat, then reload the browser window of
the index.html page you made earlier.
You should see the same page with the
new image.

8

A MORE COMPLEX NETWORK 103

Here’s a sketch that
uses the video library

to paint a live image from the webcam
to the screen. Run it and you’ll see
yourself (or your cat).

 Try It /**

 Image capture and upload

 Context: Processing

 */

import processing.video.*; // import the video library

Capture myCam; // the camera

void setup() {

 size(640, 480); // set the size of the window

 // For a list of cameras on your computer, use this line:

 println(Capture.list());

 // use the default camera for capture at 30 fps:

 myCam = new Capture(this, width, height, 30);

}

void draw() {

 // if there's data from the camera:

 if (myCam.available()) {

 myCam.read(); // read the camera image

 set(0, 0, myCam); // draw the camera image to the screen

 }

}

void draw() {

 // if there's data from the camera:

 if (myCam.available()) {

 myCam.read(); // read the camera image

 set(0, 0, myCam); // draw the camera image to the screen

 // get the time as a string:

 String timeStamp = nf(hour(), 2) + ":" + nf(minute(), 2)

 + ":" + nf(second(), 2) + " " + nf(day(), 2) + "-"

 + nf(month(), 2) + "-" + nf(year(), 4);

 // draw a dropshadow for the time text:

 fill(15);

 text(timeStamp, 11, height - 19);

 // draw the main time text:

 fill(255);

 text(timeStamp, 10, height - 20);

 }

}

Add these lines after the set()
command in the draw() method to
draw a timestamp on the screen (new
lines are shown in blue).

8

104 MAKING THINGS TALK

import processing.video.*; // import the video library

Capture myCam; // the camera

String fileName = "catcam.jpg";

// setup and draw methods go here

void keyReleased() {

 PImage img = get();

 img.save(fileName);

}

import processing.net.*;

String pictureScriptUrl = "/save2web.php";

String boundary = "----H4rkNrF";

Client thisClient;

Now add a global variable at the
top of your sketch for a filename, and
add a method at the end of the sketch
to save the window image to a JPEG
file when you hit any key (new lines are
shown in blue).

Save this sketch before you run it.
When you run it, hit any key. Then
check the sketch folder, and you should
see a JPEG image generated by the
sketch, like Figure 3-13.

Next, it’s time to add a method
that can make an HTTP POST

request. For that, you’ll need the Pro-
cessing network library. Like the serial
library, it adds some functions to the
core of Processing. The serial library
allowed you to access the serial ports;
the network library allows you to make
network connections and a few more
global variables. Add these before the
setup() method.

8

8

Figure 3-13

The output of the Cat Cam Pro-

cessing sketch.

A MORE COMPLEX NETWORK 105

Once you’ve got the three pieces of
the request, calculate the total number
of bytes by adding the length of the two
strings and the byte array. Next, send
the content length, and then the content
itself. Finally, you close the connection
by stopping the client.

 // calculate and send the length of the total request,

 // including the head of the request, the file, and the tail:

 int contentLength = requestHead.length() + thisFile.length + tail.length();

 thisClient.write("Content-Length: " + contentLength + "\n\n");

 // send the header of the request, the file, and the tail:

 thisClient.write(requestHead);

 thisClient.write(thisFile);

 thisClient.write(tail);

 // close the client:

 thisClient.stop();

}

void postPicture() {

 // load the saved image into an array of bytes:

 byte[] thisFile =loadBytes(fileName);

 // open a new connection to the server:

 thisClient = new Client(this, "www.example.com", 80);

 // make an HTTP POST request:

 thisClient.write("POST " + pictureScriptUrl + " HTTP/1.1\n");

 thisClient.write("Host: www.example.com\n");

 // tell the server you're sending the POST in multiple parts,

 // and send a unique string that will delineate the parts:

 thisClient.write("Content-Type: multipart/form-data; boundary=");

 thisClient.write(boundary + "\n");

 // form the beginning of the request:

 String requestHead ="\n--" + boundary + "\n";

 requestHead +="Content-Disposition: form-data; name=\"file\"; ";

 requestHead += "filename=\"" + fileName + "\"\n";

 requestHead +="Content-Type: image/jpeg\n\n";

 // form the end of the request:

 String tail ="\n--" + boundary + "--\n\n";

Now you need a method to
formulate and send the actual

POST request. To do this, open a new
Client connection to the server, then
send the request. In this method, the
content of the request is broken into
three parts: everything that comes
before the file itself; the actual file,
which is loaded into a byte array; and
the end of the request that comes after
the file. Add this method at the end of
your sketch.

8

8

void keyReleased() {

 PImage img = get();

 img.save(fileName);

 postPicture();

}

Finally, add a call to this new
method in the keyReleased() method
(new lines are shown in blue).

8

Save the sketch and run it. Now when you type any key, the sketch will not only save the image locally, but also upload it
to the catcam directory on your sever, via the save2web.php script.

106 MAKING THINGS TALK

HTML forms that use HTTP to enable file uploading are done with the POST request, as well as a special content type,

multipart/form-data, so the server knows how to interpret what comes through. Each element from the form is sent in a

separate part by a unique string. Here’s what the server might see from the uploader script you wrote earlier:

POST /catcam/save2web.php HTTP/1.1

Host: www.example.com

Content-Type: multipart/form-data; boundary=----H4rkNrF

Content-Length: 40679

------H4rkNrF

Content-Disposition: form-data; name="submit"

Upload

------H4rkNrF

Content-Disposition: form-data; name="file"; filename="catcam.jpg"

Content-Type: image/jpeg

[actual bytes of the file go here]

------H4rkNrF--

Anatomy of a Multipart POST Request

 8 Boundary: has to be a unique

string, but you can use whatever

you wish. Comes before each part.

 8 Content-Disposition: says what

this part is. For files, also includes

the local path to the file.

 8 Final boundary ends with an

extra two dashes.

 8 Value for this part.

Putting It All Together
Finally, it’s time to combine the Processing sketch, which
reads the serial port and calls the mailer script, with the
one that takes the image and calls the image uploader
script. The final sketch will work as shown in Figure 3-14.
All the action is driven by the serial input of sensor data. If
the received value is over the threshold, there’s a cat there,
so the sketch takes a picture. If it’s been an appropriate
time since the last picture, the picture is uploaded. If the
sensor value has just changed from below the threshold to
above, and enough time has passed since the last mail, the
sketch sends you mail that the cat just jumped on the mat.

Figure 3-14

The flowchart of the Cat Cam sketch.

A MORE COMPLEX NETWORK 107

Start by combining the
list of global variables

from both sketches. Here’s what it
should look like.

 Try It /*

 Cat webcam uploader/emailer

 Context: Processing

 takes a webcam image continually, uploads it, and

 mails you when it receives a serial string above a given value

 */

// import the libraries you need: Network, serial, video:

import processing.serial.*;

import processing.video.*;

import processing.net.*;

Serial myPort; // the serial port

float sensorValue = 0; // the value from the sensor

float prevSensorValue = 0; // previous value from the sensor

int threshold = 250; // above this number, the cat is on the mat.

int currentTime = 0; // the current time as a single number

int lastMailTime = 0; // last minute you sent a mail

int mailInterval = 60; // minimum seconds between mails

String mailUrl = "http://www.example.com/cat-script.php";

int lastPictureTime = 0; // last minute you sent a picture

int pictureInterval = 10; // minimum seconds between pictures

Capture myCam; // camera capture library instance

String fileName = "catcam.jpg"; // file name for the picture

// location on your server for the picture script:

String pictureScriptUrl = "/save2web.php";

String boundary = "----H4rkNrF"; // string boundary for the POST request

Client thisClient; // instance of the net library

void setup() {

 size(400,300);

 // list all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my Mac is always my

 // Arduino, so I open Serial.list()[0]. Open whatever port you're using

 // (the output of Serial.list() can help; they are listed in order

 // starting with the one that corresponds to [0]).

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a newline (ASCII 10):

 myPort.bufferUntil('\n');

Now combine the setup() methods
like so.

8

»

108 MAKING THINGS TALK

Continued from previous page .

The draw() method paints the
camera image to the screen and adds a
timestamp.

The main action happens in the
serialEvent(), just as shown in the

flowchart in Figure 3-14. If the sensor
reading is greater than the threshold,
the sketch takes a picture. Every five
seconds, it uploads the picture. If the
sensor reading just changed, it calls the
sendMail() method.

 void draw () {

 // make a single number from the current hour, minute, and second:

 currentTime = hour() * 3600 + minute() * 60 + second();

 if (myCam.available() == true) {

 // draw the camera image to the screen:

 myCam.read();

 set(0, 0, myCam);

 // get the time as a string:

 String timeStamp = nf(hour(), 2) + ":" + nf(minute(), 2)

 + ":" + nf(second(), 2) + " " + nf(day(), 2) + "-"

 + nf(month(), 2) + "-" + nf(year(), 4);

 // draw a dropshadow for the time text:

 fill(15);

 text(timeStamp, 11, height - 19);

 // draw the main time text:

 fill(255);

 text(timeStamp, 10, height - 20);

 }

}

void serialEvent (Serial myPort) {

 // get the ASCII string:

 String inString = myPort.readStringUntil('\n');

 if (inString != null) {

 // trim off any whitespace:

 inString = trim(inString);

 // convert to an int and map to the screen height:

 sensorValue = float(inString);

 sensorValue = map(sensorValue, 0, 1023, 0, height);

 if (sensorValue > threshold) {

 if (currentTime - lastPictureTime > pictureInterval) {

8

8

»

 // set initial background and smooth drawing:

 background(#543174);

 smooth();

 // For a list of cameras on your computer, use this line:

 println(Capture.list());

 // use the default camera for capture at 30 fps:

 myCam = new Capture(this, width, height, 30);

}

A MORE COMPLEX NETWORK 109

 PImage thisFrame = get();

 thisFrame.save(fileName);

 postPicture();

 lastPictureTime = currentTime;

 }

 // if the last reading was less than the threshold,

 // then the cat just got on the mat.

 if (prevSensorValue <= threshold) {

 println("cat on mat");

 sendMail();

 }

 }

 else {

 // if the sensor value is less than the threshold,

 // and the previous value was greater, then the cat

 // just left the mat

 if (prevSensorValue > threshold) {

 println("cat not on mat");

 }

 }

 // save the current value for the next time:

 prevSensorValue = sensorValue;

 }

}

The sendMail() method checks to
see whether enough time has passed
since the last mail before it sends.
Then it calls the cat-mail.php script
using the loadStrings() function to
make an HTTP GET request.

void sendMail() {

 // how long has passed since the last mail:

 int timeDifference = currentTime - lastMailTime;

 if (timeDifference > mailInterval) {

 String[] mailScript = loadStrings(mailUrl);

 println("results from mail script:");

 println(mailScript);

 // save the current minute for next time:

 lastMailTime = currentTime;

 }

}

8

Continued from previous page .

110 MAKING THINGS TALK

One Final Test
To test this code, open the browser to the Cat Cam page,
and then run the sketch. On startup, it should take a
picture and upload it. A few seconds later, the Cat Cam
page will refresh itself, and you’ll see that image. Then get
the cat to jump on the mat. The sketch will take another
image and upload it, and will then send you an email.
Check your mail to see whether there's a new message
from the cat.

As long as the cat stays on the mat, the sketch will upload
a new image every five seconds. Watch for a minute or so
to see the image change a few times, and then remove the

cat from the mat. You should get another message in the
console from the call to the mailer script. See whether the
image changes once the cat is off the mat. It shouldn’t; the
image that remains should be the last one of the cat—that
is, until the cat jumps on the mat again. The timestamp in
that image will give you an idea when the cat was last on
the mat.

When all that works, take a breath and admire your work.
Figure 3-15 shows the finished cat bed. Congratulations!
You’ve just made your first Internet-connected project. You
and your cat can now be in constant contact.
X

Finally, the postPicture() method
takes the last image saved. The

method uploads it by calling the
save2web.php script using an HTTP POST
request.

void postPicture() {

 // load the saved image into an array of bytes:

 byte[] thisFile =loadBytes(fileName);

 // open a new connection to the server:

 thisClient = new Client(this, "www.example.com", 80);

 // make an HTTP POST request:

 thisClient.write("POST " + pictureScriptUrl + " HTTP/1.1\n");

 thisClient.write("Host: www.example.com\n");

 // tell the server you're sending the POST in multiple parts,

 // and send a unique string that will delineate the parts:

 thisClient.write("Content-Type: multipart/form-data; boundary=");

 thisClient.write(boundary + "\n");

 // form the beginning of the request:

 String requestHead ="\n--" + boundary + "\n";

 requestHead +="Content-Disposition: form-data; name=\"file\"; ";

 requestHead += "filename=\"" + fileName + "\"\n";

 requestHead +="Content-Type: image/jpeg\n\n";

 // form the end of the request:

 String tail ="\n\n--" + boundary + "--\n\n";

 // calculate and send the length of the total request,

 // including the head of the request, the file, and the tail:

 int contentLength = requestHead.length() + thisFile.length

 + tail.length();

 thisClient.write("Content-Length: " + contentLength + "\n\n");

 // send the header of the request, the file, and the tail:

 thisClient.write(requestHead);

 thisClient.write(thisFile);

 thisClient.write(tail);

}

8

A MORE COMPLEX NETWORK 111

Figure 3-15

The finished cat bed (at right) and a

detail of the sensor pad, which sits

under the cat bed itself. A bamboo

jewelry box houses the electronics—and

matches the furniture. The USB cable

runs to the computer. Make sure to

secure the wires thoroughly, or the cat

may try to chew on them.

112 MAKING THINGS TALK

Conclusion

The Internet is actually a network of networks, built up in
multiple layers. Successful network transactions rely on
there being at least one dependable route through the
Internet from client to server. Client and server applica-
tions swap strings of text messages about the files they
want to exchange, transferring their files and messages
over network ports. To communicate with any given server,
you need to know its message protocols. When you do,
it’s often possible to test the exchange between client and
server using a telnet session and typing in the appropriate

messages. Likewise, it’s possible to write programs for a
personal computer or microcontroller to send those same
messages, as you saw in the cat bed project. Now that
you understand how simple those messages can be, you’ll
soon get the chance to do it without a personal computer.
In the next chapter, you'll connect a microcontroller to the
Internet directly using an Ethernet interface for the micro-
controller itself.
X

Now you have an understanding of the structure of the Internet, and how

networked applications do their business.

114 MAKING THINGS TALK

Look, Ma, No Computer!
Microcontrollers
on the Internet
The first response that comes to many people’s minds after building

a project like the networked cat bed in Chapter 3 is: “Great, but

how can I do this without needing to connect to my computer?”

It’s cumbersome to have to attach the microcontroller to a laptop

or desktop computer just to enable it to connect to the Internet.

After all, as you saw in Chapter 3, Internet message protocols are just

text strings, and microcontrollers are good at sending short text

strings. So, in this chapter, you’ll learn how to connect a microcontroller

to the Internet through a device that’s not much more complex than

the Bluetooth radio modem you used in Chapter 2.

4
MAKE: PROJECTS

uncommon Projects' ybox (http://uncommonprojects.com/site/play/ybox-2) puts RSS feeds on your TV

using an XPort serial-to-Ethernet module and a Propeller microchip. Image courtesy of Uncommon Projects.

116 MAKING THINGS TALK

In the past few years, a wide array of commer-
cial appliances has come on the market that
can connect directly to the Internet without the

aid of a personal computer. Companies like D-Link, Sony,
Axis, and others make security cameras with network
interfaces, both Ethernet and WiFi. Ceiva, eStarling, and
others make picture frames with WiFi connections to
which you can upload images from the Net. Ambient
Devices makes lamps and displays of various sorts that
connect to the Net and change their appearance based
on changes in information, such as stock market data,
weather, and other scalar quantities. Cable television
set-top boxes are computers in a small box, capable of
routing streams of audio, video, and data all at the same
time. In fact, the operating system in your set-top box
might even be a variation of the same Linux operating
system that’s running on your network provider’s web

hosting machine. Home alarm systems are made up of
networks of microcontrollers that talk among themselves,
with one that can communicate with a central server,
usually over phone lines using a modem.

All of these appliances engage in networked communica-
tion. The simplest handle only one transaction at a time,
requesting information from a server and then waiting
for a response, or sending a single message in response
to some physical event. Others manage multiple streams
of communication at once, allowing you to surf the Web
while watching television. The more processing power a
given device has, the more it can handle. For many applica-
tions, however, you don’t need a lot of processing power,
because the device you’re making has only one or two
functions.
X

Figure 4-1 . New parts for this chapter: 1 . Arduino Ethernet shield—this one has a Power over Ethernet module on board

 2 . Photocells 3 . Red, green, and blue lighting filter gels 4 . Voltmeter. You can use an off-the-shelf one, but it's better if you can find

one that's antique. Don't forget plenty of male header pins for the breakout boards.

1
2

4

3

LOOK, MA, NO COMPUTER! 117

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• RS RS (www.rs-online.com)
• SF SparkFun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

PROJECT 6: Hello Internet! Daylight Color Web Server
 » 1 Arduino Ethernet board A A000050

Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242, A A000056, AF 201, F
1848680

 » 1 Ethernet connection to the Internet Your home
router most likely has Ethernet jacks in the back. If
you've hooked up your computer to the Internet using
Ethernet, you know where the ports are.

 » 3 10-kilohm resistors D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 3 photocells (light-dependent resistors) D PDV-
P9200-ND, J 202403, SF SEN-09088, F 7482280,
RS 234-1050

 » 1 solderless breadboard D 438-1045-ND, J 20723
or 20601, SF PRT-00137, F 4692810, AF 64, SS
STR101C2M or STR102C2M, MS MKKN2

 » 3 lighting filters One primary red, one primary green,
and one primary blue. Available from your local lighting-
or photo-equipment supplier.

PROJECT 7: Networked Air-Quality Meter
 » 1 Arduino Ethernet board A A000050

Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242, A A000056, AF 201, F
1848680

 » 1 Ethernet connection to the Internet Your home
router most likely has Ethernet jacks in the back. If
you've hooked up your computer to the Internet using
Ethernet, you know where the ports are.

 » 1 solderless breadboard D 438-1045-ND, J 20723
or 20601, SF PRT-00137, F 4692810, AF 64, SS
STR101C2M or STR102C2M, MS MKKN2

 » 1 voltmeter Get a nice-looking antique one if you can.
Ideally, you want a meter that reads a range from
0–5V, or 0–10V at most.
SF TOL-10285, F 4692810, RS 244-890

 » 4 LEDs D 160-1144-ND or 160-1665-ND, J 34761 or
94511, F 1015878, RS 247-1662 or 826-830, SF COM-
09592 or COM-09590

 » 4 220-ohm resistors D 220QBK-ND, J 690700,
F 9337792, RS 707-8842

Supplies for Chapter 4

118 MAKING THINGS TALK

Introducing Network Modules

There are many such modules on the market, with varying
prices and features. Just as you can choose how technical
you want to get when you pick a microcontroller platform,
you can also choose your technical level when you select
a network controller. Some modules—like Rabbit Semi-
conductor’s RabbitCore processors—come with all the
source code for a TCP/IP stack, and expect you to modify
it for your needs and program the device yourself. Others,
like the Beagle Board, are a full network computer on a
single circuit board. These are very powerful, and if you're
an experienced network programmer, they present a very
comfortable programming environment. However, they
don't make it easy to add sensors and actuators, and for
people not experienced with network programming, they
present a steep learning curve. Others—like Lantronix'

It’s possible to write a program for a microcontroller that can manage all the steps

of network communication, from the physical and data connections to the network

address management to the negotiation of protocols like SMTP and HTTP. A code

library that encompasses all the layers needed for network connections is called a

network stack, or TCP/IP stack. However, it’s much easier to use a network interface

module to do the job.

modules, the XPort, XPort Direct, MatchPort, and WiPort—
have a stack programmed into their firmware, and present
you with a serial, telnet, or web-based interface. These are
much simpler to use. The web interface gives you access
from the browser of your personal computer; the telnet
interface gives you access from a server or your personal
computer; and the serial interface gives you access from
a microcontroller. These are serial-to-Ethernet modems.
They work much like the Bluetooth modems you used
in Chapter 2, but they have a different serial protocol.
These are a comfortable beginning place, and I used them
extensively in the first edition of this book. For this edition,
however, you'll learn about Ethernet modules that have a
synchronous serial interface. These offer the ease-of-use
of the Serial-to-Ethernet modules, but they don't take up

Figure 4-2

The Arduino Ethernet (left),

an Arduino Ethernet shield

(center), and an Ethernet shield

with power-over-Ethernet

module attached (right). You

can use any of these for the

Ethernet projects in this book.

LOOK, MA, NO COMPUTER! 119

an asynchronous serial port on your microcontroller. It
means you can still use the serial port for debugging or
communicating with other devices.

There are two options for Ethernet connections to an
Arduino. One is the Arduino Ethernet board, which is an
Arduino board that has an Ethernet module on the board
itself. The Ethernet connector replaces the USB connector
found on the standard Arduinos. To program this board,
you also need an FTDI-style USB-to-Serial adapter. The
other option is an add-on board for regular Arduino
modules, called an Ethernet shield. There are a few
versions of it on the market. The Arduino Ethernet shield

+5V
RX
CTS
RTS
NC
NC

The Ethernet shield and Arduino Ethernet communicate

with their Ethernet controllers using a form of synchronous

serial communication called Serial Peripheral Interface, or

SPI. SPI, along with another synchronous serial protocol,

Inter-Integrated Circuit or I2C (sometimes called Two-Wire

Interface, or TWI), are two of the most common synchro-

nous serial protocols you'll encounter.

Synchronous serial protocols all feature a controlling device

that generates a regular pulse, or clock signal, on one pin

while exchanging data on every clock pulse (see Chapter 2).

The advantage of a synchronous serial protocol is that it's a

bus: you can have several devices sharing the same physical

connections to one master controller. Each protocol imple-

ments the bus in a different way.

SPI connections have three or four connections between

the controlling device (or master device) and the peripheral

device (or slave), as follows:

Clock: The pin that the master pulses regularly.

Master Out, Slave In (MOSI): The master device sends a bit

of data to the slave on this line every clock pulse.

Master In, Slave Out (MISO): The slave device sends a bit of

data to the master on this line every clock pulse.

Slave Select (SS) or Chip Select (CS): Because several

slave devices can share the same bus, each has a unique

connection to the master. The master sets this pin low to

address this particular slave device. If the master's not

talking to a given slave, it will set the slave's select pin

high.

If the slave doesn't need to send any data to the master,

there will be no MISO pin.

The Arduino SPI library uses pin 11 for MOSI, pin 12 for

MISO, and pin 13 for Clock. Pin 10 is the default Chip Select

pin, but you can use others, as you'll see. For example, the

Arduino Ethernet and Ethernet shield have two slave devices

on their SPI bus: the WizNet chip and the SD card. They are

both connected to pins 11, 12, and 13 for MISO, MOSI, and

Clock. The WizNet module uses pin 10 for its Chip Select,

while the SD card uses pin 4 for its Chip Select.

Introducing Serial Peripheral Interface (SPI)

Master Slave 1

Chip Select 1

Chip Select 2

Clock

CS

MOSI

MISO

CLK

MOSI

MISO

Slave 2

CS

MOSI

MISO

CLK

uses an Ethernet chip from WizNet, the W5100. This shield
has a built-in SD memory card slot as well, like the Arduino
Ethernet board. The Adafruit Ethernet shield also uses the
W5100 chip, or it can use the Lantronix serial-to-Ethernet
modules mentioned earlier. The projects in this chapter
will work with the Arduino Ethernet, with the Arduino
Ethernet shield, or with the Adafruit Ethernet shield with
the W5100 module, which are shown in Figure 4-2. They
will not work with the Lantronix module, however.
X

120 MAKING THINGS TALK

Hello Internet!
To use any network module, you first need

to connect it to the network. That’s the

goal here. In this project, you'll make a

very simple web server on your Arduino

that serves a web page whose background

color changes with the color of the light

where the Arduino is located.

MATERIALS

 » 1 Arduino Ethernet or
 » 1 Arduino Ethernet shield and 1 Arduino
microcontroller module

 » 1 Ethernet connection to the Internet
 » 3 10-kilohm resistors
 » 3 photocells (light-dependent resistors)
 » 1 solderless breadboard
 » 3 lighting filters

Making the Connections
If you're using the Arduino Ethernet board, just plug it
into a USB-to-Serial adapter and it will show up in the list
of serial ports like a regular Arduino. The USB-to-Serial
adapter will supply it with power like a normal USB cable.
Programming it is the same as with any other Arduino, but
in the Tools→Board menu, choose Arduino Uno or Arduino
Ethernet.

The Ethernet shield, like many shields for the Arduino, is
very easy to connect to your controller. Just plug it into
the board. Both the Ethernet module and the shield use
pins 10, 11, 12, and 13 for communication to the Ethernet
controller, and pins 4, 11, 12, and 13 for communication to
the SD card, so you can't use those pins for other inputs or
outputs. Connect the Ethernet module to your router using
an Ethernet cable. Figure 4-3 shows the Arduino Ethernet
shield's connections to the microcontroller.

You can use the Arduino Ethernet or Ethernet ahield with a
standard Arduino interchangeably, so from here on out, I'll
just use "Ethernet module" to refer to either.

Project 6

To read the color of the ambient light, use three photocells
and cover each one with a different color of lighting filter:
red, green, and blue. You can get these at many lighting-
supply stores, photo supply-stores, or art stores, or you
can use any translucent colored plastic you have around
the house. You don't have to be scientific here. Figure
4-4 shows the connection between the Arduino Ethernet
module and the three photocells.

How the Ethernet Library Works
To begin, you're going to try a couple simple programs
using the Ethernet library for Arduino. This library lets
you control the Ethernet module using methods similar
to those you use for printing to a serial port. There are
two types of software objects you'll make: servers and

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V
POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Figure 4-3

The connections between the Ethernet shield

and the Arduino controller when they're stacked

together.

LOOK, MA, NO COMPUTER! 121

Figure 4-4

The RGB server circuit. The connections are the

same for either the Arduino Ethernet or the Arduino

and Ethernet shield combo. Note the three color

filters over the photocells.

clients. A server waits for connections from remote
devices on the Internet and allows them to connect to
the Ethernet module, just like regular servers. A client
initiates a connection to remote devices, makes requests,
and delivers the replies, just like a regular client. Both
servers and clients can be read from and written to, using
the read(), write(), print(), and println() commands that
you've already seen with the Serial library. There's also

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

+5V

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

10KΩ

200KΩ photocell

10KΩ

200KΩ photocell

10KΩ

200KΩ photocell

an available() command, as in the Serial library, to see
whether there's any new data available from the server or
client in question. The client object also has a connected()
command that tells you whether it's connected to a
remote server. This will be useful later, when you're trying
to connect to a remote server to get data. Here, you'll get
started with a simple server sketch.

122 MAKING THINGS TALK

To get started, you
need to include

the SPI library and the Ethernet library
to control the module. You also need
to initialize a variable to hold a server
instance. The server will run on port 80,
just as most web servers do.

You also need four variables for the
MAC address, IP address, gateway
address, and subnet mask. These last
four will be arrays of bytes, one byte for
each byte in the respective addresses.

/*

 Web Server

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

Server server(80);

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress gateway(192,168,1,1);

IPAddress subnet(255,255,255,0);

IPAddress ip(192,168,1,20);

 Try It

 8 Change these to match your own device
and network.

void setup()

{

 // start the Ethernet connection and the server:

 Ethernet.begin(mac, ip, gateway, subnet);

 server.begin();

 Serial.begin(9600);

}

In the setup() method, you'll start
the Ethernet module and the

server. Open the serial connection as
well, for debugging purposes.

8

Before you can write your program, you need to
establish some basic information about how your
Ethernet module will connect to the Internet. Just as you
did in Chapter 3, you'll need the device's Media Access
Control (MAC) address. That's the hardware address of
your Ethernet controller. The Arduino Ethernet modules
have a six-byte address on the back, written in hexadeci-
mal notation, that you can use. If the sticker's missing
for any reason, you can make up your own MAC address,
or use the generic one you find in the examples below.
You'll also need to know the router's address (aka the
gateway address because your router is the gateway to
the rest of the Internet), as well as the address that your
device will use on the router's subnet.

Your device's IP address will be similar to your router's
address, probably using the same three numbers for the
start of the address, but a different number for the last.
For example, if your router's local address is 192.168.1.1,
you can use an address like 192.168.1.20 for your

Ethernet module—as long as no other device connected to
the router is using the same address.

When a router assigns addresses to its connected devices,
it masks part of the address space so that those devices
can use only addresses in the same subnet as the router
itself. For example, if the router is going to assign only
addresses in the range 192.168.1.2 through 192.168.1.254,
it masks out the top three numbers (octets). This is
called the netmask, or subnet mask. In your PC’s network
settings, you’ll see it written as a full network address, like
so: 255.255.255.0. With the Ethernet module, you'll assign
it similarly.

Once you know your MAC address, your router's address,
your IP address, and your subnet mask, you're ready to go.
X

LOOK, MA, NO COMPUTER! 123

In the main loop, you'll spend all
your time listening for a connec-

tion from a remote client. When you get
a connection, you'll wait for the client
to make an HTTP request, like you saw
in Chapter 3. This loop won't reply to
the client, but it will show you what the
client requests.

void loop()

{

 // listen for incoming clients

 Client client = server.available();

 if (client) {

 while (client.connected()) {

 if (client.available()) {

 char thisChar = client.read();

 Serial.write(thisChar);

 }

 }

 // close the connection:

 client.stop();

 }

}

8

Run this sketch with the Ethernet module
attached to your router and the Serial Monitor
open. Then open a browser window and go to

the Arduino's address. Using the example as shown, you'd
go to http://192.168.1.20. You won't see anything in the
browser, but you will see the HTTP request come through
in the Serial Monitor. Now you're seeing what the server
saw when you made HTTP requests in Chapter 3. A typical
request will look like this:

GET / HTTP/1.1

Host: 192.168.1.1

Connection: keep-alive

Accept: application/xml,application/xhtml+xml,text/

html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X

10_6_5; en-US) AppleWebKit/534.10 (KHTML, like Gecko)

Chrome/8.0.552.215 Safari/534.10

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

You can ignore most of the HTTP parameters, but two
pieces are useful: the first line, where you see what the
client is requesting; and the end, where it sends a blank
line to finish the request. In this case, the first line shows
that the client is asking for the main index page at the
root of the server, signified by the / in GET / . You're only
going to have one result to return, but in the future, you will
write a more complex server that looks at this part of the
request and responds with different results depending on
what's requested.

For now, you can keep it simple and just look for the end
of the request, which will be a linefeed (\n or ASCII 10),
followed by a carriage return (\r or ASCII 13), followed by
another linefeed. Figure 4-5 shows what happens in the
code that follows.
X

Read & print
received byte

Check for
incoming

bytes

increment
line length

line length > 0?

linefeed

send
response

Client
connects

carriage
return

disconnect

set line
length to 0

no yes

any other value

Figure 4-5

Logic flow for a simple server.

124 MAKING THINGS TALK

Change your main loop as follows,
adding the lines shown in blue

after Serial.write(thisChar).

Before you can run this, you'll need
to add a method , makeResponse(), at
the end of your sketch to make a String
to send the client. Here's a start.

void loop()

{

 // listen for incoming clients

 Client client = server.available();

 if (client) {

 Serial.println("Got a client");

 String requestLine = "";

 while (client.connected()) {

 if (client.available()) {

 char thisChar = client.read();

 // if you get a linefeed and the request line is blank,

 // then the request is over:

 if (thisChar == '\n' && lineLength < 1) {

 // send a standard http response header

 makeResponse(client);

 break;

 }

 //if you get a newline or carriage return,

 // you're at the end of a line:

 if (thisChar == '\n' || thisChar == '\r') {

 lineLength = 0;

 }

 else {

 // for any other character, increment the line length:

 lineLength++;

 }

 }

 }

 // give the web browser time to receive the data

 delay(1);

 // close the connection:

 client.stop();

 }

}

void makeResponse(Client thisClient) {

 thisClient.print("HTTP/1.1 200 OK\n");

 thisClient.print("Content-Type: text/html\n\n");

 thisClient.print("Hello from Arduino</head><body>\n");

 thisClient.println("</body></html>\n");

}

8

8

When you enter the Arduino's address in your
browser now, you'll get a web page. There's
not much there, but it's legitimate enough that

your browser doesn't know the difference between your
Arduino and any other web server. You can add anything
you want in the HTML in the makeResponse() method—
even links to images and content on other servers. Think
of the Arduino as a portal to any other content you want

the user to see, whether it's physical data from sensors or
other web-based data. The complexity is really up to you.
Once you start thinking creatively with the capabilities of
the print() and println() statements, you get a wide range
of ways to dynamically generate a web interface to your
Arduino through the Ethernet shield.
X

LOOK, MA, NO COMPUTER! 125

void makeResponse(Client thisClient) {

 thisClient.print("HTTP/1.1 200 OK\n");

 thisClient.print("Content-Type: text/html\n\n");

 thisClient.print("<html><head>");

 thisClient.print("<title>Hello from Arduino</title></head><body>\n");

 // output the value of each analog input pin

 for (int analogChannel = 0; analogChannel < 6; analogChannel++) {

 thisClient.print("analog input ");

 thisClient.print(analogChannel);

 thisClient.print(" is ");

 thisClient.print(analogRead(analogChannel));

 thisClient.print("
\n");

 }

 thisClient.println("</body></html>\n");

}

How about printing the states
of the analog inputs? Add the

following to makeResponse() (new
lines are shown in blue).

8

 thisClient.print("Content-Type: text/html\n\n");

 thisClient.print(

 "<html><head><meta http-equiv=\"refresh\" content=\"3\">");

 thisClient.print("Content-Type: text/html\n\n");

 thisClient.print(

 "<html><head><meta http-equiv=\"refresh\" content=\"3\">");

 thisClient.print("<title>Hello from Arduino</title></head>");

 // set up the body background color tag:

 thisClient.print("<body bgcolor=#");

 // read the three analog sensors:

 int red = analogRead(A0)/4;

 int green = analogRead(A1)/4;

 int blue = analogRead(A2)/4;

 // print them as one hexadecimal string:

 thisClient.print(red, HEX);

 thisClient.print(green, HEX);

 thisClient.print(blue, HEX);

 // close the tag:

 thisClient.print(">");

 // now print the color in the body of the HTML page:

 thisClient.print("The color of the light on the Arduino is #");

 thisClient.print(red, HEX);

 thisClient.print(green, HEX);

 thisClient.println(blue, HEX);

 // close the page:

 thisClient.println("</body></html>\n");

}

Reload the page, and you've got
the states of the analog inputs. But

how about updating them continually?
You could use the methods you used
for the Cat Cam in Chapter 3. Change
the line in makeResponse() that prints
the HTML head, like the code shown
at right.

You can do all sorts of things in
the response. Now it's time to take
advantage of those three photocells
you attached to the analog inputs.
This version of the makeResponse()
method prints out a page that changes
its background color with the values
from the three photocells.

Now that you've got a light color server,
look for colorful places to put it.

8

8

126 MAKING THINGS TALK

Up until now, the Internet-related projects in this book

either worked only on a local subnet, or have only sent data

outbound and waited for a reply. This is the first project

in which your device needs to be visible to the Internet at

large. You can view it while you're on the same local network,

but if it’s connected to your home router and has a private

IP address, it won't be visible to anyone outside your home.

To get around this, you need to arrange for one of your

router’s ports to forward incoming messages and connec-

tion requests to your Ethernet shield.

To do this, open your router’s administrator interface and

look for controls for “port forwarding” or “port mapping.”

The interface will vary depending on the make and model

of your router, but the settings generally go by one of these

names. It’s easiest if the forwarded port on the router is

the same as the open port on the Ethernet module, so

configure it so that port 80 on your router connects to port

80 on the Ethernet shield (if your router allows it). Once

you’ve done this, any incoming requests to connect to your

router’s public IP address on that port will be forwarded to

the Ethernet module's private IP address on the port that

you set. Note that the router reserves some ports for special

purposes. For example, you may not be able to port forward

port 80, because the router uses it for its own interface.

That's why you might need to use a high number, like 8080.

Web browsers default to making their requests on port 80,

but you can make a request on any port by adding the port

number at the end of the server, address like so:

http://www.myserver.com:8080/

The new public address of your Ethernet module will follow

this pattern, too. For example, if your home router's public

address is 203.48.192.56, you'd access your new Arduino

server at http://203.48.192.56:8080.

Figures 4-6 and 4-7 show the settings on an Apple AirPort

Express router and a Linksys wireless router. On the Linksys

router, you can find port forwarding under the Advanced tab.

Making a Private IP Device Visible to the Internet

Figure 4-6

Port mapping tab on an Apple AirPort Express router. Port mapping

can be found under the Advanced tab.

Figure 4-7

Port forwarding on a Linksys wireless router.

LOOK, MA, NO COMPUTER! 127

In this project, you’ll make a networked

air-quality meter. You’ll need an analog

panel meter, like the kind you find in

speedometers and audio VU meters. I got

mine at a yard sale, but you can often find

them in electronics surplus stores or junk

shops. The model recommended in the

parts list is less picturesque than mine,

but it will do for a placeholder until you

find one you love.

MATERIALS

 » 1 Arduino Ethernet or
 » 1 Arduino Ethernet shield and 1 Arduino
microcontroller module

 » 1 Ethernet connection to the Internet
 » 1 solderless breadboard
 » 1 voltmeter
 » 4 LEDs
 » 4 220-ohm resistors

An Embedded Network Client Application
Now that you've made your first server, it's time to make a client. This project is an

embedded web scraper. It takes data from an existing website and uses it to affect

a physical output. It’s conceptually similar to devices made by Ambient Devices,

Nabaztag, and others—but it's all yours.

Networked Air-
Quality Meter

Figure 4-8 shows how it works: the microcontroller makes
a network connection to a PHP script through the Ethernet
shield. The PHP script connects to another web page,
reads a number from that page, and sends the number
back to the microcontroller. The microcontroller uses
that number to set the level of the meter. The web page
in question is AIRNow, www.airnow.gov, the U.S. Environ-
mental Protection Agency’s site for reporting air quality. It
reports hourly air quality status for many U.S. cities, listed
by ZIP code. When you’re done, you can set a meter from
your home or office to see the current air quality in your
city (assuming you live in the U.S.).

Project 7

Control the Meter Using the Microcontroller
First, you need to generate a changing voltage from the
microcontroller to control the meter. Microcontrollers
can’t output analog voltages, but they can generate a
series of very rapid on-and-off pulses that can be filtered
to give an average voltage. The higher the ratio of on-time
to off-time in each pulse, the higher the average voltage.
This technique is called pulse-width modulation (PWM). In
order for a PWM signal to appear as an analog voltage, the
circuit receiving the pulses has to react much more slowly
than the rate of the pulses. For example, if you pulse-width
modulate an LED, it will seem to be dimming because your
eye can’t detect the on-off transitions when they come
faster than about 30 times per second. Analog voltmeters
are very slow to react to changing voltages, so PWM works
well as a way to control these meters. By connecting the
positive terminal of the meter to an output pin of the
microcontroller, and the negative pin to ground, and pulse-
width modulating the output pin, you can easily control the
position of the meter. Figure 4-9 shows the whole circuit
for the project.

128 MAKING THINGS TALK

Figure 4-8

The networked air-quality meter.

Microcontroller controls
Ethernet shield via SPI

Microcontroller sets
meter voltage using PWM

Micro-
controller Meter

Ethernet
shield

Microcontroller sends
HTTP GET request
through Ethernet shield

Ethernet shield connects to
router via Ethernet

PHP script responds
to microcontroller with
summary of AIRNow page

PHP script AIRNow
web page

Internet

LOOK, MA, NO COMPUTER! 129

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

Figure 4-9

The circuit for a networked meter.

The Ethernet controller shown in

the schematic is on the shield or the

Arduino Ethernet board.

V

Voltmeter

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Ethernet
Shield

GND

CLK

MOSI

MISO

Eth, SS

SD card SS

130 MAKING THINGS TALK

Write a PHP Script to Read
the Web Page

Next, you need to get the data from AIRNow’s site in a
form the microcontroller can read. The microcontroller
can read in short strings serially, and converting those
ASCII strings to a binary number is fairly simple. Using a
microcontroller to parse through all the text of a web page
is possible, but a bit complicated. However, it’s the kind of
task for which PHP was made. The program that follows
reads the AIRNow page, extracts the current air-quality
index (AQI) reading, and makes a simpler summary page
that's easy to read with the microcontroller. The Ethernet
controller is the microcontroller’s gateway to the Internet,
allowing it to open a TCP connection to your web host,
where you will install this PHP script.

NOTE: You could also run this script on one of the computers on

your local network. As long as the microcontroller is connected

to the same network, you’ll be able to connect to it and request

the PHP page. For information on installing PHP or finding a web-

hosting provider that supports PHP, see www.php.net/manual/en/

tutorial.php#tutorial.requirements.

/*

 Voltmeter Tester

 Uses analogWrite() to control a voltmeter.

 Context: Arduino

*/

const int meterPin = 9;

int pwmValue = 0; // the value used to set the meter

void setup() {

 Serial.begin(9600);

}

void loop() {

 // move the meter from lowest to highest values:

 for (pwmValue = 0; pwmValue < 255; pwmValue ++) {

 analogWrite(meterPin, pwmValue);

 Serial.println(pwmValue);

 delay(10);

 }

 delay(1000);

 // reset the meter to zero and pause:

 analogWrite(meterPin, 0);

 delay(1000);

}

The program to the right
tests whether you can

control the meter.

You will need to adjust the range of
pwmValue depending on your meter's
sensitivity. The meters used to design
this project had different ranges. The
meter in the parts list responds to a
0- to 5-volt range, so the preceding
program moves it from its bottom
to its top. The antique meter, on the
other hand, responds to 0 to 3 volts,
so it was necessary to limit the range
of pwmValue to 0–165. When it was at
165, the meter reached its maximum.
Note your meter's minimum and
maximum values. You’ll use them later
to scale the air-quality reading to the
meter's range.

Figure 4-10 shows AIRNow’s page for New York
City (http://airnow.gov/?action=airnow.local_
city&zipcode=10003&submit=Go). AIRNow’s page is
formatted well for extracting the data. The AQI number
is clearly shown in text, and if you remove all the HTML
tags, it appears on a line by itself, always following the line
Current Conditions.

NOTE: One of the most difficult things about maintaining applica-

tions like this, which scrape data from an existing website, is the

probability that the designers of the website could change the

format of their page. If that happens, your application could stop

working, and you’ll need to rewrite your code. In fact, it happened

between the first and second editions of this book. This is a case

where it’s useful to have the PHP script do the scraping of the

remote site. It’s more convenient to rewrite the PHP than it is to

reprogram the microcontroller once it’s in place.

X

 Test It

LOOK, MA, NO COMPUTER! 131

Figure 4-10

AIRNow’s page is nicely laid out

for scraping. The PHP program

used in this project ignores the

ozone level.

<?php

/*

 AIRNow Web Page Scraper

 Context: PHP

*/

 // Define variables:

 // url of the page with the air quality index data for New York City:

 $url =

 'http://airnow.gov/index.cfm?action=airnow.showlocal&cityid=164';

 // open the file at the URL for reading:

 $filePath = fopen ($url, "r");

 // as long as you haven't reached the end of the file:

 while (!feof($filePath))

 {

 // read one line at a time, and strip all HTML and

 // PHP tags from the line:

 $line = fgetss($filePath, 4096);

 echo $line;

 }

 // close the file at the URL, you're done:

 fclose($filePath);

?>

This PHP script
opens the AIRNow

web page and prints it line by line. The
fgetss() command reads a line of text
and removes any HTML tags.

When you save this file on your web
server and open it in a browser, you
should get the text of the AIRNow page
without any HTML markup or images.
It’s not very readable in the browser
window, but if you view the source
code (use the View	Source option in
your web browser), it looks a bit better.
Scroll down and you’ll find some lines
like this:

Current Conditions

Air Quality Index (AQI)

observed at 17:00 EST

45

These are the only lines you care about.

 Fetch It

132 MAKING THINGS TALK

 // whether you should check for a value

 // on the line you're reading:

 $checkForValue = false;

 // value of the Air Quality reading:

 $airQuality = -1;

To extract the data
you need from

those lines, you’ll need a couple more
variables. Add this code before the
fopen() command.

 // if the current line contains the substring "Current Conditions"

 // then the next line with an integer is the air quality:

 if (preg_match('/Current Conditions/', $line)) {

 $checkForValue = true;

 }

Replace the command echo $line;
in the program with the block of code
at right.

This block uses the preg_match()
command to look for a string of text
matching a pattern you give it. In this
case, it looks for the pattern Current
Conditions. When you see that line, you
know the next line is the number you
want. When the PHP script finds that
line, it sets the variable $checkForValue
to true.

8

 if ($checkForValue == true && (int)$line > 0){

 $airQuality = (int)$line;

 $checkForValue = false;

 }

 echo "Air Quality:". $airQuality;

 // close the file at the URL, you're done:

 fclose($filePath);

Now, add the following block of
code after the one you just added. This
code checks to see whether $check-
ForValue is true, and whether the line
contains an integer and nothing else.
If so, the program reads the next line
of text and converts it from a string to
an integer value. It will only get a valid
integer when it reaches the line with
the AQI value.

Finally, add the following lines at
the end of the script, after the while
loop. This prints out the air-quality
reading and closes the connection to
the remote site.

The result in your web browser should
look like this:

Air Quality: 43

Now you’ve got a short string of text
that your microcontroller can read.
Even if the script got no result, the
value -1 will tell you that there was no
connection.

8

8

 Scrape It

LOOK, MA, NO COMPUTER! 133

Read the PHP Script Using
the Microcontroller

Next, it's time to connect to the PHP script through the
Net using the Ethernet module. This time, you'll use the
shield as a client, not a server. Before you start program-
ming, plan the sequence of messages. Using the Ethernet
module as a network client is very similar to using Pro-
cessing as a network client. In both cases, you have to
know the correct sequence of messages to send and how
the responses will be formatted. You also have to write a
program to manage the exchange of messages. Whether

Figure 4-11

A flowchart of the Arduino program

for making and processing an HTTP

GET request. Connected to
server?

enough time passed
since last connect

attempt?

Parse AQI value
from response

Map result to
meter's range

Set meter

Attempt to connect
to server

Make HTTP
request

yes

yes
"Air Quality:" in

response?

no

yesno

you’re writing that program in Processing, in Arduino, or in
another language on another microcontroller, the steps are
still the same:

1. Open a connection to the web server.
2. Send an HTTP GET request.
3. Wait for a response.
4. Process the response.
5. Wait an appropriate interval and do it all again.

Figure 4-11 is a flowchart of what happens in the microcon-
troller program. The major decisions (if statements in your
code) are marked by diamonds; the methods are marked
by rectangles. Laying out the whole program in a flowchart
like this will help you keep track of what’s going on at any
given point. It also helps you to see what methods depend
on a particular condition being true or not.

The circuit for this project also uses LEDs to keep track
of the state of the program. LEDs attached to I/O pins
will indicate the state. There's an LED to indicate that it's
connected, another to indicate that it's disconnected, a
third to indicate if it got a valid reading, and a fourth to
indicate that the microcontroller is resetting.

This program will check the PHP script every two minutes.
If there's a new value for the air quality, it'll read it and set
the meter. If it can't get a connection, it will try again two
minutes later. Because it's a client and not a server, there's
no web interface to the project, only the meter.

TextFinder Library
For this sketch, you're going to need Michael Margolis'
TextFinder library for Arduino. Download it from www.
arduino.cc/playground/Code/TextFinder, unzip it, and save
the TextFinder folder to the libraries folder of your Arduino
sketches directory (the default location is Documents/
Arduino/libraries/ on OS X, My Documents\Arduino\libraries\
on Windows 7, and ~/Documents/Arduino/libraries/ on
Ubuntu Linux. If the libraries directory doesn't exist, create

134 MAKING THINGS TALK

/*

 AirNow Web Scraper

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

#include <TextFinder.h>

const int connectedLED = 2; // indicates a TCP connection

const int successLED = 3; // indicates a successful read

const int resetLED = 4; // indicates reset of Arduino

const int disconnectedLED = 5; // indicates connection to server

const int meterPin = 9; // controls VU meter

const int meterMin = 0; // minimum level for the meter

const int meterMax = 200; // maximum level for the meter

const int AQIMax = 200; // maximum level for air quality

const int requestInterval = 10000; // delay between updates to the server

The program
starts out

by including the SPI and Ethernet
libraries, just as in the previous project.
Then define the output pins, the
minimum and maximum values for the
meter that you determined earlier, and
the time between HTTP requests using
constant integers.

 Connect It

This project uses numeric IP addresses rather than names. If you need to find a host’s IP address, use the ping command

mentioned in Chapter 3. For example, if you open a command prompt and type ping -c 1 www.oreillynet.com, (use -n

instead of -c on Windows), you will get the following response, listing the IP address you need:

PING www.oreillynet.com (208.201.239.37): 56 data bytes

64 bytes from 208.201.239.37: icmp_seq=0 ttl=45 time=97.832 ms

If you can't use ping (some service providers block it, since it can be used for nefarious purposes), you can also use nslookup.

For example, nslookup google.com will return the following:

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: google.com
Address: 173.194.33.104

Any one of the addresses listed will point to it's associated name, so you can use any of them.

Finding a Host’s IP Address

 8 nslookup returns the Domain Name
Server it used to do the lookup as well.

it and put TextFinder inside. Restart Arduino, and the
TextFinder library should show up in the Sketch→Import
Library menu. TextFinder lets you find a substring of text
from the incoming stream of bytes. It's useful for both
Ethernet and serial applications, as you'll see.

TextFinder is under consideration for inclusion in version
1.0 of Arduino, in which case you would not need to install
it. So check the Reference section of www.arduino.cc for
the latest updates.

LOOK, MA, NO COMPUTER! 135

Next, initialize a few array variables
with the network configuration for the
module.

8 byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress ip(192,168,1,20);

IPAddress server(208,201,239,101);

 8 Change these to
match your own device
and server.

// Initialize the Ethernet client library

Client client;

boolean requested; // whether you've made a request

long lastAttemptTime = 0; // last time you connected to the server

int airQuality = 0; // AQI value

boolean meterIsSet = false; // whether the meter is set

The last global variables you need
to add are for the Client class, and

a few variables relating to the transac-
tion with the server.

8

void blink(int thisPin, int howManyTimes) {

 // Blink the reset LED:

 for (int blinks=0; blinks< howManyTimes; blinks++) {

 digitalWrite(thisPin, HIGH);

 delay(200);

 digitalWrite(thisPin, LOW);

 delay(200);

 }

}

The blink() method called in the
setup blinks the reset LED so you know
the microcontroller’s main loop is
about to begin.

8

void setup() {

 // start the Ethernet connection:

 Ethernet.begin(mac, ip);

 // start the serial library:

 Serial.begin(9600);

 // set all status LED pins:

 pinMode(connectedLED, OUTPUT);

 pinMode(successLED, OUTPUT);

 pinMode(resetLED, OUTPUT);

 pinMode(disconnectedLED, OUTPUT);

 pinMode(meterPin, OUTPUT);

 // give the Ethernet shield a second to initialize:

 delay(1000);

 // blink the reset LED:

 blink(resetLED, 3);

 // attempt to connect:

 connectToServer();

}

setup() starts the serial and
Ethernet connections, sets all the LED
pins to be outputs, blinks the reset
LED, and makes an initial attempt to
connect to the server.

8

136 MAKING THINGS TALK

void loop()

{

 // if you're connected, save any incoming bytes

 // to the input string:

 if (client.connected()) {

 if (!requested) {

 requested = makeRequest();

 }

 else {

 // make an instance of TextFinder to search the response:

 TextFinder response(client);

 // see if the response from the server contains the AQI value:

 if(response.find("Air Quality:")) {

 // convert the remaining part into an integer:

 airQuality = response.getValue();

 // set the meter:

 meterIsSet = setMeter(airQuality);

 }

 }

 }

 else if (millis() - lastAttemptTime > requestInterval) {

 // if you're not connected, and two minutes have passed since

 // your last connection, then attempt to connect again:

 client.stop();

 connectToServer();

 }

 // set the status LEDs:

 setLeds();

}

The loop() contains all the logic
laid out in Figure 4-11. If the client
is connected to the server, it makes
an HTTP GET request. If it's made a
request, it uses TextFinder to search
the response for the air-quality string
and then sets the meter. If the client
isn't connected to the server, it waits
another two minutes until the request
interval's passed, and tries to connect
again.

8

void connectToServer() {

 // clear the state of the meter:

 meterIsSet = false;

 // attempt to connect, and wait a millisecond:

 Serial.println("connecting...");

 if (client.connect(server, 80)) {

 requested = false;

 }

 // note the time of this connect attempt:

 lastAttemptTime = millis();

}

Both setup() and loop() attempt
to connect to the server using the
connectToServer() method. If it gets
a connection, it resets the requested
variable so the main loop knows it can
make a request.

8

LOOK, MA, NO COMPUTER! 137

boolean setMeter(int thisLevel) {

 Serial.println("setting meter...");

 boolean result = false;

 // map the result to a range the meter can use:

 int meterSetting = map(thisLevel, 0, AQIMax, meterMin, meterMax);

 // set the meter:

 analogWrite(meterPin, meterSetting);

 if (meterSetting > 0) {

 result = true;

 }

 return result;

}

Once the client's found the air-
quality string and converted the bytes
that follow into an integer, it calls
setMeter() to set the meter with the
result it obtained. You might want to
adjust the AQIMax value to reflect the
typical maximum for your geographic
area.

boolean makeRequest() {

 // make HTTP GET request and fill in the path to

 // the PHP script on your server:

 client.println("GET /~myaccount/scraper.php HTTP/1.1\n");

 // fill in your server's name:

 client.print("HOST:example.com\n\n");

 // update the state of the program:

 client.println();

 return true;

}

Once the client's connected, it
sends an HTTP GET request.

Here’s the makeRequest() method. It
returns a true value to set the request-
ing variable in the main loop, so the
client doesn't request twice while it's
connected.

The server replies to makeRequest()
like so:

HTTP/1.1 200 OK

Date: Fri, 14 Nov 2010 21:31:37 GMT

Server: Apache/2.0.52 (Red Hat)

Content-Length: 10

Connection: close

Content-Type: text/html; charset=UTF-8

 Air Quality: 65

8

8

 8 Change these to
match your own server
name and path.

void setLeds() {

 // connected LED and disconnected LED can just use

 // the client's connected() status:

 digitalWrite(connectedLED, client.connected());

 digitalWrite(disconnectedLED, !client.connected());

 // success LED depends on reading being successful:

 digitalWrite(successLED, meterIsSet);

}

The last thing you need to do in
the main loop is set the indicator

LEDs so that you know where you are
in the program. You can use the client.
connected() status and the meterIsSet
variable to set each of the LEDs.

That’s the whole program. Once you’ve
got this program working on the micro-
controller, the controller will make
the HTTP GET request once every ten
minutes and set the meter accordingly.

8

138 MAKING THINGS TALK

Figure 4-12

The completed networked air-quality meter.

The Finished Project

In Chapter 3 you learned that most Ethernet-connected devices obtain an IP address from their router using Dynamic Host

Control Protocol (DHCP), and that IP-connected devices learn the name of other servers and clients using the Domain Name

System (DNS). You can use DHCP and DNS with the Arduino Ethernet library as well. It's very simple—you just put the MAC

address in the Ethernet.begin() method, like so:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};

Ethernet.begin(mac);

If the server grants an IP address, it returns true. If not, it returns false. The returned address is stored in Ethernet.localIP().

You may want a few other variables to use DHCP as well, including Ethernet.subnetMask(), Ethernet.gatewayIP(), and Ethernet.

dnsServerIP().

Using DNS is just as simple. Instead of passing a numeric server to the client.connect() command, give it a text string, like

so:

client.connect("www.example.com", 80);

The disadvantage of using DHCP and DNS is that they take a lot of RAM, so you may prefer to use the relevant numerical

addresses (once you know them).

DNS and DHCP

LOOK, MA, NO COMPUTER! 139

The following example shows how to request an address using DHCP; it thenreports back the address obtained:

/* DHCP

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

byte mac[] = {

 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01};

IPAddress ip(192,168,1,20); // an address to use if DHCP fails

void setup() {

 // start the serial library:

 Serial.begin(9600);

 // start the Ethernet connection:

 Serial.println("Asking for an IP address using DHCP...");

 if (!Ethernet.begin(mac)) {

 // if DHCP fails, set your own address:

 Ethernet.begin(mac, ip);

 }

 // print the bytes of the IP address, separated by dots:

 Serial.print("I got an IP address. It's ");

 Serial.println(Ethernet.localIP());

}

void loop() {

}

The begin() technique is useful in any Ethernet sketch because it uses DHCP if available, and sets an IP address manually if

not. If you know you're going to set the address manually and want to save program memory, just comment out the if() line

and the corresponding bracket, and leave the command inside it, like so:

 //if (!Ethernet.begin(mac)) {

 // if DHCP fails, set your own address:

 Ethernet.begin(mac, ip);

 // }

DNS and DHCP (cont'd)

140 MAKING THINGS TALK

Programming and Troubleshooting Tools for
Embedded Modules

You may have hit a number of problems when making the connections in the last

section. Probably the most challenging thing about troubleshooting them was that

neither the Ethernet shield nor the microcontroller gave any indication that a problem

occurred. This is the norm when you’re working with embedded modules that you build

yourself. This section covers a few things you should always check, and a few tools that

will help you solve problems. These principles apply whether you’re using the Ethernet

modules or some other network or communications module. You'll use these methods

over and over again in the rest of the book and beyond.

The Three Most Common Mistakes

Check Power and Ground
Always check whether you have made the power and
ground connections correctly. This is less of an issue when
you've got a nice plug-in module like the Ethernet shield
that can connect only one way. But even with plug-in
modules, you can get a pin misaligned and not notice. If
you’re lucky, the module you’re using will have indicator
LEDs that light up when it’s working properly. Whether it
does or not, check the voltage between power and ground
with a meter to make sure you’ve got it powered correctly.

Check the Connections
When you're wiring a module to a microcontroller by hand,
it's fairly common to get the wires wrong the first time.
Make sure you know what each pin does, and double-
check that the pin that one transmits on connects to
the pin that the other receives on, and vice versa. If it's
a synchronous serial connection, make sure the clock is
connected.

Check the Configuration
If you’re certain about the hardware connections, check
the device’s configuration to make sure it’s all correct.
Did you get the IP address correct? Is the router address
correct? Is the netmask?

Diagnostic Tools and Methods
Once you know the device is working, you have to program
the sequence of messages that constitutes your application.
Depending on the application’s needs, this sequence can
get complex, so it’s useful to have a few simple programs
around to make sure things work as desired.

It's a good idea to test your module first using sample
code—if it's provided. Every good communications module
maker gives you a starting example. Use it, and keep it
handy. When things go wrong, return to it to make sure
that basic communications still work.

Physical Debugging Methods
Writing code makes things happen physically. It's easy to
forget that when you're working on an exchange of infor-
mation like the examples shown here. So, it's helpful to put
in physical actions that you can trigger; this way, you can
see that your code is working. In the last project, you saw
LEDs turn on when the client connected or disconnected,
when it made a successful request, and when it reset. Trig-
gering an LED is the most basic and reliable thing you can
do from a microcontroller—even more basic than sending
a serial debugging message—so use LEDs liberally to
help make sure each part of your code is working. You can
always remove them later.

Serial Debugging Methods
Besides their physical form factor, the Ethernet shield and
Arduino Ethernet make a number of things easy for you.
For example, the fact that they use synchronous serial

LOOK, MA, NO COMPUTER! 141

const boolean DEBUG = true;

void setup() {

 Serial.begin(9600);

}

void loop() {

 if (DEBUG) Serial.println("this is a debugging statement");

}

void connectToServer() {

 if (DEBUG) Serial.print("running connectToServer()...");

 // rest of the method goes here

}

void makeRequest() {

 if (DEBUG) Serial.print("running makeRequest()...");

 // rest of the method goes here

}

boolean setMeter(int thisLevel) {

 if (DEBUG) Serial.print("running setMeter()...");

 // rest of the method goes here

 }

One way to manage
your debugging

is to have a variable that changes the
behavior of your program, like this.
When every debugging statement is
preceded by the if (DEBUG) condi-
tional, you can easily turn them all off
by setting DEBUG to false.

In the Air-Quality
Index client project,

you had a lot of different methods in
your code. It's not easy to tell whether
every method is being called, so
during troubleshooting, make it a habit
to "announce" serially when every
method is being called. To do so, put a
serial print statement at the beginning
of the method, like the code shown on
the right.

 Debug It

 Announce It

communication to talk to the Ethernet controller means
you can still use the serial port to get messages about
what's going on—as you saw in the previous example.
Following are a few tips for effective serial debugging of
networking code using serial messages.

It's important to keep in mind that serial communication
takes time. When you have serial statements in your

code, they slow it down. The microcontroller has to save
each bit of information received, which takes time away
from your program. Even though the time is miniscule
for each bit, it can add up. After a few hundred bytes, you
might start to notice it. So, make sure to take out your
serial transmission statements when you're done with
them.

 if (client.connected()) {

 if (DEBUG) Serial.print("connected");

 if (!requested) {

 if (DEBUG) Serial.print("connected, not requested.");

 requested = makeRequest();

 }

 else {

 if (DEBUG) Serial.print("not connected");

 }

 }

It's
common

in a communications application like
these to have multiple conditions that
affect a particular result. As you're
working, you can easily make mistakes
that affect these nested if statements.
As you work, check that they're still
coming true when you think they are by
announcing it, as shown here.

 Check Conditionals

142 MAKING THINGS TALK

 if (client.connect()) {

 // if you get a connection, report back via serial:

 Serial.println("connected");

 }

 else {

 // if you didn't get a connection to the server:

 Serial.println("connection failed");

 }

 // if you're connected, save any incoming bytes

 // to the input string:

 if (client.connected()) {

 if (client.available()) {

 char inChar = client.read();

 Serial.write(inChar);

 }

 }

 client.connect(); // connect

 delay(1); // wait a millisecond

 if (client.connected()) {

 // if you get a connection, report back via serial:

 Serial.println("connected");

 }

 else {

 // if you didn't get a connection to the server:

 Serial.println("connection failed");

 }

Programmers like
efficiency, so they

will often combine several commands
into one line of code. Sometimes the
problem is in the combination. For
example, this line attempts to connect
using client.connect(), and then it checks
the result in a conditional statement.
It gave me all kinds of trouble until I
separated the connection attempt
from the check of the connection.

Sometimes it
helps to step

back from your complicated program
and just watch what you're receiving
from the other end. One technique
I returned to again and again while
developing this program was to simply
print out what the Ethernet module
was receiving. Several times it revealed
the problem to me. Sometimes it was
because I had logic problems in my
code, and other times it was because
I'd neglected some character that
the server was sending as part of the
protocol. Familiarity can blind you
to what you need to see. So, remind
yourself of what you are actually
receiving, as opposed to what you think
you are receiving.

Here's the less efficient code that
solved the problem. Checking the con-
nection immediately after connecting
was apparently too soon. The delay
stabilized the whole program.

 Separate It

 Just Watch It

8

LOOK, MA, NO COMPUTER! 143

Write a Test Client Program
It’s easiest to work through the steps of the program if you
can step through the sequence of events. More complex
development environments allow you to step through a
program one line at a time. Arduino doesn't give you that
ability, but it can link to other environments. The following

program simply passes anything that comes in the serial
port to the Ethernet port, and vice versa. It turns your
Arduino into a serial-to-Ethernet gateway. Using this code,
you can connect to a serial terminal or to Processing—or
to any other development environment that can communi-
cate serially—to test the Ethernet connection.

/*

 Serial To Ethernet

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress ip(192,168,1,20);

IPAddress server(208,201,239,101);

// Initialize the Ethernet client library

// with the IP address and port of the server

// that you want to connect to (port 80 is default for HTTP):

Client client;

void setup() {

 // start the serial library:

 Serial.begin(9600);

 // start the Ethernet connection:

 if (!Ethernet.begin(mac)) {

 Serial.println("DHCP failed, configuring manually.");

 // configure manually with your own IP address:

 Ethernet.begin(mac, ip);

 }

 // give the Ethernet shield a second to initialize:

 delay(1000);

 Serial.println("Ready to go.");

}

void loop() {

 if (client.connected()) {

 //if you're connected, pass bytes from client to serial:

 if (client.available()) {

 char netChar = client.read();

 Serial.write(netChar);

 }

 //pass bytes from serial to client:

 if (Serial.available()) {

 char serialChar = Serial.read();

The handy thing about
this program is that you

can test the exchange of messages
manually, or by writing a program in a
desktop environment. Once you know
you have the sequence right, you can
translate it into code for the Arduino
module.

»

 Test It

 8 Change these to
match your own device
and server.

144 MAKING THINGS TALK

Here's a simple Pro-
cessing sketch that

will communicate serially with the
preceding Arduino sketch to make an
HTTP request. When you type a key the
first time, it will send C to initiate a con-
nection. The second keystroke will send
the HTTP request.

Continued from previous page .

 client.write(serialChar);

 }

 }

 else {

 // in case you were connected, stop the client:

 client.stop();

 // if you're not connected, and you get a serial C,

 // attempt to connect:

 if (Serial.available()) {

 char serialChar = Serial.read();

 if (serialChar == 'C') {

 connectToServer();

 }

 }

 }

}

void connectToServer() {

 // attempt to connect, and wait a millisecond:

 Serial.println("connecting...");

 if (client.connect(server, 80)) {

 // if you get a connection, report back via serial:

 Serial.println("connected");

 }

 else {

 // if you didn't get a connection to the server:

 Serial.println("connection failed");

 client.stop();

 }

}

 Talk To It /*

 Serial-to-ethernet HTTP request tester

 Context: Processing

 */

// include the serial library

import processing.serial.*;

Serial myPort; // Serial object

int step = 0; // which step in the process you're on

char linefeed = 10; // ASCII linefeed character »

LOOK, MA, NO COMPUTER! 145

Continued from previous page .

void setup()

{

 // get the list of serial ports:

 println(Serial.list());

 // open the serial port appropriate to your computer:

 myPort = new Serial(this, Serial.list()[0], 9600);

 // configure the serial object to buffer text until it receives a

 // linefeed character:

 myPort.bufferUntil(linefeed);

}

void draw()

{

 //no action in the draw loop

}

void serialEvent(Serial myPort) {

 // print any string that comes in serially to the monitor pane

 print(myPort.readString());

}

void keyReleased() {

 // if any key is pressed, take the next step:

 switch (step) {

 case 0:

 // open a connection to the server in question:

 myPort.write("C");

 // add one to step so that the next keystroke causes the next step:

 step++;

 break;

 case 1:

 // send an HTTP GET request

 myPort.write("GET /~myaccount/index.html HTTP/1.1\n");

 myPort.write("HOST:myserver.com\n\n");

 step++;

 break;

 }

}

Starting with this sketch as a base, you could
work out the whole logic of the HTTP exchange
in Processing, then convert your sketch into an

Arduino sketch.

This approach allows you to work out the logical flow of
an application in an environment with which you might be
more familiar. It removes the complications of the micro-
controller environment, allowing you to concentrate on the
sequence of messages and the actions that trigger them.

Don't get too caught up in the technical details of your
program when working this way. You're still going to have to
deal with the details of the microcontroller program even-
tually. However, it often helps to see the similarities and
differences between two languages when you're working
on a problem. It helps you concentrate on the logic that
underlies them.
X

 8 Change these to
match your own server.

146 MAKING THINGS TALK

Write a Test Server Program
The previous program allowed you to connect to a remote
server and test the exchange of messages. The remote
server was beyond your control, however, so you can’t say

for sure that the server ever received your messages. If
you never made a connection, you have no way of knowing
whether the module can connect to any server. To test this,
write your own server program to which it can connect.

/*

 Test Server Program

 Context: Processing

 Creates a server that listens for clients and prints

 what they say. It also sends the last client anything that's

 typed on the keyboard.

 */

// include the net library:

import processing.net.*;

int port = 80; // the port the server listens on

Server myServer; // the server object

int counter = 0;

void setup()

{

 myServer = new Server(this, port); // Start the server

}

void draw()

{

 // get the next client that sends a message:

 Client thisClient = myServer.available();

 // if the message is not null, display what it sent:

 if (thisClient != null) {

 // read bytes incoming from the client:

 while(thisClient.available() > 0) {

 print(char(thisClient.read()));

 }

 // send an HTTP response:

 thisClient.write("HTTP/1.1 200 OK\r\n");

 thisClient.write("Content-Type: text/html\r\n\r\n");

 thisClient.write("<html><head><title>Hello</title></head>");

 thisClient.write("<body>Hello, Client! " + counter);

 thisClient.write("</body></html>\r\n\r\n");

 // disconnect:

 thisClient.stop();

 counter++;

 }

}

Here is a short Processing program
that you can run on your PC. It listens
for incoming connections, and prints
out any messages sent over those con-
nections. It sends an HTTP response
and a simple web page.

To use this, first make sure your
Ethernet module and your PC are
on the same network. Then run this
program, and connect to it from
a browser, using the URL http://
localhost:80.

When you know that works, write a
client program for the Arduino that
connects to your PC’s IP address, port
80. You'll be able to see both sides of
the communication, and determine
where the problem lies. Once you’ve
seen messages coming through to
this program in the right sequence,
just change the connect string in your
microcontroller code to the address
of the web server you want to connect
to, and everything should work fine. If
it doesn’t, the problem is most likely
with your web server. Contact your
service provider for details on how to
access any of their server diagnostic
tools, especially any error logs for your
server.
X

8

If this doesn't work for you,

change to port 8080, which is a

common alternative port for many web

servers. If you’re running a web server

on your PC, you might have to change

the port number inthis program.

!

LOOK, MA, NO COMPUTER! 147

Conclusion

The advantage of these models is that they don’t require
a lot of work to repurpose existing web applications. At
most, you need to write a variation of the PHP web scraper
from earlier in this chapter to summarize the relevant
information from an existing website. This flexibility makes
it easier for microcontroller enthusiasts who aren’t expe-
rienced in web development to collaborate with web pro-
grammers, and vice versa. It also makes it easy to reuse
others’ work if you can’t find a willing collaborator.

The model has its limits, though, and in Chapter 5, you’ll
see some ways to get around those limits with a different
model. Even if you’re not using this model, don’t forget
the troubleshooting tools mentioned here. Making simple
mock-ups of the programs on either end of a transac-
tion can make your life much easier. This is because they
let you see what should happen, and then modify what
actually is happening to match that.
X

The activities in this chapter show a model for networked objects that’s very flexible

and useful. The object is basically a browser or a server, requesting information from

the Web and extracting the information it needs, or delivering information to a client.

You can use these models in many different projects.

148 MAKING THINGS TALK

Communicating in
(Near) Real Time
So far, most of the networked communications you’ve seen worked

through a web browser. Your object made a request to a remote server,

the server ran a program, and then it sent a response. This transaction

worked by making a connection to the web server, exchanging some

information, and then breaking the connection. In this chapter, you’ll

learn more about that connection, and you’ll write a server program

that allows you to maintain the connection in order to facilitate a faster

and more consistent exchange between the server and client.

5
MAKE: PROJECTS

Musicbox by Jin-yo Mok (2004)

The music box is connected to a composition program over the Internet using a serial-to-Ethernet module. The

composition program changes the lights on the music box and the sounds it will play. Real-time communication

between the two gives the player feedback. Photo courtesy of Jin-Yo Mok.

150 MAKING THINGS TALK

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• P Pololu (www.pololu.com)
• RS RS (www.rs-online.com)
• SF SparkFun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

PROJECT 8: Networked Pong
NOTE: You'll see two devices you can build in this chapter. If you

plan to build both, double the quantities on all parts except the

joystick, the accelerometer, and the triple-wall cardboard.

 » 1 Arduino Ethernet board A A000050
Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242, A A000056, AF 201, F
1848680

 » 1 Ethernet connection to the Internet Your home
router most likely has Ethernet jacks in the back. If
you've hooked up your computer to the Internet using
Ethernet, you know where the ports are.

Supplies for Chapter 5
 » 1 100-ohm resistor D 100QBK-ND, J 690620, F

9337660, RS 707-8625
 » 3 220-ohm resistors D 220QBK-ND, J 690700, F

9337792, RS 707-8842
 » 1 2-axis joystick (for joystick client)
J 2082855, SF COM-09032, AF 245, F 1428461

 » 1accelerometer (for tilt board client) The circuit
shown uses an ADXL330 accelerometer, but most any
analog accelerometer should do the job.
J 28017, SF SEN-00692, AF 163, RS 726-3738, P 1247,
MS MKPX7

 » 1 perforated printed circuit board D V2018-ND, J
616673, SS STR125C2B, F 4903213, RS 159-5420

 » 4 LEDs It’s best to use at least two colors with
established semantics: a big red one, a big green one,
and two others of whatever color suits your fancy.
 D 160-1144-ND or 160-1665-ND, J 34761 or 94511, F
1015878, RS 247-1662 or 826-830, SF COM-09592 or
COM-09590

 » 1 push button Use one that’s robust and can
stand a good stomping.

 » 1 project enclosure Get creative with materials you
have laying around the house.

 » 1 sheet triple-wall cardboard (for tilt board client)
 » 1 tab of Velcro Get any Velcro from your closest fabric

or hardware store.

Figure 5-1 . New parts for this chapter: 1 . Triple-wall cardboard 2 . 3-axis accelerometer 3 . 2-axis joystick 4 . Pushbutton 5 . Velcro

6 . Project enclosure, made from mat board 7 . 1/16" mat board template for project enclosure 8 . Perforated circuit board. Don't

forget plenty of male header pins for the breakout boards.

1

2

3

4

5

8

7

6

COMMUNICATING IN (NEAR) REAL TIME 151

Interactive Systems and Feedback Loops

For example, in the cat bed application in Chapter 3,
there’s no need for the system to respond in more than
a few seconds, because your reaction is not very time-
sensitive. As long as you get to see the cat while he’s on
the bed (which may be true for several minutes or hours),
you’re happy. Monski Pong in Chapter 2 relies on a rea-
sonably tight feedback loop in order to be fun. If it took a
half-second or longer for the paddles to move when you
move Monski’s arms, it would be no fun. The timing of the
feedback loop depends on the shortest time that matters
to the participant.

Any system that requires coordination between action and
reaction needs a tight feedback loop. Consider remote
control systems, for example. Perhaps you’re building a
robot that’s operated over a network. In that case, you’d
need not only a fast network for the control system, but
also a fast response from the camera or sensors on the
robot (or in its environment) that are giving you informa-
tion about what’s happening. You need to be able to both
control it quickly and see the results quickly. Networked
action games also need a fast network. It’s no fun if your
game console reacts slowly, allowing other players with
a faster network connection to get the jump on you. For
applications like this, an exchange protocol that’s con-
stantly opening and closing connections (like HTTP does)
wouldn’t be very effective.

When there’s a one-to-one connection between two
objects, it’s easy to establish a tight feedback loop. When
there are multiple objects involved, though, it gets harder.
To begin with, you have to consider how the network of

connections between all the objects will be configured. Will
it be a star network, with all the participants connected
through a central server? Will it be a ring network? Will
it be a many-to-many network, where every object has
a direct connection to every other object? Each of these
configurations has different effects on the feedback loop
timing. In a star network, the objects on the edge of the
network aren’t very busy, but the central one is. In a ring
network, every object shares the load more or less equally,
but it can take a long time for a message to reach objects
on opposite sides of the ring. In a direct many-to-many
network, the load is distributed equally, but each object
needs to maintain a lot of connections.

In most cases where you have a limited number of objects
in conversation, it’s easiest to manage the exchange using
a central server. The most common program example of
this is a text-based chat server like IRC (Internet Relay
Chat), or AOL’s instant messenger servers (AIM). Server
programs that accept incoming clients and manage text
messages between them in real time are often referred to
as chat servers. The Processing program you’ll write in this
chapter is a variation on a chat server. The server will listen
for new connections and exchange messages with all the
clients that connect to it. Because there’s no guarantee
how long messages take to pass through the Internet, the
exchange of messages can’t be instantaneous. But as long
as you’ve got a fast network connection for both clients
and server, the feedback loop will be faster than human
reaction time.
X

In every interactive system, there’s a feedback loop: you take action, the system

responds, you see the response—or a notification of it—and you take another action.

In some systems, the timing of that loop can be very loose. In other applications,

the timing must be tight.

152 MAKING THINGS TALK

Transmission Control Protocol: Sockets & Sessions

For example, think about the exchanges between a
web client and server that you saw in the previous two
chapters. The pipe is opened when the server acknowledg-
es the client’s contact, and it remains open until the server
has finished sending the file. If there are multiple files
needed for a web page, such as images and style sheets,
then multiple socket connections are opened and closed.

There’s a lot going on behind the scenes of a socket con-
nection. The exchange of data over a TCP connection can
range in size anywhere from a few bytes to a few terabytes
or more. All that data is sent in discrete packets, and the
packets are sent by the best route from one end to the
other.

NOTE: “Best” is a deliberately vague term: network hardware cal-

culates the optimal route is differently, which involves a variety of

metrics (such as the number of hops between two points, as well

as the available bandwidth and reliability of a

given path).

The period between the opening of a socket and the suc-
cessful close of the socket is called a session. During the
session, the program that maintains the socket tracks the
status of the connection (open or closed) and the port
number; counts the number of packets sent and received;
notes the order of the packets and sees to it that packets
are presented in the right order, even if the later packets
arrive first; and accounts for any missing packets by
requesting that they be resent. All of that is taken care of
for you when you use a TCP/IP stack like the Net library
in Processing or the firmware on the Arduino Ethernet
boards you first saw in Chapter 4.

The complexity of TCP is worthwhile when you’re exchang-
ing critical data. For example, in an email, every byte is a
character in the message. If you drop a couple of bytes,
you could lose crucial information. The error-checking of
TCP does slow things down a little, though, and if you want
to send messages to multiple receivers, you have to open a
separate socket connection to each one.

There’s a simpler type of transmission protocol that’s
also common on the Net: User Datagram Protocol (UDP).
Where TCP communication is based on sockets and
sessions, UDP is based only on the exchange of packets.
You’ll learn more about it in Chapter 7.
X

Each time a client connects to a web server, the connection that’s opened uses a

protocol called Transmission Control Protocol, or TCP. TCP is a protocol that specifies how

objects on the Internet open, maintain, and close a connection that will involve multiple

exchanges of messages. The connection made between any two objects using TCP is

called a socket. A socket is like a pipe joining the two objects. It allows data to flow back

and forth between them as long as the connection is maintained. Both sides need to

keep the connection open in order for it to work.

COMMUNICATING IN (NEAR) REAL TIME 153

Networked Pong
Networked games are a great way to learn about real-time connections. This project is a

networked variation on Pong. In honor of everyone’s favorite network status command,

let’s call it ping pong. The server will be a Processing program, and the clients will be

physical interfaces that connect through Ethernet-enabled Arduinos. The clients and

the server’s screen have to be physically close so that everyone can see the screen. In

this case, you’re using a network for its flexibility in handling multiple connections, not

for its ability to connect remote places.

From the Monski Pong project in Chapter 2, you’re already
aware of the methods needed to move the paddles and
the ball, so some of the code will be familiar to you. As this
is a more complex variation, it’s important to start with
a good description of the whole system. The system will
work like this:

• The game has two teams of multiple players.
• Each player can move a paddle back and forth. The

paddles are at the top and bottom of the screen, and
the ball moves from top to bottom.

• Players connect to the game server through a TCP
connection. Every time a player connects, another
paddle is added to the screen. New connections
alternate between the top and bottom teams. When
a player connects, the server replies with the following
string: hi, followed by a carriage return and a line feed
(shown as \r\n).

• The client can send the following commands:
•	 l (ASCII value 108): move left
•	 r (ASCII value 114): move right
•	 x (ASCII value 120): disconnect

• When the client sends x, the server replies with the
following string, and then ends the socket connection:

bye\r\n

That’s the communications protocol for the whole game.
Keep in mind that it doesn’t define anything about the
physical form of the client object. As long as the client can
make a TCP connection to the server and can send and
receive the appropriate ASCII messages, it can work with
the server. You can attach any type of physical inputs to
the client, or you can write a client that sends all these
messages automatically, with no physical input from the
world at all (though that would be boring). Later in this
chapter, you’ll see a few different clients, each of which
can connect to the server and play the game.

Project 8

A Test Chat Server
You need a server to get started. There’s a lot of code to
control the pong display that you don’t need right now
(you just want to confirm that the clients can connect), so
the following is a simple server with all the basic elements
to handle network communications. It will let you listen
for new clients, and then send them messages by typing
in the applet window that appears when you run the
program. Run the server and open a telnet connection to
it. Remember, it’s listening on port 8080, so if your com-
puter’s IP address is, say, 192.168.1.45, you’d connect like
so: telnet 192.168.1.45 8080. If you’re telnetting in from
the same machine, you can use: telnet localhost 8080 or
telnet 127.0.0.1 8080.

Whatever you type in the telnet window will show up in
the server’s debugger pane, and whatever you type in
the server’s applet window will show up at the client’s
command line. However, you’ll have to press Return after
each character in order for the server to see it—unless you
make a change after you connect.

On Mac OS X or Linux, press the telnet escape key combi-
nation (Ctrl-]), type the following, and then press Return:

mode character

On Windows, telnet should not require any special con-
figuration, but if you find otherwise, press Ctrl-], type the
following, and press Return twice:

set mode stream

Now every character you type will be sent to the server as
soon as you type it.
X

154 MAKING THINGS TALK

/*

 Test Server Program

 Context: Processing

 Creates a server that listens for clients and prints

 what they say. It also sends the last client anything that's

 typed on the keyboard.

 */

// include the net library:

import processing.net.*;

int port = 8080; // the port the server listens on

Server myServer; // the server object

ArrayList clients = new ArrayList(); // list of clients

First, start with the
variable declarations and

definitions. The main variables are an
instance of the Server class, a port
number to serve on, and an ArrayList
to keep track of the clients.

 Try It

void setup()

{

 myServer = new Server(this, port);

}

void draw()

{

 // get the next client that sends a message:

 Client speakingClient = myServer.available();

 if (speakingClient !=null) {

 String message = trim(speakingClient.readString());

 // print who sent the message, and what they sent:

 println(speakingClient.ip() + "\t" + message);

 if (message.equals("exit")) {

 myServer.disconnect(speakingClient);

 clients.remove(speakingClient);

 }

 }

}

The setup() method starts the
server.

The draw() method listens for new
messages from clients and prints

them. If a client says "exit," the server
disconnects it and removes it from the
list of clients.

8

8

 8 This program uses a data type you may not have seen before: ArrayList. Think of it as a super-

duper array. ArrayLists don’t have a fixed number of elements to begin with, so you can add new

elements as the program continues. It’s useful when you don’t know how many elements you’ll have.

In this case, you don’t know how many clients you’ll have, so you’ll store them in an ArrayList, and

add each new client to the list as it connects. ArrayLists include some other useful methods. There

is an introduction to ArrayLists on the Processing website at www.processing.org.

COMMUNICATING IN (NEAR) REAL TIME 155

To listen to you, the client needs:

• An input for sending a connect message. The same
input can be used to send a disconnect message.

• An input for sending a left message.
• An input for sending a right message.

To let the user know what the client device is doing, add:

• An output to indicate whether the client is connected to
the server.

• An output to indicate when the connect/disconnect
button is pressed.

• An output to indicate when it’s sending a left message.
• An output to indicate when it’s sending a right message.

It’s always a good idea to put outputs on the client to give
local feedback when it receives input from the user. Even
if there is no connection to the server, local feedback lets
the user know that the client device is responding to her
actions. For example, pressing the connect/disconnect
button doesn’t guarantee a connection, so it’s important
to separate the output that acknowledges a button push
from the one that indicates successful connection. If
there’s a problem, this helps the user determine whether
the problem is with the connection to the server, or with
the client device itself.

The Clients
The pong client listens to local input and remote input. The local input is from you,

the user. The remote input is from the server. The client is constantly listening to

you, but it only listens to the server when it's connected.

connected?

disconnect

button pressed?

Read sensor
state

send 'l'
send 'r'

read time

connect

send interval
passed?

connected?

yesno

no yes

yes

yes

< left > right

no

middle range

Figure 5-2

Logic flowchart for the pong clients

void serverEvent(Server myServer, Client thisClient) {

 println("We have a new client: " + thisClient.ip());

 clients.add(thisClient);

}

void keyReleased() {

 myServer.write(key);

}

The serverEvent() message is
generated by the server when a new
client connects to it. serverEvent()
announces new clients and adds them
to the client list.

Finally, the keyReleased() method
sends any keystrokes typed on the
server to all connected clients.

8

8

156 MAKING THINGS TALK

can build either, or both, or use the principles from them
to build your own. Building both and comparing them will
give you an idea of how the same protocol can result in
very different behavior. One of these clients is much more
responsive than the other, but the responsiveness has
nothing to do with the communications protocol. It’s all in
the sensing and in the player’s action. Both of the clients
use logic shown in Figure 5-2.
X

MATERIALS FOR bOTH CLIENTS

 » 1 Arduino Ethernet board or Arduino board with
the Ethernet shield

 » 1 Ethernet connection to the Internet
 » 1 100-ohm resistor
 » 3 220-ohm resistors
 » 1 2-axis joystick (for joystick client)
 » 1 accelerometer (for tilt board client)
 » 1 perforated printed circuit board
 » 4 LEDs
 » 1 pushbutton
 » 1 project enclosure
 » 1 sheet extra-thick cardboard (for tilt board
client)

Client #1: A Joystick Client
The first client is a fairly traditional game controller, shown
in Figure 5-3. It's got a joystick to control the left/right
action, and a pushbutton to log in or out of the server.
There are also four LEDs to indicate the controller's state.
When it's logged in, the white LED is lit. When it's sending
a left command, the red LED is lit. When it's sending a
right command, the green LED is lit. When you're pressing
the connect/disconnect button, the yellow LED lights up.

This client uses one axis of a two-axis joystick as its
main input. The joystick contains two potentiometers:
one for up/down movement and the other for left/right
movement. You'll only need the output from the latter.
Connect the pin marked L/R+ to +5V, the one marked
GND to ground, and the one marked L/R to analog input
0 of your Arduino (the full circuit is shown in Figures
5-4 through 5-8). Then write a short program to read its
output using analogRead(), just as you did with the Monski
Pong sensors in Chapter 2 and the cat sensors in Chapter
3. Once you've got it working, note the values that indicate
left and right, and save them for use in the client program.

You'll notice that the connection switch is wired differently
from a normal switch. Instead of a 10-kilohm pulldown
resistor, it's got a 100-ohm resistor and an LED connecting
it to ground. This way, when you push the button, the LED
lights up. There's no need to add any code to make this
happen—the pushbutton will send current through the
LED automatically, and you'll get local feedback on when
the button is being pressed.

These two clients are laid out on printed circuit proto-
typing boards (commonly known as perf boards). The
perfboards make it possible for the circuits to be a little
smaller and more physically robust. They're a bit harder
to assemble than a solderless breadboard circuit, though.

Both the perfboard and breadboard layouts are shown so
you can choose whichever method you like.

You'll need an enclosure for the circuit. You can buy a project
case from your favorite electronics retailer, but you can also
get creative. For example, a pencil box from your friendly
neighborhood stationery store will work well. Drill holes
in the lid for the switch and the LEDs, cut a hole for the
joystick, cut holes in the side for the Arduino and Ethernet
jacks, and you’re all set. If you're skilled with a mat knife, you
can also make your own box from cardboard or mat board.
Figure 5-7 shows the box I made, and Figure 5-9 shows the
template from which I made it. If you're lucky enough to
have access to a laser cutter, use it; if not, a mat knife and a
steady hand can do the job.
X

Use outputs to indicate the client's status.In the following
code, you can see that in addition to indicating when the
sensors are triggered, you’ll also indicate whether the client
is connected or disconnected. If this client had a more
complex set of states, you’d need more status indicators.

For this project, I built two clients. They have different
methods of physical interaction and different input
sensors, but they behave the same way to the server. You

COMMUNICATING IN (NEAR) REAL TIME 157

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

Figure 5-3

The joystick client, breadboard

layout. Note the red and green LEDs

to indicate left and right tilts. This

client follows nautical tradition: port

(left) is red and starboard (right) is

green. Feel free to be less jaunty in

your own choices, as long as they’re

clear.

+5V

+5V

Connect/Disconnect switch

100Ω 220Ω220Ω220Ω

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Ethernet
Shield

GND

CLK

MOSI

MISO

Eth, SS

SD card SS

+5V

Joystick

U/D

L/R

Figure 5-4

The joystick client schematic. The

following page shows the layout for

the circuit on a perforated circuit

board.

158 MAKING THINGS TALK

Figure 5-5

The circuit as laid out on a perforated circuit board

(perfboard). Note that male headers are only attached to

the Arduino's analog input pins, power and ground pins,

and digital pins 2 through 5. The rest aren't needed.

 Figure 5-6

The circuit board layout showing where the solder joints

are connected underneath the board.

Figure 5-7

The assembled joystick controller. The joystick circuit

inside the housing was designed to be just tall enough

so that the LEDs and joystick would stick through the

top. Assemble the circuit first so you know how much

space you need for the housing. A cable made from

scrap stranded wire and male headers to connect

the pushbutton makes it easier to open and close the

box with the button mounted. The inner wires from a

telephone cable work nicely for this.

 Figure 5-8

Detail of the Arduino, Ethernet shield, and circuit board.

Use female headers to mount the LEDs and the switch.

For the LEDs, it makes the job of getting them to the

right height much easier. You can trim them bit by bit

until they are the right height, then stick them in the

headers.

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1

5

10

15

20

25

BCDEFGHIJKLMN

1

5

10

15

20

25

BCDEFGHIJKLMN

COMMUNICATING IN (NEAR) REAL TIME 159

0.2” holes
for LEDs

1.1” diameter
for joystick

Hole centers:

2
.6

4
”

2
.0

4
”

1.79
”

1.5
4

”

0
.9

4
”

1.25” diameter
for button

cut along red lines

score and fold
along green lines

Ethernet
Jack

0.6” x 0.7”

USB
Jack

0.45” x 0.5”

power
Jack

0.43” x 0.36”

2-3/16”

6”

1.6”

2.5”
3.8”

2-3/16”

2-1/4”

3-3/16”

3-1/4”

To Ethernet Jack: 1.07”0
.7”

To USB Jack: 1.84”

0
.79

”

To Power Jack: 1.87”

2
.0

7”

2-1/4”

1/4”

1/4”1/4”

3-1/4”

Figure 5-9

Template for the joystick housing. This template can be cut out

of poster board or mat board and then folded to make a housing

for the joystick controller. The dimensions will depend on how you

assemble your circuit, so modify them as needed. Although they

look precise here, they were measured with a caliper after the fact.

The first two prototypes were drawn by hand and cut out of paper,

then scrap cardboard. I didn't move to a final version cut out of mat

board until I had tested the fit of the sides with a paper version.

Score the folds on the opposite side of the board so they fold better.

160 MAKING THINGS TALK

/*

 Joystick client

 Context: Arduino

 This program enables an Arduino to control one paddle

 in a networked Pong game.

 */

#include <SPI.h>

#include <Ethernet.h>

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress ip(192,168,1,20);

// Enter the IP address of the computer on which

// you'll run the pong server:

IPAddress server(192,168,1,100);

First, start by importing
the libraries you need and

configuring your network connection
for the client. This is similar to what
you did for the Air-Quality Meter in
Chapter 4, but the server address will
be your computer's addesss.

const int connectButton = 2; // the pushbutton for connecting/disconnecting

const int connectionLED = 3; // this LED indicates whether you're connected

const int leftLED = 4; // this LED indicates that you're moving left

const int rightLED = 5; // this LED indicates that you're moving right

const int left = 200; // threshold for the joystick to go left

const int right = 800; // threshold for the joystick to go right

const int sendInterval = 20; // minimum time between messages to the server

const int debounceInterval = 15; // used to smooth out pushbutton readings

Client client; // instance of the Client class for connecting

int lastButtonState = 0; // previous state of the pushbutton

long lastTimeSent = 0; // timestamp of the last server message

You need a number of constants to
keep track of the input and output pin
numbers, the joystick's thresholds for
left and right, and the minimum time
between messages to the server. You'll
need global variables for the connec-
tion Client, the previous state of the
connect button, and the timestamp of
the last message sent to the server.

You should update the left and right
thresholds with the values you discov-
ered earlier while testing the joystick.

8

void setup()

{

 // initialize serial and Ethernet ports:

 Ethernet.begin(mac, ip);

 Serial.begin(9600);

 // initialize digital inputs and outputs:

 pinMode(connectButton, INPUT);

 pinMode(connectionLED, OUTPUT);

 pinMode(leftLED, OUTPUT);

 pinMode(rightLED, OUTPUT);

 delay(1000); // give the Ethernet shield time to set up

 Serial.println("Starting");

}

The setup() method just opens
serial and Ethernet communica-

tions and initializes the digital I/O pins.

8

 Try It

 8 Change these to match your own device
and network.

COMMUNICATING IN (NEAR) REAL TIME 161

void loop()

{

 // note the current time in milliseconds:

 long currentTime = millis();

 // check to see if the pushbutton's pressed:

 boolean buttonPushed = buttonRead(connectButton);

 // if the button's just pressed:

 if (buttonPushed) {

 // if the client's connected, disconnect:

 if (client.connected()) {

 Serial.println("disconnecting");

 client.print("x");

 client.stop();

 } // if the client's disconnected, try to connect:

 else {

 Serial.println("connecting");

 client.connect(server, 8080);

 }

 }

The main loop starts by updating
the current time, which is used to keep
track of how frequently you send to the
server. Then, it checks to see whether
the connect button has been pushed.
If it has, and the client's already
connected, the Arduino disconnects. If
it's not connected, it tries to connect.

 // if the client's connected, and the send interval has elapsed:

 if (client.connected() && (currentTime - lastTimeSent > sendInterval)) {

 // read the joystick and send messages as appropriate:

 int sensorValue = analogRead(A0);

 if (sensorValue < left) { // moving left

 client.print("l");

 digitalWrite(leftLED, HIGH);

 }

 if (sensorValue > right) { // moving right

 client.print("r");

 digitalWrite(rightLED, HIGH);

 }

 // if you're in the middle, turn off the LEDs:

 if (left < sensorValue && sensorValue < right) {

 digitalWrite(rightLED, LOW);

 digitalWrite(leftLED, LOW);

 }

 //save this moment as last time you sent a message:

 lastTimeSent = currentTime;

 }

 // set the connection LED based on the connection state:

 digitalWrite(connectionLED, client.connected());

}

Next, check whether the client's
connected to the server, and whether
enough time has elapsed since the last
time you sent to the server. If so, read
the joystick and, if it's at one extreme
or the other, send the message to the
server and turn on the appropriate
LED. If the joystick's in the middle, turn
off the LEDs. Then save the current
time as the most recent time you sent
a message.

You may have to adjust your sendInter-
val value, depending on the responsive-
ness of your server and the sensitivity
of your sensors. 20 milliseconds is a
good place to start, but if you find the
server slowing down with lots of clients,
make it higher.

Finally, set the state of the connection
LED using the state of the client itself.

8

8

162 MAKING THINGS TALK

// this method reads the button to see if it's just changed

// from low to high, and debounces the button in case of

// electrical noise:

boolean buttonRead(int thisButton) {

 boolean result = false;

 // temporary state of the button:

 int currentState = digitalRead(thisButton);

 // final state of the button:

 int buttonState = lastButtonState;

 // get the current time to time the debounce interval:

 long lastDebounceTime = millis();

 while ((millis() - lastDebounceTime) < debounceInterval) {

 // read the state of the switch into a local variable:

 currentState = digitalRead(thisButton);

 // If the pushbutton changed due to noise:

 if (currentState != buttonState) {

 // reset the debouncing timer

 lastDebounceTime = millis();

 }

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 buttonState = currentState;

 }

 // if the button's changed and it's high:

 if(buttonState != lastButtonState && buttonState == HIGH) {

 result = true;

 }

 // save the current state for next time:

 lastButtonState = buttonState;

 return result;

}

Finally, you can’t just connect or
disconnect every time the connect
button is high. You want to send
a message only when the button
changes from low to high, indicat-
ing that the player just pressed it.
This method checks for a low-to-high
transition by comparing the state of
the button with its previous state. It's
called from the main loop.

This method also debounces the
button, which means that it listens for
a few extra milliseconds to see whether
the button changes after the initial
read. Sometimes a pushbutton can
give several false readings for a few
milliseconds, as the electrical contacts
settle against one another. The cheaper
the switch, the more common this is.
If you find that your pushbutton gives
multiple readings each time you push
it, increase debounceInterval by a few
milliseconds.

8

COMMUNICATING IN (NEAR) REAL TIME 163

 Figure 5-10

The balance board rocker. Make two of these.

Design courtesy of the Adaptive Design Association.

12”

2.5”

Client #2: A Balance Board Client
Client #2 is a balance board. To control it, you stand on
the board and tilt left or right. To stay in the middle, you
have to balance the board. An accelerometer at the center
of the board senses it tilt from side to side. The physical
interaction for this controller is very different than the
last. It requires more action from you, and it takes more
physical agility to operate. However, the behavior of this
client is identical to the previous one—from the server's
point of view.

The balance board itself is based on a design by the
Adaptive Design Association (http://adaptivedesign.org),
a New York City-based organization that gets people
involved—families and community volunteers—in making
safe and affordable furniture and equipment for children
with disabilities. A balance board is great for helping to
strengthen your balance, and it's fun as well.

The physical construction for the balance board client
case is similar to the joystick client—you can use the
same template with the same LED setup. Just make the
joystick hole smaller to hold the pushbutton, and don't cut
a second hole.

To construct the board, you'll need heavy-duty triple-wall
cardboard. Many packaging supply houses carry it. If you
can't get triple-wall cardboard, you can laminate three
sheets of regular cardboard together using white glue.
When you're gluing layers together, make sure the grain of
the corrugations for adjacent layers runs perpendicular to
each other, for added stability.

Cut two circles approximately 15 inches in diameter from
a sheet of triple-wall cardboard. In one of them, cut two
slots, 12 inches long and as thick as your cardboard. In the
board shown in Figure 5-12, the slots are roughly an inch

thick. Each one is two inches from the center diameter
of the circle, as shown in Figure 5-11. Glue the two circles
together with their grains opposing each other.

Next, cut two arcs 12 inches across, as shown in Figure
5-10. Glue the arcs into the slots and let them dry. Make
sure it's very solid before you try to balance on it.

The case for the balance board was adapted from the
joystick client. The differences are that the connect/
disconnect button took the place of the joystick, so the
second large hole could be removed and the whole box
made shorter. Mount the control box at the center of your
balance board, as shown in Figure 5-12.

The code for the balance board client is also very similar to
the joystick client. All you have to change is the values for
the left and right thresholds. To discover them, do as you
did with the joystick: put the accelerometer on the balance
board, program the Arduino to print out the value of the
analog input, and tilt it both ways to learn its extreme.
Then fill those values in for left and right. Everything else
stays the same. That’s the beauty of using a clear, simple
protocol: it doesn’t matter what the physical input is, as
long as you can map changes recorded by the sensors to
a left-right movement, and program the microcontroller to
send the appropriate messages.

It’s worthwhile to try building both these clients, or one of
your own, to look at how different physical affordances can
affect the performance of different clients, even though it
appears the same to the server.
X

164 MAKING THINGS TALK

 Figure 5-11

The balance board base. Cut

two circles this size, and cut

the slots for the rockers in only

one of them. Then, laminate

the two circles together. Design

courtesy of the Adaptive Design

Association.

 Figure 5-12

The balance board in action. The

two layers of triple-wall cardboard

are laminated with the grain of

their corrugations perpendicular

to each other. This gives the board

added stability. A couple of tabs

of Velcro hold the controller box

in place.

15” diameter

2”

2”

12”

1”

cut along red lines

COMMUNICATING IN (NEAR) REAL TIME 165

+5V

+5V

Connect/Disconnect switch

100Ω 220Ω220Ω220Ω

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Ethernet
Shield

GND

CLK

MOSI

MISO

Eth, SS

SD card SS

ADXL330
Accelerometer

ST

Z

Y

X

GND

3.3V

Figure 5-13

The balance board client circuit,

breadboard version. You can see it's

identical to the joystick client, except

for the accelerometer in place of the

joystick.RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

Figure 5-14

The balance board client schematic.

166 MAKING THINGS TALK

The Server
The server's tasks can be divided into two groups: those
related to the game play, like animating the paddles and
the ball and scoring; and those related to tracking new
clients. To manage it all most effectively, you’re going to
use an object-oriented programming approach. If you’ve
never done this before, there are a few basics you need to
know in advance.

Anatomy of a Player Object
The most important thing to know is that all objects have
properties and behaviors. You can think about an object’s
properties in much the same way as you think about
physical properties. For example, a pong paddle has width

and height, and it has a location, which you can express in
terms of its horizontal and vertical positions. In your game,
the paddles will have another important property: each
paddle will be associated with a client. Of course, clients
have properties as well, so each paddle will inherit an IP
address from its client. You’ll see all of these in the code
that defines a paddle as an object.

A paddle also has a characteristic behavior: it moves left
or right. That behavior will be encoded into the paddle as a
method called movePaddle(). This behavior will update the
properties of the paddle that define its location. A second
behavior called showPaddle() will actually draw the paddle
in its current location. You’ll see later why these are kept
separate.

public class Player {

 // declare variables that belong to the object:

 float paddleH, paddleV;

 Client client;

To define an object in
Processing (or in Java for

that matter), create a code block called
a class. Here’s the beginning of the class
that defines a player in the pong server.

 Code It

Figure 5-15

The balance board client

circuit laid out on a per-

forated circuit board.

Figure 5-16

The circuit board

layout showing where

the solder joints are

connected underneath

the board.

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1

5

10

15

20

25

BCDEFGHIJKLMN

1

5

10

15

20

25

BCDEFGHIJKLMN

COMMUNICATING IN (NEAR) REAL TIME 167

0.2” holes
for LEDs

0.6” diameter
for button

Ethernet
Jack

0.6” x 0.7”

USB
Jack

0.45” x 0.5”

power
Jack

0.43” x 0.36”

2-3/16”

4”

2-3/16”

2-1/4”

3-3/16”

3-1/4”

2-1/4”

1/4”

1/4”1/4”

3-1/4”

cut along red lines

score and fold
along green lines

To Ethernet Jack: 1.07”

To USB Jack: 1.84”

To Power Jack: 1.87”

0
.7”

0
.79

”

2
.0

7”

Hole centers:

2
.6

4
”

2
.0

4
”

1.79
”

1.5
4

”

0
.9

4
”

1.6”

2.5”

Figure 5-17

Template for the balance board housing. As with the joystick client,

the template can be cut from 1/16" mat board. The dimensions

were changed to meet the needs of the smaller circuit.

168 MAKING THINGS TALK

That’s all the code to define a Player. Put this
code at the end of your program (shown next),
just as if it were another method. To make a

new Player object, write something like, Player newPlayer
= new Player(xPosition, yPosition, thisClient).

When you do this, the new Player and all its instance
variables and methods are accessible through the variable
called newPlayer (the new Player is not actually stored
in this variable; it’s stuffed away in a portion of memory
somewhere that you can get at through the newPlayer
variable). Keep an eye out for this in the program.

 public Player (int hpos, int vpos, Client someClient) {

 // initialize the local instance variables:

 paddleH = hpos;

 paddleV = vpos;

 client = someClient;

 }

Here’s the constructor for the
Player class. It comes right after the
instance variables in your code. As you
can see, it just takes the values you
give it when you call for a new Player,
and assigns them to variables that
belong to an instance (an individual
player) of the class.

8

As shown in the example, the variables declared at the
beginning of the class are called instance variables. Every
new instance of the class created makes its own copies
of these variables. Every class has a constructor method,
which gets called to bring the object into existence. You’ve

already used constructors. When you made a new Serial
port in Processing, you called the constructor method
for the Serial class with something like, myPort = new
Serial(this, portNum, dataRate).

 public void movePaddle(float howMuch) {

 float newPosition = paddleH + howMuch;

 // constrain the paddle's position to the width of the window:

 paddleH = constrain(newPosition, 0, width);

 }

 public void showPaddle() {

 rect(paddleH, paddleV, paddleWidth, paddleHeight);

 // display the address of this player near its paddle

 textSize(12);

 text(client.ip(), paddleH, paddleV - paddleWidth/8);

 }

}

Next come the two other methods
mentioned earlier, movePaddle()

and showPaddle(). As you can see,
they use the object's instance variables
(paddleH, paddleV, and client) to store
the location of the paddle and to draw
it.

The Main Pong Server Program
Before you write the code for the server as a whole, it’s
useful to make a flowchart of what happens. Figure 5-18
shows the main tasks and functions. A few details are
left out for clarity’s sake, but what’s clear are the main
relationships between the methods that run the program
(setup(), draw(), and serverEvent()) and the Player
objects. As with any program, the setup() method kicks
things off, and then the draw() method takes over. The
latter sees to it that the screen is updated and listens to
any existing clients. If a new client connects, a server-
Event() message is generated, which causes the method of
that name to run. That method creates new Player objects.
The draw() method takes advantage of the behaviors
inside the Player objects to move and draw their paddles.

 8 This bracket closes the class.

8

COMMUNICATING IN (NEAR) REAL TIME 169

01

?

setup()

set up graphics

initialize
server

draw()

drawGame ()

draw each
player’s paddle

moveBall()

showScore()

if
GameOver

pause between
serves

pause between
games

listenToClients()

display winner

dispose of
player

showPaddle() movePaddle()

new client connects
from the internet

serverEvent()

makeNew
Player()

Player Properties
 client
 paddleH
 paddleV

true

false

x

r

l

Figure 5-18

What happens in the

pong server program.

170 MAKING THINGS TALK

// include the net library:

import processing.net.*;

// variables for keeping track of clients:

int port = 8080; // the port the server listens on

Server myServer; // the server object

ArrayList playerList = new ArrayList(); // list of clients

// variables for keeping track of the game play and graphics:

int ballSize = 10; // the size of the ball

int ballDirectionV = 2; // the ball's horizontal direction

 // left is negative, right is positive

int ballDirectionH = 2; // the ball's vertical direction

 // up is negative, down is positive

int ballPosV, ballPosH; // the ball's horizontal and vertical

 // positions

boolean ballInMotion = false; // whether or not the ball should be moving

int topScore, bottomScore; // scores for the top team and the bottom teams

int paddleHeight = 10; // vertical dimension of the paddles

int paddleWidth = 80; // horizontal dimension of the paddles

int nextTopPaddleV; // paddle positions for the next player

 // to be created

int nextBottomPaddleV;

boolean gameOver = false; // whether or not a game is in progress

long delayCounter; // a counter for the delay after

 // a game is over

long gameOverDelay = 4000; // pause after each game

long pointDelay = 2000; // pause after each point

The first thing to do in the
server program is to define the
variables. They’re grouped here
by those needed for keeping
track of clients, versus those
needed for managing the
graphics of the game play.

8

COMMUNICATING IN (NEAR) REAL TIME 171

void setup() {

 // set the window size:

 size(480, 640);

 // set the frame rate:

 frameRate(90);

 // set the default font alignment:

 textAlign(CENTER);

 // set no borders on drawn shapes:

 noStroke();

 // set the rectMode so that all rectangle dimensions

 // are from the center of the rectangle (see Processing reference):

 rectMode(CENTER);

 // set up all the pong details:

 // initialize the delay counter:

 delayCounter = millis();

 // initialize paddle positions for the first player.

 // these will be incremented with each new player:

 nextTopPaddleV = 50;

 nextBottomPaddleV = height - 50;

 // initialize the ball in the center of the screen:

 ballPosV = height / 2;

 ballPosH = width / 2;

 // Start the server:

 myServer = new Server(this, port);

}

The setup() method sets all the
initial conditions for the game, and
then starts the server.

8

void draw() {

 drawGame();

 listenToClients();

}

The draw() method updates
the screen using a method called
drawGame(), and it listens for any
messages from existing clients using
the listenToClients() method.

8

172 MAKING THINGS TALK

// The ServerEvent message is generated when a new client

// connects to the server.

void serverEvent(Server thisServer, Client thisClient) {

 if (thisClient != null) {

 // iterate over the playerList:

 for (int p = 0; p < playerList.size(); p++) {

 // get the next object in the ArrayList and convert it

 // to a Player:

 Player newPlayer = (Player)playerList.get(p);

 // if thisPlayer's client matches the one that generated

 // the serverEvent, then this client is already a player, so quit

 // out of the method and return:

 if (newPlayer.client == thisClient) {

 return;

 }

 }

 // if the client isn't already a Player, then make a new Player

 // and add it to the playerList:

 makeNewPlayer(thisClient);

 }

}

When new clients connect to the
server, the net library’s server-

Event() method is called automatically;
your Processing sketch has to have
this method in order to respond to the
event. It uses the new client to create
a new Player object using a method
called makeNewPlayer(). At right is the
serverEvent() method.

8

void makeNewPlayer(Client thisClient) {

 // paddle position for the new Player:

 int x = width/2;

 // if there are no players, add to the top:

 int y = nextTopPaddleV;

 /*

 Get the paddle position of the last player on the list.

 If it's on top, add the new player on the bottom, and vice versa.

 If there are no other players, add the new player on the top.

 */

 // get the size of the list:

 int listSize = playerList.size() - 1;

 // if there are any other players:

 if (listSize >= 0) {

 // get the last player on the list:

 Player lastPlayerAdded = (Player)playerList.get(listSize);

 // is the last player's on the top, add to the bottom:

 if (lastPlayerAdded.paddleV == nextTopPaddleV) {

 nextBottomPaddleV = nextBottomPaddleV - paddleHeight * 2;

 y = nextBottomPaddleV;

 }

 // is the last player's on the bottom, add to the top:

 else if (lastPlayerAdded.paddleV == nextBottomPaddleV) {

Now that you’ve seen the draw()
and the serverEvent() methods,
it’s time to look at the methods
they call. It’s best to start with the
creation of a new Player, so here’s the
makeNewPlayer() method.

A new Player is added to the bottom
team if the last player is on the top, and
vice versa.

The variables nextTopPaddleV and
nextBottomPaddleV keep track of
the positions for the next players on
each team.

»

8

COMMUNICATING IN (NEAR) REAL TIME 173

Continued from opposite page .

 nextTopPaddleV = nextTopPaddleV + paddleHeight * 2;

 y = nextTopPaddleV;

 }

 }

 // make a new Player object with the position you just calculated

 // and using the Client that generated the serverEvent:

 Player newPlayer = new Player(x, y, thisClient);

 // add the new Player to the playerList:

 playerList.add(newPlayer);

 // Announce the new Player:

 println("We have a new player: " + newPlayer.client.ip());

 newPlayer.client.write("hi\r\n");

}

void listenToClients() {

 // get the next client that sends a message:

 Client speakingClient = myServer.available();

 Player speakingPlayer = null;

 // iterate over the playerList to figure out whose

 // client sent the message:

 for (int p = 0; p < playerList.size(); p++) {

 // get the next object in the ArrayList and convert it

 // to a Player:

 Player thisPlayer = (Player)playerList.get(p);

 // compare the client of thisPlayer to the client that sent a message.

 // If they're the same, then this is the Player we want:

 if (thisPlayer.client == speakingClient) {

 speakingPlayer = thisPlayer;

 break;

 }

 }

 // read what the client sent:

 if (speakingPlayer != null) {

 int whatClientSaid = speakingPlayer.client.read();

 /*

 There are a number of things it might have said that we care about:

 x = exit

 l = move left

 r = move right

 */

 switch (whatClientSaid) {

 // If the client says "exit", disconnect it

 case 'x':

 // say goodbye to the client:

 speakingPlayer.client.write("bye\r\n");

Once a new Player has been
created, you need to listen continuously
for that Player’s client to send any
messages. The more often you check
for messages, the tighter the interac-
tive loop between sensor and action.

The listenToClients() method, called
continuously from the draw() method,
listens for messages from clients. If
there’s data available from any client,
this method takes action. First, it
iterates over the list of Players to see
whether each one’s client is speaking.
Then, it checks to see whether the
client sent any of the game messages
(that is, l for left, r for right, or x for
exit). If any of those messages was
received, the program acts on the
message appropriately.

8

»

174 MAKING THINGS TALK

Continued from previous page .

 // disconnect the client from the server:

 println(speakingPlayer.client.ip() + "\t logged out");

 myServer.disconnect(speakingPlayer.client);

 // remove the client's Player from the playerList:

 playerList.remove(speakingPlayer);

 break;

 case 'l':

 // if the client sends an "l", move the paddle left

 speakingPlayer.movePaddle(-10);

 break;

 case'r':

 // if the client sends an "r", move the paddle right

 speakingPlayer.movePaddle(10);

 break;

 }

 }

}

So far you’ve seen how the server receives new
connections (using serverEvent()), creates
new Players from the new clients (using make-

NewPlayer()), and listens for messages (using listenTo-
Clients()). That covers the interaction between the server
and the clients. In addition, you’ve seen how the Player
class defines all the properties and methods that are
associated with each new player. Finally, it’s time to look
at the methods for controlling the drawing of the game.

drawGame(), called from the draw() method, is the main
method for this. This method has four tasks:

• Iterate over the playerList and draw all the paddles
at their most current positions.

• Draw the ball and the score.
• If the game is over, show a “Game Over” message

and pause.
• Pause after each volley, then serve the ball again.

void drawGame() {

 background(0);

 // draw all the paddles

 for (int p = 0; p < playerList.size(); p++) {

 Player thisPlayer = (Player)playerList.get(p);

 // show the paddle for this player:

 thisPlayer.showPaddle();

 }

Here is the pongDraw()
method.

You saw earlier that the listenToClients()
method actually updates the positions
of the paddles using the movePaddle()
method from the Player object. That
method doesn’t actually draw the
paddles, but this one does, using
each Player’s showPaddle() method. This
is why the two methods are separated in
the object.

 // calculate ball's position:

 if (ballInMotion) {

 moveBall();

 }

 // draw the ball:

 rect(ballPosH, ballPosV, ballSize, ballSize);

 // show the score:

 showScore();

Likewise, the moveBall() method,
called here, checks to see whether the ball
hit a paddle or a wall. It then calculates its
new position from there, but it doesn’t
draw the ball itself because the ball needs
to be drawn even if it’s not in motion.

8

 Show It

»

COMMUNICATING IN (NEAR) REAL TIME 175

 // if the game is over, show the winner:

 if (gameOver) {

 textSize(24);

 gameOver = true;

 text("Game Over", width/2, height/2 - 30);

 if (topScore > bottomScore) {

 text("Top Team Wins!", width/2, height/2);

 }

 else {

 text("Bottom Team Wins!", width/2, height/2);

 }

 }

 // pause after each game:

 if (gameOver && (millis() > delayCounter + gameOverDelay)) {

 gameOver = false;

 newGame();

 }

If the game is over, the program
stops the serving and displays the

winner for four seconds.

8

// pause after each point:

 if (!gameOver && !ballInMotion && (millis() >

 delayCounter + pointDelay)) {

 // make sure there are at least two players:

 if (playerList.size() >=2) {

 ballInMotion = true;

 }

 else {

 ballInMotion = false;

 textSize(24);

 text("Waiting for two players", width/2, height/2 - 30);

 // reset the score:

 newGame();

 }

 }

}

After each point is scored, the
program takes a two-second

pause. If there aren’t at least two
players after that pause, it doesn’t
serve another ball. This is to keep the
game from running when there’s no
one playing.

That closes out the drawGame()
method itself. It calls a few other
methods: moveBall(), which calculates
the ball’s trajectory; showScore(),
which shows the score; and
newGame(), which resets the game.
Those are shown next.

8

void moveBall() {

 // Check to see if the ball contacts any paddles:

 for (int p = 0; p < playerList.size(); p++) {

 // get the player to check:

 Player thisPlayer = (Player)playerList.get(p);

 // calculate the horizontal edges of the paddle:

 float paddleRight = thisPlayer.paddleH + paddleWidth/2;

 float paddleLeft = thisPlayer.paddleH - paddleWidth/2;

 // check to see if the ball is in the horizontal range of the paddle:

 if ((ballPosH >= paddleLeft) && (ballPosH <= paddleRight)) {

First, moveBall() checks whether
the position of the ball intersects

any of the Players’ paddles. To do this,
it has to iterate over playerList, pull out
each Player, and check to see whether
the ball position is contained within the
rectangle of the paddle. If the ball does
intersect a paddle, its vertical direction
is reversed.

8

»

Continued from previous page .

176 MAKING THINGS TALK

 // if the ball goes off the screen top:

 if (ballPosV < 0) {

 bottomScore++;

 ballDirectionV = int(random(2) + 1) * -1;

 resetBall();

 }

 // if the ball goes off the screen bottom:

 if (ballPosV > height) {

 topScore++;

 ballDirectionV = int(random(2) + 1);

 resetBall();

 }

 // if any team goes over 5 points, the other team loses:

 if ((topScore > 5) || (bottomScore > 5)) {

 delayCounter = millis();

 gameOver = true;

 }

If the ball goes above the top of the
screen or below the bottom, then one
team has scored. If any team goes over
five points, the game is over.

Continued from previous page .

 // calculate the vertical edges of the paddle:

 float paddleTop = thisPlayer.paddleV - paddleHeight/2;

 float paddleBottom = thisPlayer.paddleV + paddleHeight/2;

 // check to see if the ball is in the

 // horizontal range of the paddle:

 if ((ballPosV >= paddleTop) && (ballPosV <= paddleBottom)) {

 // reverse the ball's vertical direction:

 ballDirectionV = -ballDirectionV;

 }

 }

 }

 // stop the ball going off the left or right of the screen:

 if ((ballPosH - ballSize/2 <= 0) || (ballPosH +ballSize/2 >=width)) {

 // reverse the y direction of the ball:

 ballDirectionH = -ballDirectionH;

 }

 // update the ball position:

 ballPosV = ballPosV + ballDirectionV;

 ballPosH = ballPosH + ballDirectionH;

}

Finally, moveBall() checks to see
whether the ball hits one of the sides
of the screen. If so, the horizontal
direction is reversed.

void newGame() {

 gameOver = false;

 topScore = 0;

 bottomScore = 0;

}

The newGame() method just
restarts the game play and resets

the scores.

8

8

8

COMMUNICATING IN (NEAR) REAL TIME 177

public void showScore() {

 textSize(24);

 text(topScore, 20, 40);

 text(bottomScore, 20, height - 20);

}

The showScore() method prints
the scores on the screen.

8

void resetBall() {

 // put the ball back in the center

 ballPosV = height/2;

 ballPosH = width/2;

 ballInMotion = false;

 delayCounter = millis();

}

Finally, moveBall() calls a the
resetBall() method, which resets the
ball at the end of each point.

8

The beauty of this server is that it doesn’t
really care how many clients log into it;
everyone gets to play ping pong. There’s

nothing in the server program that limits the response
time for any client, either. The server attempts to satisfy
everyone a soon as possible. This is a good habit to get
in. If there’s as need to limit the response time in any
way, don’t rely on the server of the network to do that.
Whenever possible, let the network and the server remain
dumb, fast, and reliable, and let the clients decide how fast
they want to send data across. Figure 5-19 shows a screen-
shot of the server with two clients.

Once you’ve got the clients speaking with the server,
try designing a new client of your own. Try to make the
ultimate ping pong paddle.
X

Figure 5-19

The output of the ping pong server sketch.

178 MAKING THINGS TALK

Conclusion

The client should also place a priority on listening, but
it has to juggle listening to the server with listening to
the physical inputs. It should always give a clear and
immediate response to local input, and it should indicate
the state of the network connection at all times.

The protocol that the objects in this system speak to each
other should be as simple and as flexible as possible.
Leave room for more commands, because you never
know when you might decide to add something. Make
sure to build in responses where appropriate, like the “hi”
and “bye” responses from the server. Keep the messages
unambiguous and, if possible, keep them short as well.

Finally, make sure you’ve got a reliable way to test the
system. Simple tools like a telnet client and test server will
save you much time in building every multiplayer server,
and help you get to the fun sooner.

Now you’ve seen examples of both asynchronous client-
server exchanges (the HTTP system in Chapter 4) and
synchronous exchanges (the chat server on page 153). With
those two tools, you can build almost any application in
which there’s a central server and a number of clients. For
the next chapter, you’ll step away from the Internet and
take a look at various forms of wireless communication.
X

The basic structure of the clients and server in this chapter can be used any time

you want to make a system that manages synchronous connections between several

objects on the network. The server’s main jobs are to listen for new clients, keep track

of the existing clients, and make sure that the right messages reach the right clients. It

must place a priority on listening at all times.

At left

Jin-Yo Mok's original

sketches of the music

box.

At right

The music box composi-

tion interface.

COMMUNICATING IN (NEAR) REAL TIME 179

180 MAKING THINGS TALK

Wireless Communication
If you’re like most people interested in this area, you’ve been reading

through the early chapters thinking, “but what about wireless?” Perhaps

you’re so eager that you just skipped straight to this chapter. If you did,

go back and read the rest of the book! In particular, if you’re not familiar

with serial communication between computers and microcontrollers,

you’ll want to read Chapter 2 before reading this chapter. This chapter

explains the basics of wireless communication between objects. In it,

you’ll learn about two types of wireless communication, and then build

some working examples.

6
MAKE: PROJECTS

Alex beim's Zygotes (www.tangibleinteraction.com) are lightweight, inflatable rubber balls lit from within

by LED lights. The balls change color in reaction to pressure on their surface, and they use ZigBee radios to commu-

nicate with a central computer. A network of zygotes at a concert allows the audience to have a direct effect

not only on the balls themselves, but also on the music and video projections to which they are networked.

Photo courtesy of Alex Beim.

182 MAKING THINGS TALK

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• RS RS (www.rs-online.com)
• SF SparkFun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

PROJECT 9: Infrared Control of a Digital Camera
 » 1 Arduino module An Arduino Uno or something

based on the Arduino Uno, but the project should work
on other Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

Supplies for Chapter 6

 » 1 infrared LED J 106526, SF COM-09469, F 1716710,
RS 577-538, SS MTR102A2B

 » 1 pushbutton Any button will do.
D GH1344-ND, J 315432, SF COM-10302, F 1634684,
RS 718-2213

 » 1 220-ohm resistor D 220QBK-ND, J 690700,
F 9337792, RS 707-8842

 » 1 10-kilohm resistor D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 1 solderless breadboard D 438-1045-ND, J
20723 or 20601, SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M, MS MKKN2

PROJECT 10: Duplex Radio Transmission
 » 2 solderless breadboards D 438-1045-ND,
J 20723 or 20601, SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M

Figure 6-1 . New parts for this chapter: 1 . Arduino wireless shield 2 . Spark Fun XBee breakout board 3 . 2mm female header pins

4 . Arduino WiFi shield 5 . Digi XBee 802.15.4 OEM module 6 . Adafruit XBee-to-USB adapter 7 . Spark Fun XBee Explorer 8 . Infrared

LED 9 . Arduno Fio. Don't forget plenty of male header pins for the breakout boards.

1

2
3

4

5

10

9 8

7

6

WIRELESS COMMUNICATION 183

 » 2 Arduino modules Arduino Fio models are a nice
alternative designed to work with XBees, but any Uno-
compatible board should work.
SF DEV-10116

 » 2 Digi Xbee 802 .15 .4 RF modules J 2113375,
SF WRL-08664 , AF 128, F 1546394, SS WLS113A4M,
MS MKAD14

 » 2 Arduino wireless shields You can opt to not use the
shields and use the parts listed below instead.
A A000064 or A000065. Alternative shields:
SF WRL-09976, AF 126, F 1848697, RS 696-1670, SS
WLS114A0P

 » 2 potentiometers J 29082, SF COM-09939, F 350072,
RS 522-0625

 » 1 uSb-Xbee adapter
The following parts are only necessary if you are not
using Wireless shields.
J 32400, SF WRL-08687, AF 247

 » 2 3 .3V regulators J 242115, D 576-1134-ND, SF COM-
00526, F 1703357, RS 534-3021

 » 2 1µF capacitors J 94161, D P10312-ND, F 8126933,
RS 475-9009

 » 2 10µF capacitors J 29891, D P11212-ND, F 1144605,
RS 715-1638

 » 2 Xbee breakout boards J 32403, SF BOB-08276,
AF 127

 » 4 rows of 0 .1-inch header pins J 103377, D A26509-
20ND, SF PRT-00116, F 1593411

 » 4 2mm female header rows J 2037747, D 3M9406-
ND, F 1776193

 » 6 LEDs D 160-1144-ND or 160-1665-ND, J 34761 or
94511, F 1015878, RS 247-1662 or 826-830, SF COM-
09592 or COM-09590

PROJECT 11: bluetooth Transceivers
 » 2 Arduino modules Get something based on the

Arduino Uno, but the project should work on other
Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081, SS
ARD132D2P, MS MKSP4

 » 2 solderless breadboards D 438-1045-ND, J 20723
or 20601, SF PRT-00137, F 4692810, AF 64, SS
STR101C2M or STR102C2M

 » 2 LEDs D 160-1144-ND or 160-1665-ND, J 34761 or
94511, F 1015878, RS 247-1662 or 826-830, SF COM-
09592 or COM-09590

 » 2 potentiometers Any analog sensor will work.
J 29082, SF COM-09939, F 350072, RS 522-0625

 » 2 pushbuttons Any will do.
D GH1344-ND, J 315432, SF COM-10302, F 1634684,
RS 718-2213

 » 2 220-ohm resistors D 220QBK-ND, J 690700, F
9337792, RS 707-8842

 » 2 10-kilohm resistors D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 1 FTDI uSb-to-Serial adapter Both the 5V or 3.3V
versions will work; these come as cables or standalone
modules. SF DEV-09718 or DEV-09716, AF 70, A
A000059, MS MKAD22, SS PRO101D2P, D TTL-232R-
3V3 or TTL-232R-5V

 » 2 bluetooth Mate modules SF WRL-09358 or WRL-
10393

PROJECT 12: Hello WiFi!
 » 1 Arduino WiFi shield A A000058
 » 1 Arduino module Get something based on the Arduino

Uno, but the project should work on other Arduino and
Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 1 WiFi Ethernet connection to the Internet
 » 3 10-kilohm resistors D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 3 photocells (light-dependent resistors) D PDV-
P9200-ND, J 202403, SF SEN-09088, F 7482280,
RS 234-1050

 » 1 solderless breadboard D 438-1045-ND, J
20723 or 20601, SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M, MS MKKN2

 » 3 lighting filters One primary red, one primary green,
and one primary blue. Available from your local lighting-
or photo-equipment supplier.

184 MAKING THINGS TALK

Why Isn’t Everything Wireless?
The advantage of wireless communication seems obvious: no wires! This makes

physical design much simpler for any project where the devices have to move and

talk to each other. Wearable sensor systems, digital musical instruments, and remote

control vehicles are all simplified physically by wireless communication. However, there

are some limits to this communication that you should consider before going wireless.

Wireless communication is never as reliable
as wired communication

You have less control over the sources of interference.
You can insulate and shield a wire carrying data com-
munications, but you can never totally isolate a radio or
infrared wireless link. There will always be some form of
interference, so you must make sure that all the devices
in your system know what to do if they get a garbled
message, or no message at all, from their counterparts.

Wireless communication is never just
one-to-one communication

The radio and infrared devices mentioned here
broadcast their signals for all to hear. Sometimes that
means they interfere with the communication between
other devices. For example, Bluetooth, most WiFi radios
(802.11b, g, and n), and ZigBee (802.15.4) radios all work
in the same frequency range: 2.4 gigahertz (802.11n will
also work at 5GHz). They’re designed to not cause each
other undue interference, but if you have a large number
of ZigBee radios working in the same space as a busy
WiFi network, for example, you’ll get interference.

Wireless communication does not mean wireless power
You still have to provide power to your devices, and if
they’re moving, this means using battery power. Batteries
add weight, and they don’t last forever. The failure of a
battery when you’re testing a project can cause all kinds
of errors that you might attribute to other causes. A
classic example of this is the “mystery radio error.” Many

radios consume extra power when they’re transmitting.
This causes a slight dip in the voltage of the power source.
If the radio isn’t properly decoupled with a capacitor
across its power and ground leads, the voltage can dip
low enough to make the radio reset itself. The radio may
appear to function normally when you’re sending it serial
messages, but it will never transmit, and you won’t know
why. When you start to develop wireless projects, it’s
good practice to first make sure that you have the com-
munication working using a regulated, plugged-in power
supply, and then create a stable battery supply.

Wireless communication generates
electromagnetic radiation

This is easy to forget about, but every radio you use
emits electromagnetic energy. The same energy that
cooks your food in a microwave sends your mp3 files
across the Internet. And while there are many studies
indicating that it’s safe at the low operating levels of the
radios used here, why add to the general noise if you
don’t have to?

Make the wired version first
The radio and IR transceivers discussed here are
replacements for the communications wires used in
previous chapters. Before you decide to add wireless
to any application, it’s important to make sure you’ve
got the basic exchange of messages between devices
working over wires first.
X

The early part of this chapter covers how wireless works
and what makes it stop working, giving you some back-
ground and starting places for troubleshooting. The
second half of the chapter contains examples. The topic
is so broad, even a survey of several different devices only

covers the tip of the iceberg. For that reason, the exercises
in this chapter will be less fully developed applications than
the previous ones. Instead, you’ll just get the basic “Hello
World!” example for several forms of wireless device.
X

WIRELESS COMMUNICATION 185

Two Flavors of Wireless: Infrared and Radio
There are two common types of wireless communication in most people’s lives: infrared

light communication and radio communication. The main difference between them,

from a user’s or developer’s position, is their directionality.

Television remote controls typically use infrared (IR) com-
munication. Unlike radio, it’s dependent on the orientation
between transmitter and receiver. There must be a clear
line of sight between the two. Sometimes IR can work by
bouncing the beam off another surface, but it’s not as
reliable. Ultimately, the receiver is an optical device, so it
has to “see” the signal. Car door openers, mobile phones,
garage door remote controls, and many other devices
use radio. These work regardless of whether the trans-
mitter and receiver are facing each other. They can even
operate through walls, in some cases. In other words, their
transmission is omnidirectional. Generally, IR is used for
short-range line-of sight applications, and radio is used for
everything else; Figure 6-2 illustrates this difference.

Transmitters, Receivers,
and Transceivers
There are three types of devices common to both IR and
RF systems: transmitters, which send a signal but can’t
receive one; receivers, which receive a signal but can’t
send one; and transceivers, which can do both. You may
wonder why everything isn’t a transceiver, as it’s the most
flexible device. It’s more complex to make a transceiver
than it is to make the other two. In a transceiver, you have
to make sure the receiver is not receiving its transmit-
ter’s transmission, or they’ll interfere with each other and
not listen to any other device. For many applications, it’s
cheaper to use a transmitter-receiver pair and handle any
errors by just transmitting the message many times until
the receiver gets it. That’s how TV remote controls work,
for example. It makes the components much cheaper.

It’s increasingly common in radio applications to just make
every device a transceiver, and incorporate a microcon-
troller to manage the transmitter-receiver filtering. All
Bluetooth, ZigBee, and WiFi radios work this way. However,
it’s still possible to get transmitter-receiver pair radios, and
they are still cheaper than their transceiver counterparts.

Keep in mind the distinction between transmitter-receiver
pairs and transceivers when you plan your projects, and
when you shop. Consider whether the communication
in your project must be two-way, or whether it can be
one-way only. If it’s one-way, ask yourself what happens if
the communication fails. Can the receiver operate without
asking for clarification? Can the problem be solved by
transmitting repeatedly until the message is received? If
the answer is yes, you might be able to use a transmitter-
receiver pair and save some money.

How Infrared Works
IR communication works by pulsing an IR LED at a set
data rate, and receiving the pulses using an IR photodi-
ode. It’s simply serial communication transmitted using
infrared light. Since there are many everyday sources of IR
light (the sun, incandescent light bulbs, any heat source),
it’s necessary to differentiate the IR data signal from other
IR energy. To do this, the serial output is sent to an oscil-
lator before it’s sent to the output LED. The wave created
by the oscillator, called a carrier wave, is a regular pulse
that’s modulated by the pulses of the data signal. The

Figure 6-2

The signal from the LED at left radiates out in a beam from the LED,

while the signal from a radio antenna like on the XBee radio at right

radiates omnidirectionally.

186 MAKING THINGS TALK

receiver picks up all IR light but filters out anything that’s
not vibrating at the carrier frequency. Then it filters out the
carrier frequency, so all that’s left is the data signal. This
method allows you to transmit data using infrared light
without getting interference from other IR light sources—
unless they happen to be oscillating at the same frequency
as your carrier wave.

The directional nature of infrared makes it more limited,
but cheaper than radio, and requires less power. As radios
get cheaper, more power-efficient, and more robust, it’s
less common to see an IR port on a computer. However,
it’s still both cost-effective and power-efficient for line-of-
sight remote control applications.

Data protocols for the IR remote controls of most home
electronics vary from manufacturer to manufacturer. To
decode them, you need to know both the carrier frequency
and the message structure. Most commercial IR remote
control devices operate using a carrier wave between 38
and 40 kHz. The carrier wave’s frequency limits the rate at
which you can send data on that wave, so IR transmission is

usually done at a low data rate, typically between 500 and
2,000 bits per second. It’s not great for high-bandwidth
data transmission, but if you’re only sending the values
of a few pushbuttons on a remote, it’s acceptable. Unlike
the serial protocols you’ve seen so far in this book, IR
protocols do not all use an 8-bit data format. For example,
Sony’s Control-S protocol has three formats: 12 bit, 15 bit,
and 20 bit. Philips’ RC5 format, common to many remotes,
uses a 14-bit format.

If you have to send or receive remote control signals,
you’ll save a lot of time by looking for a specialty IR
modulator chip to do the job, rather than trying to recreate
the protocol yourself. Fortunately, there are many good
sites on the Web that explain the various protocols.
Reynolds Electronics (www.rentron.com) has many helpful
tutorials, and sells a number of useful IR modulators
and demodulators. EPanorama has a number of useful
links describing many of the more common IR protocols
at www.epanorama.net/links/irremote.html. There are
also a number of libraries written for Arduino to help you
send and receive IR signals for different protocols. Many

Making Infrared Visible

 Figure 6-3 . Having a camera at hand is useful when troubleshooting IR projects.

There are two tools that are really helpful when you’re working with IR transmitters and receivers: a camera and an oscilloscope.

Even though you can’t see infrared light, cameras can. If you’re not sure whether your IR LED is working, one quick way to check

is to point the LED at a camera and look at the resulting image. If it’s working, you’ll see the LED light up. Figure 6-3 shows the

IR LED in a home remote control, viewed through a webcam attached to a personal computer. You can even see this in the LCD

viewfinder of a digital camera. If you try this with your IR LED, you may need to turn the lights down or close the curtains to see

this effect. Some webcams have a built-in IR filter, so it’s good to first check with an IR device that you know works, like a remote

control, before you use it to detect whether your project is working.

WIRELESS COMMUNICATION 187

 Figure 6-4. An oscilloscope can help you see the pattern of

an IR signal.

of them are listed on the Arduino playground at http://
arduino.cc/playground/Main/InterfacingWithHardware.
You’ll see one in action in the next project.

If you’re building both the transmitter and receiver, your
job is fairly straightforward. You just need an oscillator
through which you can pass your serial data to an infrared

LED, and a receiver that listens for the carrier wave and
demodulates the data signal. It’s possible to build your
own IR modulator using a 555 timer IC, but there are a
number of inexpensive modules you can buy to modulate
or demodulate an IR signal as well.
X

Sniffing Infrared Signals

220Ω

1 5 10 15 20

1 5 10 15 20

A
B
C
D
E

F
G
H
I
J

 Figure 6-5. An IR phototransistor and LED in series work

well to test IR reception.

An oscilloscope is also useful when you’re trying to

decipher an IR signal (see Figure 6-4). You may not know

the protocol for your receiver, but you can work it out by

looking at the signal it sent. Connect an infrared photo-

transistor, a resistor, and a regular LED in series, as shown

in Figure 6-5, and you should see the LED light up when

you point your remote at the phototransistor.

To see the remote’s signal on an oscilloscope, connect

the scope probes to ground and to the phototransistor’s

emitter, and fire the remote at the phototransistor. Once

you see activity, adjust the voltage and time divisions on

the scope until you see readable activity. Most scopes will

tell you the frequency of the signal automatically. Putting

your scope in single-shot trigger mode will help you capture

the actual signal. Once you can see the timing of each

signal’s pulse, you can work out how to duplicate it by gen-

erating your own pulses on an IR LED. For more on this, see

many of the excellent blog posts on IR remote control using

an Arduino. For example, read Ken Shirriff’s very good expla-

nation on his blog, at www.arcfn.com.

MATERIALS

 » 1 solderless breadboard
 » 1 220-ohm resistor
 » 1 phototransistor Digi-Key part no. 365-1068-ND.
 » 1 LED
 » 1 battery or power source 5V or less.
 » 1 oscilloscope DSO nano shown here.

188 MAKING THINGS TALK

This example uses an infrared LED and

an Arduino to control a digital camera. It’s

about the simplest IR control project you

can do.

MATERIALS

 » 1 Arduino module
 » 1 infrared LED
 » 1 pushbutton
 » 1 220-ohm resistor
 » 1 10-kilohm resistor
 » 1 solderless breadboard or prototyping shield

Most digital SLR cameras on the market today can be
controlled remotely via infrared. Each brand uses a slightly
different protocol, but they all tend to have the same basic
commands: trigger the shutter, trigger after a delay, and
auto-focus. Sebastian Setz has written an Arduino library
that can send the signals for most common cameras. It’s
been tested with Canon, Nikon, Olympus, Pentax, and
Sony. If you have an SLR from any of these brands, you
should be able to control it with this library.

The circuit for this project is simple. Connect the push-
button to pin 4 of the microcontoller (with a 10-kilohm
pulldown resistor), and connect the infrared LED to pin 3
of the microcontroller, as shown in Figure 6-6.

Download the Multi Camera IR Control library from http://
sebastian.setz.name/arduino/my-libraries/multi-camera-
ir-control and copy it to the libraries directory of your
Arduino sketch directory. If you’ve never installed a library
before, you’ll need to create this directory. One it’s there,
restart the Arduino application, and you should see a new
library in the Sketch menu’s Import Library submenu
called MultiCameraIrControl. Now you’re ready to get
going.
X

Infrared Control of a Digital Camera

Project 9

Figure 6-6

The microcontroller with an IR LED and pushbutton attached.

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

+5V

+5V

pushbutton

10kΩ220Ω

IR LED

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

WIRELESS COMMUNICATION 189

/*

 IR Camera control

 Context: Arduino

 This sketch controls a digital camera via an infrared LED.

 */

// include the library for camera control:

#include <multiCameraIrControl.h>

const int pushButtonPin = 4;

// set up pin 3 to control the IR LED.

// change this depending on the brand of your camera:

Nikon camera(3);

// Variables will change:

int buttonState = 0; // current state of the button

int lastButtonState = 0; // previous state of the button

To start your sketch,
import the MultiCam-

eraIrControl library. Initialize the library
to send signals on pin 3, to which the
LED is connected. Then, set up a few
variables to keep track of the state of
the pushbutton.

 Try It

void loop(){

 // read the pushbutton input pin:

 buttonState = digitalRead(pushButtonPin);

 // compare the buttonState to its previous state

 // if it's changed, and it's high now, then the person

 // just punched the button:

 if (buttonState != lastButtonState && buttonState == HIGH) {

 // send the signal to open the shutter:

 camera.shutterNow();

 }

 // save the current state as the last state,

 //for next time through the loop

 lastButtonState = buttonState;

}

void setup(){

 // initialize the pushButton as input:

 pinMode(pushButtonPin, INPUT);

}

The main loop listens for the
pushbutton’s state to change. Since
you don’t want the camera firing all the
time, trigger the camera only when the
pushbutton changes from OFF to ON.
To do that, compare the button’s state
to its previous state by storing the
current state as the previous state at
the end of each loop.

That’s the whole program. Now point
the LED at your camera and start
taking some pictures remotely. You
may have to set your camera to remote
control mode. Check the camera
manual for how to do this, as it’s
different from camera to camera.

The setup method initializes the
pushbutton as an input.

8

8

190 MAKING THINGS TALK

How Radio Works
Radio relies on the electrical property called induction. Any time you vary the electrical

current in a wire, you generate a corresponding magnetic field that emanates from the

wire. This changing magnetic field induces an electrical current in any other wires in the

field. The frequency of the magnetic field is the same as the frequency of the current

in the original wire. This means that if you want to send a signal without a wire, you can

generate a changing current in one wire at a given frequency, and attach a circuit to the

second wire to detect current changes at that frequency. That’s how radio works.

The distance that you can transmit a radio signal depends
on the signal strength, the sensitivity of the receiver, the
nature of the antennas, and any obstacles that block the
signal. The stronger the original current and the more
sensitive the receiver, the farther apart the sender and
receiver can be. The two wires act as antennas. Any
conductor can be an antenna, but some work better than
others. The length and shape of the antenna and the
frequency of the signal all affect transmission. Antenna
design is a whole field of study on its own, so I can’t do it
justice here, but a rough rule of thumb for a straight wire
antenna is as follows:

Antenna length = 5,616 in. / frequency in MHz =
14,266.06 cm. / frequency in MHz

For more information, consult the technical specifications
for the specific radios you’re using. Instructions on making
a good antenna are common in a radio’s documentation.

Radio Transmission: Digital and Analog
As with everything else in the microcontroller world, it’s
important to distinguish between digital and analog radio
transmission. Analog radios simply take an analog electri-
cal signal, such as an audio signal, and superimpose it

Figure 6-7

This intervalometer was built using

the same methods as shown above.

An Arduino in the box senses a

change from the PIR sensor and

sends an IR signal to the camera to

take a picture.

A

A . PIR sensor

WIRELESS COMMUNICATION 191

on the radio frequency in order to transmit it. The radio
frequency acts as a carrier wave, carrying the audio signal.
Digital radios superimpose digital signals on the carrier
wave, so there must be a digital device on either end to
encode or decode those signals. In other words, digital
radios are basically modems, converting digital data to
radio signals, and radio signals back into digital data.

Radio Interference
Though the antennas you’ll use in this chapter are omni-
directional, radio can be blocked by obstacles, particularly
metal ones. A large metal sheet, for example, will reflect a
radio signal rather than allowing it to pass through. This
principle is used not only in designing antennas, but also in
designing radio frequency (RF) shields. If you’ve ever cut
open a computer cable and encountered a thin piece of
foil wrapped around the inside wires, you’ve encountered
an RF shield. Shields are used to prevent random radio
signals from interfering with the data being transmitted
down a wire. A shield doesn’t have to be a solid sheet
of metal, though. A mesh of conductive metal will block
a radio signal as well—if the grid of the mesh is small
enough. The effectiveness of a given mesh depends on
the frequency it’s designed to block. It’s possible to block
radio signals from a whole space by surrounding the space
with an appropriate shield and grounding the shield. You’ll
hear this referred to as making a Faraday cage. The effect
is named after the physicist Michael Faraday, who first
demonstrated and documented it.

Sometimes radio transmission is blocked by unintentional
shields. If you’re having trouble getting radio signals
through, look for metal that might be shielding the signal.
Transmitting from inside a car can sometimes be tricky
because the car body acts as a Faraday cage. Putting the
antenna on the outside of the car improves reception.
Bodies of water block RF effectively as well. This is true for
just about every radio housing.

All kinds of electrical devices emit radio waves as side
effects of their operation. Any alternating current can
generate a radio signal, even the AC that powers your
home or office. This is why you hear a hum when you
lay speaker wires in parallel with a power cord. The AC
signal is inducing a current in the speaker wires, and
the speakers are reproducing the changes in current as
sound. Likewise, it’s why you may have trouble operating
a wireless data network near a microwave oven. WiFi
operates at frequencies in the gigahertz range, commonly
called the microwave range, because the wavelength of

those signals is very short compared to lower frequency
signals. To cook food, microwave ovens generate energy
in this range to excite (heat up) the water molecules in
food. Some of that energy leaks from the oven at low
power, which is why you get all kinds of radio noise in the
gigahertz range around a microwave.

Motors and generators are especially insidious sources of
radio noise. A motor also operates by induction; specifi-
cally, by spinning a pair of magnets around a shaft in the
center of a coil of wire. By putting a current in the wire,
you generate a magnetic field, which attracts or repulses
the magnets, causing them to spin. Likewise, by using
mechanical force to spin the magnets, you generate a
current in the wire. So, a motor or a generator is essen-
tially a little radio, generating noise at whatever frequency
it’s rotating.

Because there are so many sources of radio noise,
there are many ways to interfere with a radio signal. It’s
important to keep these possible sources of noise in mind
when you begin to work with radio devices. Knowledge of
common interference sources, and knowing how to shield
against them, is a valuable tool in radio troubleshooting.

Multiplexing and Protocols
When you’re transmitting via radio, anyone with a com-
patible receiver can receive your signal. There’s no wire
to contain the signal, so if two transmitters are sending
at the same time, they will interfere with each other. This
is the biggest weakness of radio: a given receiver has no
way to know who sent the signal it’s receiving. In contrast,
consider a wired serial connection: you can be reasonably
sure when you receive an electrical pulse on a serial cable
that it came from the device on the other end of the wire.
You have no such guarantee with radio. It’s as if you were
blindfolded at a cocktail party and everyone else there had
the same voice. The only way you’d know who was talking
to you was if each person clearly identified himself at the
beginning and end of his conversation, and no one inter-
rupted him during this time. In other words, it’s all about
protocols.

The first thing everyone at that cocktail party would have
to do is agree on who speaks when. That way they could
each have your attention for awhile. Sharing in radio com-
munication is called multiplexing, and this form of sharing
is called time-division multiplexing. Each transmitter gets
a given time slot in which to transmit.

192 MAKING THINGS TALK

Of course, it depends on all the transmitters being in sync.
When they’re not, time-division multiplexing can still work
reasonably well if all the transmitters speak much less
than they listen (remember the first rule of love and net-
working from Chapter 1: listen more than you speak). If a
given transmitter is sending for only a few milliseconds in
each second, and if there’s a limited number of transmit-
ters, the chance that any two messages will overlap, or
collide, is relatively low. This guideline, combined with a
request for clarification from the receiver (rule number
three), can ensure reasonably good RF communication.

Back to the cocktail party. If every person spoke in a
different tone, you could distinguish each individual by her
tone. In radio terms, this is called frequency-division multi-
plexing. It means that the receiver has to be able to receive
on several frequencies simultaneously. But if there’s a
coordinator handing out frequencies to each pair of trans-
mitters and receivers, it’s reasonably effective.

Various combinations of time- and frequency-division
multiplexing are used in every digital radio transmission
system. The good news is that most of the time you never
have to think about it becausetthe radios handle it for you.

Multiplexing helps transmission by arranging for transmit-
ters to take turns and to distinguish themselves based on
frequency, but it doesn’t concern itself with the content of
what’s being said. This is where data protocols come in.
Just as you saw how data protocols made wired network-
ing possible, you’ll see them come into play here as well.
To make sure the message is clear, it’s common to use a
data protocol on top of using multiplexing. For example,
Bluetooth, ZigBee, and WiFi are nothing more than data
networking protocols layered on top of a radio signal. All
three of them could just as easily be implemented on a
wired network (and, in a sense, WiFi is: it uses the same
TCP/IP layer that Ethernet uses). The principles of these
protocols are no different than those of wired networks,
which makes it possible to understand wireless data trans-
mission even if you’re not a radio engineer. Remember the
principles and troubleshooting methods you used when
dealing with wired networks, because you’ll use them
again in wireless projects. The methods mentioned here
are just new tools in your troubleshooting toolkit. You’ll
need them in the projects that follow.

Radio Transmitters, Receivers, and
Transceivers

How do you know whether to choose a radio transmitter-
receiver pair, or a pair of transceivers? The simplest
answer is that if you need feedback from the device to
which you’re transmitting, then you need a transceiver.
Most of the time, it’s simplest to use transceivers. In
fact, as transceivers have become cheaper to make (and
therefore sell), transmit-receive pairs are getting harder to
find.

There are many different kinds of data transceivers
available. The simplest digital radio transceivers on the
market connect directly to the serial transmit and receive
pins of your microcontroller. Any serial data you send
out the transmit line goes directly out as a radio signal.
Any pulses received by the transceiver are sent into your
microcontroller’s receive line. They’re simple to connect,
but you have to manage the whole conversation yourself.
If the receiving transceiver misses a bit of data, you’ll get
a garbled message. Any nearby radio device in the same
frequency range can affect the quality of reception. As
long as you’re working with just two radios and no interfer-
ence, transceivers like this do a decent job. However, this is
seldom the case.

Nowadays, most transceivers on the market implement
networking protocols, handling the conversation manage-
ment for you. The Bluetooth modem in Chapter 2 ignored
signals from other radios that it wasn’t associated with,
and handled error-checking for you. The XBee radios you’ll
use in the next project will do the same, and much more,
which you’ll see in Chapter 7. They require you to learn a
bit more in terms of networking protocols, but the benefits
you gain make them well worth that minor cost.

The biggest difference between networked radios and
simple transceivers is that every device on a network has
an address. That means you have to decide which other
device you’re speaking to, or whether you’re speaking to all
the other devices on the network.

Because of the complications of network management, all
networked radios generally have two modes of operation:
command and data modes (as described in Chapter
2). When looking at the communications protocol for a
networked radio, one of the first things you’ll learn is how
to switch from command mode to data mode and back.
X

WIRELESS COMMUNICATION 193

In this example, you’ll connect an RF

transceiver and a potentiometer to the

microcontroller. Each microcontroller will

send a signal to the other when its poten-

tiometer changes by more than 10 points.

When either one receives a message, it

will light up an LED to indicate that it got

a message. Each device also has an LED

for local feedback as well.

MATERIALS

 » 2 solderless breadboards
 » 1 uSb-to-Xbee adapter
 » 2 Arduinos Arduino Fio models are a nice

alternative designed to work with XBees
 » 2 Digi Xbee 802 .15 .4 RF modules
 » 2 Arduino wireless shields

If you choose not to use wireless shields or Arduino
Fios, you can use the parts below to connect the
XBees to the Arduinos:

 » 2 3 .3V regulators
 » 2 1µF capacitors
 » 2 10µF capacitors
 » 2 Xbee breakout boards
 » 4 rows of 0 .1-inch header pins
 » 4 2mm female header rows
 » 6 LEDs
 » 2 potentiometers

Duplex Radio Transmission

The RF transceivers used in this project implement the
802.15.4 wireless networking protocol on which ZigBee
is based. In this example, you won’t actually use any of
the benefits of ZigBee, and few of the 802.15.4 benefits.
802.15.4 and ZigBee are designed to allow many different
objects to communicate in a flexible networking scheme.
Each radio has an address, and every time it sends a
message, it has to specify the address to which to send.
It can also send a broadcast message, addressed to every
other radio in range—you’ll see more of that in Chapter
7. For now, you’ll give each of your two radios the other’s
address so they can pass messages back and forth.

There are many things that can go wrong with wireless
transmission, and as radio transmissions are not detectable
without a working radio, it can be difficult to troubleshoot.
Because of that, you’re going to build this project in
stages. First, you’ll communicate with the radio module
itself serially, in order to set its local address and destination
address. Then, you’ll write a program to make the micro-
controller send messages when the potentiometer
changes, and to listen for the message to come through
on a second radio attached to your personal computer.
Finally, you’ll make two microcontrollers talk to each
other using the radios.

In this example, you won’t actually use any of the features
of ZigBee or the 802.15.4 protocol. Those protocols are
designed to allow many different devices to communicate
in a multitiered networking scheme. Each radio has an
address, and every time it sends a message, it has to specify
the address to which to send. It can also send a broadcast
message, addressed to every other radio in range—you’ll
see how to send broadcast messages in Chapter 7. For now,

Project 10

•Step 1: Configuring the XBee
Modules Serially
The easiest way to connect an XBee to your personal
computer is to use an XBee-to-USB serial adapter. Since
this book’s first edition was published, the popularity of
XBees has grown exponentially, and multiple versions
are now available (most hobbyist electronics vendors sell
a version). They’re all basically a USB-to-Serial adapter
mounted on a board with pins spaced to fit an XBee radio.
The first image in Figure 6-12 shows two options: Adafruit’s
XBee USB adapter board and Spark Fun’s XBee Explorer.
Both have LEDs mounted to indicate serial transmit
and receive. Adafruit’s model also has LEDs to indicate
whether the radio is associated with a network or whether
it’s asleep. The sleep mode indicator LED is attached to
pin 13, which goes low when the radio is in sleep mode,
and high when it’s active. The associate indicator LED is
attached to pin 15. When the radio’s associated, this LED
will blink.

Plug your XBee into the adapter, connect it to your com-
puter’s USB port, and open your favorite serial terminal
program.

you’ll give each of your two radios the other’s address so
they can pass messages back and forth.

194 MAKING THINGS TALK

The XBee command protocol is particular about how you
terminate commands, expecting that each command is on
a line terminated only with a carriage return (\r or ASCII
13). Most serial terminal programs allow you to control
what is sent when you hit the Return key, however.

In CoolTerm for OS X and Windows, click the Options
button and change the Enter Key Emulation to CR (see
Figure 6-10). In PuTTY for Windows and Ubuntu Linux,
choose the Terminal Configuration tab, and check “Implicit
LF in every CR” (see Figure 6-11).

Once you’ve configured your serial terminal, open the port
and type:

+++

Don’t hit Return or any other key for at least one second
afterward. The XBee should respond like so:

OK

This step is similar to the Bluetooth modem in Chapter 2,
where you typed $$$ to enter command mode. The XBee
is using an AT-style command set, and the +++ puts it into
command mode. The one-second pause after this string is
called the guard time. If you do nothing, the module will drop
out of command mode after 10 seconds. So, if you’re reading
this while typing, you may need to type +++ again before
the next step.

Figure 6-8

XBee breakout board, in various stages.

Bottom: bare board with necessary

headers. Top right: finished board. Top

left: finished board with XBee mounted.

The XBee radios have pins spaced 2mm apart, which is too

narrow to fit on a breadboard. You can either solder wires to

each pin to extend the legs, or you can mount the module on

a breakout board. SparkFun has such a board: the Breakout

Board for XBee Module (part number BOB-08276). Once

you’ve got the breakout board, solder headers to the inner

rows. These will plug into your breadboard. Next, attach the

2mm female headers. The XBee will plug into these, so you

may find it useful to align them to the board by plugging

them into the XBee first, then plugging it with the headers

attached into the board.

Mounting the XBee Radios on a Breakout Board

WIRELESS COMMUNICATION 195

Choosing Which XBee Radios to Buy

Once you get the OK response, set the XBee’s address.
The XBee protocol uses either 16-bit or 64-bit long
addresses, so there are two parts to the address: the high
word and the low word (in computer memory, two or more
bytes used for a single value are sometimes referred to as
a word). For this project, you’ll use 16-bit addressing and,
therefore, get to choose your own address. You’ll need only
the low word of the address to do this. Type:

ATMY1234\r

(Remember that \r indicates you should press Enter or
Return.) To confirm that you set it, type:

ATMY\r

The module should respond:

1234

Next, set the XBee’s destination address (the address
to which it will send messages). Make sure you’re in
command mode (+++), then type ATDL\r.

You’ll likely get this:

0

The default destination address on these modules is 0.
The destination address is two words long, so to see
the high word, type:

ATDH\r

Digi makes several variations on the XBee module, and

picking the right one can be confusing. The point-to-

multipoint modules are the most basic, featuring the

ability to send directed messages or broadcast messages

to any radio in the network. They form star networks,

as described in Chapter 3, and are the easiest to set up.

The mesh modules include the ability to form multi-tier

mesh networks, but they are more complex to set up and

operate. Robert Faludi’s excellent book building Wireless

Sensor Networks (O’Reilly) covers the mesh network

radios in depth. For most hobbyist projects, though, a

mesh network is overkill, so point-to-multipoint radios are

used in this book.

The basic model, the XBee 802.15.4 low-power modules,

are the cheapest and have a nominal transmission range

of about 300m. The XBee-PRO 802.15.4 extended range

models have a longer range of about 1 mile (in practice,

I’ve never gotten more than a quarter-mile), but they

consume more power. Both the low-power and the PRO

models can be used interchangeably for this book’s

projects.

The Digi radios have several antenna options. Only two

options, the wire antenna or the chip antenna, require

no extra parts, so I recommend them for these projects.

Their model numbers are:

Digi XBee 802.15.4 low-power module: XB24-AWI-001 or

XB24-ACI-001

Digi XBee-PRO 802.15.4 extended range module: XBP24-

AWI-001 or XBP24-ACI-001

Figure 6-9 . XBee 802.15.4 modules. XBee low-power module

with chip antenna on the left, and XBee-PRO extended range

module with wire antenna on the right.

Pictures courtesy of Digi International.

196 MAKING THINGS TALK

This pair of commands can also be used to set the
destination address:

ATDL5678\r

ATDH0\r

These radios also have a group, or Personal Area Network
(PAN) ID. All radios with the same PAN ID can talk to each
other and ignore radios with a different PAN ID. Set the
PAN ID for your radio like so:

ATID1111\r

The XBee will respond to this command, like all
commands, with:

OK

Make sure to add WR after your last command, which
writes the parameters to the radio’s memory. That way,
they’ll remain the way you want them even after the radio
is powered off. For example:

ATID1111,WR\r

Figure 6-10

CoolTerm options menu. To use

CoolTerm to configure Digi radios (XBee

and otherwise), set Enter Key Emulation

to CR.

Figure 6-11

PuTTY Terminal Configuration menu.

To use PuTTY to configure Digi radios

(XBee and otherwise), choose “Implicit

LF in every CR.”

WIRELESS COMMUNICATION 197

Choosing Which XBee Accessories to Buy

There are so many XBee accessories on the market now

that picking the right parts can be confusing. There

are basically three ways you’ll use XBees in this book’s

projects:

Xbee to computer via uSb-to-Xbee adapter . There are

many of these available. Figure 6-12 shows two models, the

SparkFun XBee Explorer in red, and the XBee USB adapter

board—available from Adafruit and Parallax—in blue.

Xbee to microcontroller . For this, you can either use a

breakout board on which to mount the XBee, or a wireless

shield for a regular Arduino. Or, you can use an Arduno Fio,

which has an XBee mount built in.

Xbee standalone . For this, XBee breakout boards work well,

as does the XBee LilyPad board. The XBee LilyPad, the XBee

Explorer Regulated (Spark Fun part no. WRL-09132) and the

Adafruit XBee adapter kit (Adafruit part no. 126) all feature

built-in voltage regulators, so you can use your XBee with a

wider range of power supplies.

Figure 6-12 . XBee accessories. Clockwise from top left: XBee USB adapter, XBee

Explorer, Arduino Fio, Arduino wireless shield, XBee LilyPad.

198 MAKING THINGS TALK

You can combine commands on the same line by separat-
ing them with commas. For example, to get both words of
a module’s source address, type:

ATDL, DH\r

The module will respond with both words at once.
Likewise, to set both destination words and then make
the module write them to its memory—so that it saves
the address when it’s turned off—type:

ATDL5678, DH0, WR\r

The module will respond to all three commands at once:

OK OK OK

X

Once you’ve configured one of your radios, disconnect
your serial terminal program and unplug the board from
your computer. Next, remove the XBee from the circuit,
insert the second one, and configure it using the same
procedure. Don’t set a radio’s destination address to
the same value of its source address, or it will only talk
to itself! You can use any 16-bit address for your radios.
Here’s a typical configuration for two radios that will talk
to each other (don’t forget to add the WR to the last
command):

ATMy ATDL ATDH ATID

Radio 1 1234 5678 0 1111

Radio 2 5678 1234 0 1111

Figure 6-13

To keep track of the radios, label them

with a piece of tape. You’ll be switching

them between the USB-to-Serial

adapter and the microcontroller a few

times, and it’s easy to lose track of

which is which.

WIRELESS COMMUNICATION 199

A

A . Serial Switch set to Micro (to the left)

Several companies now make wireless shields for Arduino that

can work for this project. The original Arduino shield for XBees

used in the first edition of this book has been substantially

redesigned. Now called the Arduino wireless shield (because

other radio devices with the same footprint can also work on

this shield), it has a few nice features, such as a prototyping

area, an optional microSD card slot (you’ll see an SD card

example later in the book), and a serial select switch to allow

you to change the XBee’s serial pin connections.

When the wireless shield’s serial select switch is set to

“Micro,” the XBee will be connected to communicate with

the ATMega328 microcontroller on the Arduino. When

switched to “USB,” it will be connected to communicate

directly through the USB-to-Serial processor on the Arduino,

bypassing the microcontroller. In this position, you can use

the Arduino’s USB-to-Serial connection to configure your

XBees.

When you’re programming the Arduino, it’s a good idea to

remove the XBee so that the radio’s serial communications

don’t interfere with the program upload.

To configure the XBee radio on the shield using your Arduino

board as a USB-to-Serial converter, program the Arduino

with a blank sketch, just like this:

void setup() {

}

void loop() {

}

Then switch the serial select switch to USB. Open a serial

terminal connection to the Arduino board’s serial port, and

send commands as shown in “Step 1: Configuring the XBee

Modules Serially.” Once you’ve configured the radio, unplug

the XBee from the shield, set the serial select switch back to

“Micro,” and program your Arduino as usual.

Arduino Wireless Shield

200 MAKING THINGS TALK

OK! Now you’re ready to get two microcon-
trollers to talk to each other wirelessly via
XBee radios. For now, you’re going to leave one
XBee connected to your computer via the USB
adapter. Once you confirm that’s working, you’ll
replace your computer with a second Arduino
and XBee. Figure 6-14 shows a diagram of what’s
connected to what in this step. In Step 3, you’ll
remove the personal computer and replace it
with a second Arduino.

Figure 6-15 shows an XBee module attached to a
regular Arduino using the Arduino wireless shield.
Figure 6-16 shows how you’d do it if you were
using just an XBee breakout board instead of a
shield. Note that the XBee is attached to a 3.3V
regulator. The XBee’s serial I/O connections are
5-volt tolerant, meaning they can accept 5-volt
data signals, but the module operates at 3.3
volts. The Arduino Uno and newer models have
a more robust 3.3V regulator that can power the
XBee, but it doesn’t hurt to add a dedicated one,
as shown here.

Once your module is connected, it's time to
program the microcontroller to send data through
the XBee. In this program, the microcontroller
will configure the XBee’s destination address on
startup, and then send an analog reading when
the reading on analog pin 0 changes significantly.

At right, above

Figure 6-14

XBee #1 is connected to the microcontroller. XBee #2

is connected via USB or serial to the PC. This enables a

wireless link between the PC and the microcontroller.

•Step 2: Programming
the Microcontroller to Use
the XBee Module

At right, below

Figure 6-15

Arduino and wireless shield with potentiometer attached

to analog pin 0. This circuit is the same as the one shown

in Figure 6-16, but it’s without the LED on pin 9. The LEDs

attached to the XBee are built into the shield.

XBee module #2XBee module #1

Microcontroller
USB adapter
or serial port

Personal
computer

RF connection

Serial TX/RX Serial TX/RX

USB TX/RX

WIRELESS COMMUNICATION 201

220Ω

220Ω

220Ω

GND

DTR/DI8

NC

PWM1

PWM0 / RSSI

RESET

RX

TX

AD2 / DIO2

AD3 / DIO3

RTS / AD6 / DIO6

Ass't / AD5 / DIO5

Vref

SLP

CTS / DIO7

AD4 / DIO4

AD1 / DIO1

AD0 / DIO0Vcc

DO8

Xbee Radio

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

LD1117-33V
Voltage Reg

In Out

10µF 1µF

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER
G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

Figure 6-16

Top: XBee connected to an Arduino.

If you don’t want to use a shield,

you can connect the two with just a

breakout board. Note that this circuit

assumes you have a bare breakout

board with no voltage regulator. If

you use Spark Fun’s XBee Explorer

Regulated (part no. WRL-09132) or

Adafruit’s XBee adapter kit (part

no. 126), you won’t need the voltage

regulator because those two boards

have built-in 3.3V regulators.

At left: Circuit diagram for Arduino-

XBee connection.

202 MAKING THINGS TALK

const int sensorPin = A0; // input sensor

const int analogLed = 3; // LED that changes brightness w/incoming value

const int threshold = 10; // threshold for sensor's change

int lastSensorReading = 0; // previous state of the sensor

String inputString = "";

First, give the I/O pins
names, and set up

some variables for tracking the change
in the potentiometer.

void setup() {

 // configure serial communications:

 Serial.begin(9600);

 // configure output pin:

 pinMode (analogLed, OUTPUT);

 // set XBee's destination address:

 setDestination();

 // blink the TX LED indicating that the main program's about to start:

 blink(analogLed, 3);

}

Next, in the setup() method,
configure serial transmission, set the
modes on the I/O pin, and configure
the XBee’s destination address.

8

void setDestination() {

 // put the radio in command mode:

 Serial.print("+++");

 // wait for the radio to respond with "OK\r"

 char thisByte = 0;

 while (thisByte != '\r') {

 if (Serial.available() > 0) {

 thisByte = Serial.read();

 }

 }

 // set the destination address, using 16-bit addressing.

 // if you're using two radios, one radio's destination

 // should be the other radio's MY address, and vice versa:

 Serial.print("ATDH0, DL5678\r");

 // set my address using 16-bit addressing:

 Serial.print("ATMY1234\r");

 // set the PAN ID. If you're working in a place where many people

 // are using XBees, you should set your own PAN ID distinct

 // from other projects.

 Serial.print("ATID1111\r");

 // put the radio in data mode:

 Serial.print("ATCN\r");

}

The XBee configuration, handled
by the setDestination() method, looks
just like what you did earlier, only now
you’re instructing the microcontroller
to do it.

8

 8 Change the destination address to that of

the radio you’re attaching to your personal

computer, not the one that’s attached to your

microcontroller.

 Make It

WIRELESS COMMUNICATION 203

void blink(int thisPin, int howManyTimes) {

 // Blink the LED:

 for (int blinks=0; blinks< howManyTimes; blinks++) {

 digitalWrite(thisPin, HIGH);

 delay(200);

 digitalWrite(thisPin, LOW);

 delay(200);

 }

}

The blink() method is just like ones
you’ve seen previously in this book.

It blinks an LED to indicate that setup
is over.

8

void loop() {

 // listen for incoming serial data:

 if (Serial.available() > 0) {

 handleSerial();

 }

 // listen to the potentiometer:

 int sensorValue = readSensor();

 // if there's something to send, send it:

 if (sensorValue > 0) {

 Serial.println(sensorValue, DEC);

 }

}

The main loop handles incoming
serial data, reads the potentiometer,
and sends out da if there’s a sufficient
change in the potentiometer’s reading.

8

void handleSerial() {

 char inByte = Serial.read();

 // save only ASCII numeric characters (ASCII 0 - 9):

 if (isDigit(inByte)){

 inputString = inputString + inByte;

 }

 // if you get an ASCII newline:

 if (inByte == '\n') {

 // convert the string to a number:

 int brightness = inputString.toInt();

 // set the analog output LED:

 analogWrite(analogLed, brightness);

 // clear the input string for the

 // next value:

 inputString = "";

 Serial.print(brightness);

 }

}

int readSensor() {

 int result = analogRead(sensorPin);

Two other methods are called
from the loop: handleSerial(), which
listens for strings of ASCII numerals
and converts them to bytes in order to
set the brightness of the LED on the
PWM output; and readSensor(), which
reads the potentiometer and checks
to see whether the change on it is high
enough to send the new value out via
radio. Here are those methods.

8

»

204 MAKING THINGS TALK

Continued from previous page .

 // look for a change from the last reading

 // that's greater than the threshold:

 if (abs(result - lastSensorReading) > threshold) {

 result = result/4;

 lastSensorReading = result;

 } else {

 // if the change isn't significant, return 0:

 result = 0;

 }

 return result;

}

In the main loop, notice that you’re not using
any AT commands. That’s because the XBee
goes back into data mode (called idle mode in

the XBee user’s guide) automatically when you issue the
ATCN command in the setDestination() method.

Remember, in data mode, any bytes sent to an AT-style
modem go through as-is. The only exception to this rule
is that if the string +++ is received, the modem switches
to command mode. This behavior is the same as that of
the Bluetooth module from Chapter 2, as well as almost
any device that implements this kind of protocol. It’s
great because it means that once you’re in data mode,
you can send data with no extra commands, letting the
radio itself handle all the error corrections for you.

NOTE: You should disconnect the XBee’s

receive and transmit connections to the

microcontroller while programming (if

you’re using the Arduino wireless shield,

use the serial select switch). The serial

communications with the XBee can

interfere with the serial communications

with the programming computer. Once the

microcontroller’s programmed, you can re-

connect the transmit and receive lines.

•Step 3: Two-Way Wireless
Communication Between
Microcontrollers

This step is simple. All you have to do is replace the
computer in the previous step with a second micro-
controller. Connect an Arduino to your second XBee
module, as shown in Figure 6-16, or use a wireless shield.
The program for both microcontrollers will be almost
identical to each other; only the destination address of
the XBee radio will be different. This program will both
send and receive data over the modules. Turning the
potentiometer causes it to send a number to the other

Once you’ve programmed the microcontroller, set the des-
tination address on the computer’s XBee to the address
of the microcontroller’s radio. (If you did this in the earlier
step, you shouldn’t need to do it again.) Then, turn the
potentiometer on the microcontroller. You should get a
message like this in your serial terminal window:

120

The actual number will change as you turn the potenti-
ometer. It might overwrite itself in the serial window—
depending on your serial terminal application—because
you’re not sending a newline character. Congratulations!
You’ve made your first wireless transceiver link. Keep
turning the potentiometer until you’re bored, then move on
to Step 3.
X

microcontroller. When the microcontroller receives a number
in the serial port, it uses it to set the brightness of an LED on
pin 3.

First, connect the second XBee module to the second
microcontroller. Then, program both microcontrollers with
the previous program, making sure to set the destination
addresses as noted in the program.

When you’ve programmed both modules, power them on and
turn the potentiometer several times. As you turn the potenti-
ometer, the LED on pin 3 of the other module should fade up
and down. Now you’ve got the capability for duplex wireless
communication between two microcontrollers. This opens up
all kinds of possibilitiesfor interaction.
X

WIRELESS COMMUNICATION 205

Wireless and Mobile

Figure 6-17

Arduino module powered by a 9V battery.

Figure 6-18

Detail of the Fio, showing battery connector and USB-to-Serial

adapter connected for programming.

Figure 6-19

LilyPad Arduino Simple, with the LiPo battery connector. Photo

courtesy of Spark Fun.

Now that you’re able to communicate wirelessly, you might

want to make your microcontroller mobile as well. To do

this, all you have to do is power it from a battery. There’s a

simple way to do this for the standard Arduino boards, and

there are a few models of Arduinos—and some derivative

models—that are designed for mobile battery-powered use.

The simplest option is to connect a battery to the power

input terminals, as shown in Figure 6-17. The Vin pin

(Voltage input) can take from 6-15V input (the Arduino Uno

will run off lower voltage—I’ve run one off 3.7V—but it’s

not always reliable). You can either plug into the ground

and Vin pins, or make a plug adapter and plug into the

power plug.

The Arduino Fio is great for XBee projects. It has a socket for

an XBee and a battery connector for 3.7V Lithium Polymer

batteries, as shown in Figure 6-18. The mini-USB jack on the

Fio doesn’t actually communicate with the microcontroller—

it just charges the battery. To program the Fio, you either

need an FTDI-style USB adapter, as described in Chapter 2,

or you can program it wirelessly over the XBee. Programming

the Fio wirelessly requires an understanding of XBees, so it’s

a good idea to program it using a wire first. For more on Fio

programming, see http://arduino.cc/en/Main/ArduinoBoard-

FioProgramming.

The LilyPad Arduinos are all made for use in clothing and soft

goods. They’re also programmed using an FTDI-style serial

adapter. There are a couple LilyPad power adapters that take

LiPo batteries. The LilyPad Arduino Simple has a jack so you

can add a LiPo battery right to the board (see Figure 6-19).

It’s a good idea to keep your microcontroller module

connected to a power adapter or USB power while program-

ming and debugging. When a battery starts to weaken,

your module will operate inconsistently, which can make

debugging impossible.

206 MAKING THINGS TALK

MATERIALS

 » 2 solderless breadboards
 » 1 uSb-to-TTL serial adapter
 » 2 Arduino modules
 » 2 bluetooth Mate modules
 » 2 potentiometers or other analog sensors
 » 2 LEDs
 » 2 220-ohm resistors
 » 2 10-kilohm resistors
 » 2 pushbuttons

In Chapter 2, you learned how to connect

a microcontroller to your personal

computer using a Bluetooth radio. This

example shows you how to connect two

microcontrollers using Bluetooth in a

similar manner.

As mentioned in Chapter 2, Bluetooth was originally
intended as a protocol for replacing the wire between
two devices. As a result, it requires a tighter connection
between devices than you saw in the preceding XBee
project. In that project, a radio sent out a signal with no
awareness of whether the receiver got the message, and
it could send to a different receiver just by changing the
destination address. In contrast, Bluetooth radios must
establish a connection before sending data over a given
channel, and they must break that connection before
starting a conversation with a different radio over that
channel. The advantage of Bluetooth is that it’s built into
many commercial devices today, so it’s a convenient
way to connect microcontroller projects to personal
computers, phones, and more. For all its complications, it
offers reliable data transmission.

The modules used here—the Bluetooth Mate radios
from Spark Fun—use a radio from Roving Networks. The
command set used here was defined by Roving Networks.
Other Bluetooth modules from other manufacturers use
command sets with a similar style, and they may execute
similar functions, but their syntax is not the same. Unfor-
tunately, Bluetooth radio manufacturers haven’t set a
standard syntax for their devices.

Bluetooth Transceivers

•Step 1: The Circuits
Instead of pairing a Bluetooth radio with your computer’s
Bluetooth radio as you did in Chapter 2, you’re going to
pair two radios attached to microcontrollers. When you’re
done, your computer won’t be needed.

Because the Bluetooth connection process involves
many steps, it’s easiest to learn and understand it using
a serial terminal program before you start to write code.
Even when you are programming, the serial terminal
program will be a useful diagnostic tool. You can use the

USB-to-serial modules shown for Project 4, Negotiating in
Bluetooth in Chapter 2, but the goal of this project is to get
two microcontrollers talking to each other over Bluetooth
with no personal computer in the middle. So, instead of
using the USB-to-Serial adapter, you can set up an Arduino
board to pass the serial data from your computer to a
Bluetooth radio. Then, when you’re ready to remove the
personal computer in Step 3, you’ll just have to change the
sketch and make a minor circuit change to remove the PC.

To set up an Arduino as a USB-to-Serial passthrough, first
program the Arduino with a blank sketch. The BareMini-
mum sketch from the Basics examples will do fine. It looks
like this:

void setup() {

}

void loop() {

}

When you upload this sketch, the microcontroller will do
nothing, so you can use its connection to the USB-to-
serial processor to communicate with the Bluetooth radio.
Connect the radio as shown on the left (we’ll call it Arduino
#1 and radio #1) in Figure 6-20; then, connect it to your
computer and using your serial terminal program, open a
serial connection to it at 115200 bits per second.

For the moment, you’ll use the second Arduino just to
send a simple message so you can see things are working.
Connect it to the second Bluetooth Mate using the circuit
shown at right in Figure 6-20 (we’ll call it Arduino #2 and
radio #2). Eventually, they will both be wired this way.

Project 11

WIRELESS COMMUNICATION 207

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Arduino #1: Bluetooth
module is communi-
cating with the PC
through the USB-to-
serial processor

S
tat

C
onnect

R
N
-42

G
N
D

CT
S

VC
C

TX RX RT
S

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Arduino #2: Bluetooth
module is communi-
cating with Arduino’s
processor S

tat

C
onnect

R
N
-42

G
N
D

CT
S

VC
C

TX RX RT
S

Figure 6-20

The Arduino module on the left is used as a USB-to-Serial adapter for a Bluetooth Mate module. Notice

how RX is attached to RX and TX to TX. That’s because the Bluetooth Mate is actually talking to the

PC through the USB-to-Serial adapter, not the Arduino’s main processor, so the serial connections are

reversed. When you want the Bluetooth module to talk to the Arduino’s main processor, you’ll swap

these two connections, as shown at right.

Program Arduino #2 using a basic serial sketch, as follows:

void setup() {

 Serial.begin(115200);

}

void loop() {

 Serial.println("Hello Bluetooth!");

}

When you open a Bluetooth connection to this radio, you’ll
see the following message over and over:

Hello Bluetooth!

Hello Bluetooth!

Hello Bluetooth!

•Step 2: Getting to Know the
Commands
The Bluetooth Mate radios use a serial command set for
command and configuration, which has two modes—
command mode and data mode—just like the XBee radios.
When you first power up a Bluetooth Mate and connect
to its serial interface (using Arduino #1 in Figure 6-20, for
example), it’s in data mode. To see that it’s alive, type: $$$.
It will respond:

CMD\r

All of the radio’s responses will be followed by a carriage
return, as shown here. All of your input commands should
be followed by a carriage return (press Enter or Return).

208 MAKING THINGS TALK

Once you’re in command mode, you can get some basic
information about the radio by typing D, just as you did in
Chapter 2. You’ll get the radio’s status, which includes its
address:

Settings

BTA=000666112233

BTName=FireFly-7256

Baudrt(SW4)=115K

Parity=None

Mode =Slav

Authen=0

Encryp=0

PinCod=1234

Bonded=0

Rem=NONE SET

The first line beginning with BTA= is the radio’s address
in hexadecimal notation. Write down this address or copy
it to a text document—you’ll need it in a moment. Next,
check its connection status by typing GK\r. It will respond
like so:

0

When it’s connected and you do this, it will respond with 1
instead.

Now you want to see which other radios are available. Type
the following (the capital letter i):

I\r

The radio will respond with a list of radios, as it did in
Chapter 2:

Found 2

442A60F61837,Tom Igoe...s MacBook Air,38010C

000666481ADF,RN42-1FDF,1F00

Inquiry Done

You can see that each device has a different address,
name, and device code. You can get a list of only the ones
with a particular address code by typing:

IN 0,001F00\r

This is handy when you want only the other Bluetooth
Mates in the area. As you might have guessed, the device
code is 001F00. The IN command also eliminates the
text names, so you can get just the addresses and device
codes.

Now that you have the address of your other Bluetooth
radio (which should have shown in the lists above, if you
have it plugged into the other Arduino), you can connect
to it like so:

C, 000666481ADF\r

Replace 000666481ADF with the address of the radio
attached to Arduino #2. Radio #1 will respond:

TRYING

Once it makes a good connection, the green connect light
on both Bluetooth Mates should come on, the radios will
shift automatically to data mode, and you should see the
message from Arduino #2 as follows:

Hello Bluetooth!

Hello Bluetooth!

Hello Bluetooth!

The connection goes both ways, of course. Anything you
type in the serial terminal window gets sent to Arduino #2.
It’s not programmed to respond, though, so you won’t see
anything come back from it. When you’re ready to close
the connection, you first have to get back into command
mode by typing:

$$$\r

The radio will give you a CMD again, after which you type:

K,

The connection will be broken, and you’ll see:

KILL

There are other status commands as well, but these ones
are most important at first.
X

WIRELESS COMMUNICATION 209

•Step 3: Connecting Two
Bluetooth Radios
Now that you’ve gotthe basics of connecting and discon-
necting, it’s time to get the microcontrollers to do it. For
this step, you’ll connect via the same physical setup, adding
in a few extra parts. You’ll work on Arduino #2 instead of
Arduino #1. For now, leave the latter wired up as a USB-
to-Serial converter for the Bluetooth radio. Also leave the
serial terminal to it open, so you can see what happens.

First, get the Bluetooth addresses for both of your radios.
You already wrote down one. Replace it with the second
radio in your Serial-to-USB circuit, and follow the same
steps to get that radio’s address as well. While you’re
getting the addresses, make one extra configuration on
both radios, as follows:

SO,BT\r

This sets the status string to BT, so that when the radios
connect or disconnect, they’ll send a string to let you
know, like this:

BTCONNECT\r

or:

BTDISCONNECT\r

Next, add a potentiometer and pushbutton, as shown in
Figure 6-21. Just like the XBee example, it’s got a poten-
tiometer attached to the analog pin so that you can send
its values. You can use any analog sensor on pin A0. The
pushbutton will make or break the connection between the
two radios. This is a big difference between the XBees and
the Bluetooth radios—the latter have to be paired before
they can communicate.

NOTE: It’s a good idea to to remove your Bluetooth Mate while

programming the Arduino boards, just as you’ve had to for other

serial devices.

When the pushbutton is pressed for the first time, the
following program connects to another Bluetooth Mate
with a set address. When it connects, it sends its potenti-
ometer value as an ASCII string, terminated by
a carriage return.

Just like the XBee example, this program also looks for
incoming ASCII strings and converts them to use as a
PWM value to dim an LED on pin 3. It will take advantage
of the TextFinder library that you saw in Chapter 4. If you
haven’t already installed it, do so now using the instruc-
tions from that chapter.

/*

 Bluetooth Analog Duplex sender

 Context: Arduino

 */

#include <TextFinder.h>

const int sensorPin = A0; // analog input sensor

const int analogLed = 3; // LED that changes brightness

const int threshold = 20; // threshold for sensor's change

const int debounceInterval = 15; // used to smooth out pushbutton readings

const int connectButton = 2; // the pushbutton for connecting

int lastButtonState = 0; // previous state of the pushbutton

int lastSensorReading = 0; // previous state of the sensor

long lastReadingTime = 0; // previous time you read the sensor

// address of the remote BT radio. Replace with the address

// of your remote radio

String remoteAddress = "112233445566";

String messageString = ""; // messages coming in serial port

boolean connected = false; // whether you're connected or not

boolean commandMode = false; // whether you're in command or data mode

TextFinder finder(Serial); // for searching the serial input

First, here are the constants and
variables for this program.

8

 8 Change this to the
address of the other radio.

210 MAKING THINGS TALK

Figure 6-21

Bluetooth Mate radio attached to

an Arduino. This circuit is similar

to the XBee microcontroller circuit

discussed earlier. The pushbutton will

connect or disconnect the two radios.

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

S
tat

C
onnect

R
N
-42

G
N
D

CT
S

VC
C

TX RX RT
S

RTS

RX

TX

VCC

CTS

Gnd

Bluetooth Mate
Module

+5V
or +3.3V

+5V

220Ω

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

Connect/Disconnect switch

0-10KΩ

WIRELESS COMMUNICATION 211

void setup() {

 // configure serial communications:

 Serial.begin(115200);

 // configure output pins:

 pinMode (analogLed, OUTPUT);

 // blink the TX LED indicating that

 // the main program's about to start:

 blink(analogLed, 3);

}

The setup() method sets the
states of the pins, initializes serial,

and blinks an LED, as usual.

8

void loop() {

 // read incoming serial and parse it:

 handleSerial();

 // check to see if the pushbutton's pressed:

 boolean buttonPushed = buttonRead(connectButton);

 // if the button's just pressed:

 if (buttonPushed) {

 // if the client's connected, disconnect:

 if (connected) {

 BTDisconnect();

 } // if the client's disconnected, try to connect:

 else {

 BTConnect();

 }

 }

 // if connected, take sensor readings:

 if (connected) {

 // note the current time in milliseconds:

 long currentTime = millis();

 // if enough time has passed since the last reading:

 if (currentTime - lastReadingTime > debounceInterval) {

 // read the analog sensor, divide by 4 to get a 0-255 range:

 int sensorValue = analogRead(A0)/4;

 // if there's a significant difference between the

 // current sensor reading and the last, send it out:

 if (abs(sensorValue - lastSensorReading) > threshold) {

 Serial.println(sensorValue, DEC);

 }

 // update the last reading time

 // and last sensor reading:

 lastReadingTime = currentTime;

 lastSensorReading = sensorValue;

 }

 }

}

The main loop listens for incoming
serial data and checks to see whether
the button’s been pushed. If so, it
connects or disconnects as appropri-
ate. If the radios are connected, it
reads the analog input and sends it out
if there’s been a significant change.

8

212 MAKING THINGS TALK

void blink(int thisPin, int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(thisPin, HIGH);

 delay(200);

 digitalWrite(thisPin, LOW);

 delay(200);

 }

}

The blink() method is the same as
it was in the earlier XBee example.

8

// this method reads the button to see if it's just changed

// from low to high, and debounces the button in case of

// electrical noise:

boolean buttonRead(int thisButton) {

 boolean result = false;

 // temporary state of the button:

 int currentState = digitalRead(thisButton);

 // final state of the button:

 int buttonState = lastButtonState;

 // get the current time to time the debounce interval:

 long lastDebounceTime = millis();

 while ((millis() - lastDebounceTime) < debounceInterval) {

 // read the state of the switch into a local variable:

 currentState = digitalRead(thisButton);

 // If the pushbutton changed due to noise:

 if (currentState != buttonState) {

 // reset the debouncing timer

 lastDebounceTime = millis();

 }

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 buttonState = currentState;

 }

 // if the button's changed and it's high:

 if(buttonState != lastButtonState && buttonState == HIGH) {

 result = true;

 }

 // save the current state for next time:

 lastButtonState = buttonState;

 return result;

}

The buttonRead() method will look
familiar, too,—it’s the same one from
the pong clients in Chapter 5.

8

WIRELESS COMMUNICATION 213

Because there’s a dedicated connection
between the two radios, you need to keep track
of the connection status. When a new connec-

tion is made, the Bluetooth Mates send a serial message
before dropping into data mode, thanks to your last con-
figuration change. The serial message looks like this:

BTCONNECT\r

When the connection’s broken, it sends this message and
stays in command mode:

BTDISCONNECT\r

While trying to connect, the Mate sends:

void BTConnect() {

 // if in data mode, send $$$

 if (!commandMode) {

 Serial.print("$$$");

 // wait for a response:

 if (finder.find("CMD")) {

 commandMode = true;

 }

 }

 // once you're in command mode, send the connect command:

 if (commandMode) {

 Serial.print("C," + remoteAddress + "\r");

 // wait for a response:

 finder.find("CONNECT");

 // if the message is "CONNECT failed":

 if (finder.find("failed")) {

 connected = false;

 }

 else {

 connected = true;

 // radio automatically drops into data mode

 // when it connects:

 commandMode = false;

 }

 }

}

BTConnect() checks the
command/data mode status, then tries
to make a connection. If the attempt
fails, it stays in command mode.

8

TRYING\r

You can ignore the TRYING message because it’ll always
be followed by CONNECT or—if the Mate doesn’t succeed
in connecting—it sends:

CONNECT failed\r

Look for these to come in and use them to track the con-
nection status. The Bluetooth Mates drop into data mode
immediately after sending either of these two messages,
so they’re a handy way to keep track of the mode as well.
The BTConnect(), BTDisconnect(), and handleSerial()
methods use these strings to do their work, as follows.

214 MAKING THINGS TALK

void BTDisconnect() {

 // if in data mode, send $$$

 if (!commandMode) {

 Serial.print("$$$");

 // wait for a response:

 if (finder.find("CMD")) {

 commandMode = true;

 }

 }

 // once you're in command mode,

 // send the disconnect command:

 if (commandMode) {

 // attempt to connect

 Serial.print("K,\r");

 // wait for a successful disconnect message:

 if (finder.find("BTDISCONNECT")) {

 connected = false;

 // radio automatically drops into data mode

 // when it disconnects:

 commandMode = false;

 }

 }

}

void handleSerial() {

 // look for message string

 // if it's BTCONNECT, connected = true;

 // if it's BTDISCONNECT, connected = false;

 // if it's CONNECT failed, connected = false;

 // if it's a number, set the LED

 char inByte = Serial.read();

 // add any ASCII alphanumeric characters

 // to the message string:

 if (isAscii(inByte)) {

 messageString = messageString + inByte;

 }

 // handle CONNECT and DISCONNECT messages:

 if (messageString == "BTDISCONNECT") {

 connected = false;

 }

 if (messageString == "BTCONNECT") {

 connected = true;

 }

 if (connected) {

 // convert the string to a number:

 int brightness = messageString.toInt();

 // set the analog output LED:

BTDisconnect() is similar to
BTConnect(), but in reverse. It drops

into command mode and sends the dis-
connect message you used earlier.

handleSerial() also looks for text
messages, but it doesn’t use TextFinder
because it needs to be able to see one of
three different options. TextFinder makes
only one pass through the serial stream,
so you can’t check for a second string if it
doesn’t find the first string.

If a valid number is found, this method
uses it to set the brightness of the LED
on pin 3.

8

8

»

WIRELESS COMMUNICATION 215

That’s the whole program. Run this on your
microcontroller, filling in the address of the
radio on Arduino #2 for the address in the

remoteAddress array above. When you press the button
on the first microcontroller, it will make a connection to
the second and start sending sensor values through. In the
serial terminal, your initial messages should look like this:

BTCONNECT

121

132

83

When you’re connected, you can respond as if you were
sending your own sensor values, and the microcontroller
will fade the LED on pin 3 accordingly. Type:

Continued from previous page .

 if (brightness > 0) {

 analogWrite(analogLed, brightness);

 }

 }

 // if you get an ASCII carriage return:

 if (inByte == '\r') {

 // clear the input string for the

 // next value:

 messageString = "";

 }

}

Finally, handleSerial() looks for a
carriage return; when it finds one,

it clears the messageString in order to
get the next message.

8

•Step 4: Connecting Two
Microcontrollers via Bluetooth
If you’ve been noticing the parallels between the XBee
example and this one, you probably know what’s coming.
Build the same circuit for your second microcontroller,
using the second radio by adding the switch and potenti-
ometer, and swapping the serial TX and RX connections.
Then change the Bluetooth address in the sketch above
to be the address of the first radio, and program the

second microcontroller. Then reset both microcontrollers.
When you press the button on either one, it will attempt
to connect to the other and begin exchanging data. When
you press the button on either one a second time, they’ll
disconnect.

Now that you’ve got the basics down, you can modify this
to handle a variety of situations with Bluetooth radios.
X

12\r

120\r

255\r

1*

The LED should start dim, get brighter, then brightest,
then get very dim. You should get four sensor readings
in response. Then, when you press the button again, you
should get:

BTDISCONNECT

When you’ve connected and disconnected a few times,
you’re ready for the final step.

216 MAKING THINGS TALK

Until recently, WiFi wasn’t very common in microcon-
troller projects for a couple reasons: cost and power.
Microcontroller-to-WiFi modules on the market are more
expensive than equivalent transceivers implementing
other protocols. That’s starting to change. Many earlier
WiFi modules were also power hungry, but that too is
changing.

There are currently a few WiFi solutions on the market.
Spark Fun makes the WiFly shield, and Digi just announced
WiFi versions of their XBee modules. There’s also a forth-
coming Arduino WiFi shield, which is designed to be easy
to incorporate into an existing Ethernet project with only
minor code changes. A short introduction follows.
X

What About WiFi?
So far, you’ve seen the most basic serial radios in action in the transmitter-receiver

project, and more advanced radios at work in the transceiver projects. If you’re thinking

about networks of microcontrollers, you’re probably wondering whether you can

connect your projects to the Internet and to each other using WiFi. You can, but there

are complications to consider.

The wisest thing you can do when buying your radios
is to buy them as a set. Matching a transmitter from
one company to a receiver from another is asking for
headaches. They may say that they operate in the same
frequency range, but there’s no guarantee. Likewise,
trying to hack an analog radio—such as that from a baby
monitor or a walkie-talkie—may seem like a cheap and
easy solution, but in the end, it’ll cost you time and eat
your soul. When looking for radios, look for something that
can take the serial output of your microcontroller. Most
microcontrollers send serial data at TTL levels, with 0V for
logic 0 and 3.3V or 5V for logic 1. Converting the output to
RS-232 levels is also fairly simple, so radios that can take
those signals are good for your purposes.

Consider the data rate you need for your application—more
specifically, for the wireless part of it. You may not need
high-speed wireless. One common use for wireless com-
munication in the performance world is to get data off
the bodies of performers, in order to control MIDI perfor-

mance devices like samplers and lighting dimmers. You
might think that you need your radios to work at MIDI data
rates to do this, but you don’t. You can send the sensor
data from the performers wirelessly at a low data rate to a
stationary microcontroller, then have the microcontroller
send the data via MIDI at a higher data rate.

Consider the protocols of the devices that you already
have at your disposal. For example, if you’re building an
object to speak to a mobile phone or a laptop computer,
and there’s only one object involved, consider Bluetooth.
Most laptops and many mobile phones already have
Bluetooth radios onboard, so you’ll need only one radio
to do the job. It may take some work to make your object
compatible with the commands specific to your existing
devices, but if you can concentrate on that instead of on
getting the RF transmission consistent, you’ll save a lot of
time.
X

Buying Radios
You’ve seen a few different kinds of wireless modules in this chapter. Though they

do the job well, they’re not the only options on the market. You should definitely shop

around for modules that suit your needs. Here are a few things to consider when

choosing your radios.

WIRELESS COMMUNICATION 217

Remember the daylight color server you

built in Project 6? In this project, you’ll

rebuild it using an Arduino WiFi shield.

You’ll see that most of the code and

the circuit is exactly the same. It’s only

the physical communications layer that

changes.

Hello WiFi!

Project 12

MATERIALS

 » 1 Arduino WiFi shield
 » 1 Arduino microcontroller module
 » 1 WiFi Ethernet connection to the Internet
 » 3 10-kilohm resistors
 » 3 photocells (light-dependent resistors)
 » 1 solderless breadboard
 » 3 lighting filters

Making the Connections
The WiFi shield communicates with the Arduino via SPI
just like the Ethernet shield, so build the circuit just as you
did in Figure 4-4, but replace the Ethernet shield with a
WiFi shield.

To make the network connection, you’ll need to know the
name of the WiFi network you’re connecting to (also called
SSID), and what type of security it uses. This is the same
information you use to connect other wireless devices
to your WiFi router. The WiFi shield can connect to open
networks or networks secured with WEP (both 40-bit and
128-bit), WPA, or WPA2 encryption. For WPA and WPA2,
you’ll need the password. For WEP, you’ll need the key and
the key index. A WEP key is a long string of hexadecimal
digits that is used like a password. 40-bit WEP keys are
10 ASCII characters long, and 128-bit WEP keys are 26
characters long. WEP routers can store up to four keys,

NOTE: The WiFi shield can’t work with the Arduino Ethernet or

Ethernet shield because all three use the same SPI chip select pin.

so the key index indicates which one you’re using. Most
of the time, you’ll use key index 0. Below are some typical
examples of WEP and WPA combinations:

WPA network name: noodleNet
WPA password: m30ws3rs!

WEP network name: sandbox
WEP key index: 0
WEP 40-bit key: 1234567890

WEP network name: sandbox
WEP key index: 0
WEP 128-bit key: 1A2B3C4D5E6FDADADEEDFACE10

If you’re using a home router, chances are you or a family
member set up the wireless router so you know the infor-
mation. If you’re connecting to a school or institutional
router, ask your network administrator for the details. Once
you have this information, you’re ready to start programming.

Figure 6-22

Arduino WiFi shield.

The Arduino WiFi shield, shown in Figure 6-22, is a

new product, so its programming interface is subject

to change as it develops. For the latest updates on the WiFi

shield, the WiFi library, and examples of how to use it, see the

Hardware section at http://arduino.cc.

!

218 MAKING THINGS TALK

/*

 WiFi RGB Web Server

 Context: Arduino

 */

#include <SPI.h>

#include <WiFi.h>

char ssid[] = "myNetwork"; // the name of your network

char password[] = "secretpassword"; // the password you're using to connect

int status = WL_IDLE_STATUS; // the WiFi radio's status

Server server(80);

int lineLength = 0; // length of the incoming text line

char ssid[] = "myNetwork"; // the name of your network

char keyIndex = 0; // WEP networks can have multiple keys.

// the 128-bit WEP key you’re using to connect:

char key[] = “FACEDEEDDADA01234567890ABC”;

int status = WL_IDLE_STATUS; // the WiFi radio’s status

The first
thing

you need to do is take the network
info as described above and put it into
variables so you can connect. You’ll still
need the server and lineLength global
variables from the previous RGB server
sketch as well.

If you’re
using

WPA encryption, your configuration
variables will look more like the code at
right (changes are shown in blue).

 Configure It (WPA)

 Configure It (WEP)

void setup() {

 // initialize serial:

 Serial.begin(9600);

 Serial.println("Attempting to connect to network...");

 // attempt to connect using WPA encryption:

 status = WiFi.begin(ssid, password);

 // or use this to attempt to connect using WEP 128-bit encryption:

 // status = WiFi.begin(ssid, keyIndex, key);

 Serial.print("SSID: ");

 Serial.println(ssid);

 // if you're not connected, stop here:

 if (status != WL_CONNECTED) {

 Serial.println("Couldn't get a WiFi connection");

 while(true);

 }

}

The setup() looks different from
the previous sketch because you’re
setting up a WiFi connection instead
of a wired Ethernet connection. If you
get a connection, print out the network
name. If you don’t, stop the program
right there. The WiFi shield uses DHCP
by default, so you don’t need to do
anything in your code to get an address
via DHCP.

The remainder of the sketch is identical
to the sketch in Project 6. You can
copy the rest of the code from there.
Because WiFi is also Ethernet, the
Client and Server library interfaces are
the same, so you can change between
Ethernet and WiFi easily.

8

 8 Change these to
match your own network.

 8 Change these to
match your own network.
If your router has values
for more than one key
index, use key index 0.

WIRELESS COMMUNICATION 219

WiFi Diagnostics
The WiFi shield gives you the ability to make networked
projects wireless, but it also gives you a few other useful
features for diagnosing the health of your connection.
Before you begin a WiFi project, run a few diagnostics to
make sure you have a good connection. Like any wireless
connection, it’s invisible, and it’s easy to get lost in trouble-
shooting something else when the problem is just that
you’re not connected.

No matter what WiFi module you’re working with, you’re
likely to run into some troubles when trying to connect
your microcontroller. Here are a few common ones to look
out for:

If you’re working at a school or business where you don’t
control the WiFi routers, make sure you have all the config-
uration information in advance, and that it matches what
your module can do. Enterprise protocols like WPA2 Enter-
prise are not available for microcontroller-based modules.

Some public networks use a captive portal, which is an
open WiFi network, but you have to sign in through a web
page before you can access the wider Internet. These
are difficult to handle, because you have to program the
microcontroller (not the WiFi module) to make an HTTP
call to the captive portal with the login information first. If
you can use a network that doesn’t use a captive portal,
you’re better off.

Some WiFi modules, like the Arduino WiFi shield, can’t see
networks where the SSID is hidden. When possible, make
sure your network is publicly visible—even when security
is on.

Since you have no interface to get feedback on errors,
compare your configuration with that of your laptop, mobile
phone, or other device that you can connect successfully.

Here are two quick diagnostic code snippets for the
Arduino WiFi shield that may be useful as well: scanning
for available networks, and getting the signal strength of
the network to which you’re attached.

Here’s how to scan for available networks:

 // scan for nearby networks:

 byte numSsid = WiFi.scanNetworks();

 // print the list of networks seen:

 Serial.print("SSID List:");

 Serial.println(numSsid);

 // print the network number and name

 // for each network found:

 for (int thisNet = 0; thisNet<numSsid; thisNet++) {

 Serial.print(thisNet);

 Serial.print(") Network: ");

 Serial.println(WiFi.SSID(thisNet));

 }

Here’s how to get the signal strength once you’re attached
to a network:

 // print the received signal strength:

 long rssi = WiFi.RSSI();

 Serial.print("RSSI:");

 Serial.println(rssi);

Both of these techniques are handy diagnostic tools.
Depending on your environment and network setup, your
wireless network may not be stable all the time. Likewise,
you may want to wrap your whole main loop() in an if
statement that checks whether you're still connected to
the network, like so:

void loop() {

 if (status == WL_CONNECTED) {

 // do everything here

 } else {

 // let the user know there's no connection

 }

}

X

220 MAKING THINGS TALK

If you opt for the least-expensive solutions, you can just
implement a one-way wireless link with transmitter-receiver
pairs and send the message again and again, hoping that
it’s eventually received. If you spend a little more money,
you can implement a duplex connection, so that each
side can query and acknowledge the other. Nowadays, a
duplex connection is the standard, as the cost difference
is minimal and the availability of transmitter-receiver pairs
is waning. Regardless of which method you choose, you
have to prepare for the inevitable noise that comes with a
wireless connection. If you’re using infrared, incandescent
light and heat act as noise; if you’re using radio, all kinds
of electromagnetic sources act as noise, from microwave
ovens to generators to cordless phones. You can write your

own error-checking routines but, increasingly, wireless
protocols like Bluetooth and ZigBee are making it possible
for you to forget about that, because the modules that
implement these protocols include their own error correc-
tion.

Just as you started learning about networks by working
with the simplest one-to-one network in Chapter 2, you
began with wireless connections by looking at simple pairs
in this chapter. In the next chapter, you’ll look at peer-to-
peer networks, in which there is no central controller, and
each object on the network can talk to any other object.
You’ll see both Ethernet and wireless examples.
X

Conclusion
Wireless communication involves some significant differences from wired communication.

Because of the complications, you can’t count on the message getting through like you

can with a wired connection, so you have to decide what you want to do about it.

urban Sonar by Kate Hartman, Kati London, and Sai Sriskandarajah
The jacket contains four ultrasonic sensors and two pulse sensors. A microcontroller in the jacket communicates via Bluetooth to your mobile
phone. The personal space bubble, as measured by the sensors, and your changing heart rate, as a result of your changing personal space,
paint a portrait of you that is sent over the phone to a visualizer on the Internet.

WIRELESS COMMUNICATION 221

222 MAKING THINGS TALK

Sessionless Networks
So far, the network connections you’ve seen in this book have mostly

been dedicated connections between two objects. Serial communica-

tions involve the control of a serial port; mail, web, and telnet connections

involve a network port. In all these cases, there’s a device that makes the

port available (generally a server), and something that requests access to

the port (a client). Project 8, Networked Pong, in Chapter 5 was a classic

example of this—in that application, the server handled all the commu-

nications between the other devices. In this chapter, you’ll learn how to

make multiple devices on a network talk to each other directly,

or talk to all the other devices at once.

7
MAKE: PROJECTS

Perform-o-shoes by Andrew Schneider

The shoes exchange messages with a multimedia computer via XBee radio. When you moonwalk in the shoes, your

pace and rhythm controls the playback of music from the computer.

224 MAKING THINGS TALK

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• P Pololu (www.pololu.com)
• PX Parallax (www.parallax.com)
• RS RS (www.rs-online.com)
• SF SparkFun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

bASIC XbEE bREADbOARD CIRCuIT
Several of the projects in this chapter use XBee
radios. In each project, you have the option of using
convenience modules like the Arduino wireless shield,
Spark Fun's XBee Explorer Regulated, or the LilyPad
XBee. If you choose not to use those parts, you can
build a basic XBee breadboard circuit. Variations on
this circuit are shown in Figures 7-5, 7-6, 7-8, and 7-14.
The basic parts for it are listed below.

 » 1 solderless breadboard D 438-1045-ND,
J 20723 or 20601, SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M, MS MKKN2

 » 1 Digi Xbee 802 .15 .4 RF module J 2113375,
SF WRL-08664, AF 128, F 1546394,
SS WLS113A4M, MS MKAD14

 » 1 3 .3V regulator J 242115, D 576-1134-ND,
SF COM-00526, F 1703357, RS 534-3021

 » 1 Xbee breakout board J 32403, SF BOB-08276,
AF 127

 » 2 rows of 0 .1-inch header pins J 103377,
D A26509-20ND, SF PRT-00116, F 1593411

 » 2 rows of 2mm female headers J 2037747,
D 3M9406-ND, F 1776193

 » 1 1µF capacitor J 94161, D P10312-ND,
F 8126933, RS 475-9009

 » 1 10µF capacitor J 29891, D P11212-ND,
F 1144605, RS 715-1638

 » 2 LEDs D 160-1144-ND or 160-1665-ND, J 34761 or
94511, F 1015878, RS 247-1662 or 826-830,
SF COM-09592 or COM-09590

 » 2 220-ohm resistors D 220QBK-ND, J 690700,
F 9337792, RS 707-8842

Supplies for Chapter 7

PROJECT 13: Reporting Toxic Chemicals in the Shop
 » 2 basic Xbee breadboard circuits As described above.
 » 1 5V regulator J 51262, D LM7805CT-ND, SF COM-

00107, F 1860277, RS 298-8514
 » 1 9–12V DC power supply Either a 9V battery or plug-in

supply will do.
J 170245, SF TOL-00298, AF 63, F 636363, P 1463

 » 1 Hanwei gas sensor Hanwei makes a wide range of
gas sensors, and many of the retailers in this book carry
them. MQ-7 detects carbon monoxide; MQ-3 detects
alcohol; MQ-6 detects propane and related gases;
MG811 detects carbon dioxide. They all have similar
operations, so pick one that you're most interested in.
SF SEN-08880, SEN-09404, or SEN-09405, P 1480,
1634, 1633, 1481, 1482, or 1483, PX 605-00007, 605-
00008, 605-00009, 605-00010, or 605-00011

 » 1 gas sensor breakout board The Hanwei sensors
have a pin layout that’s not friendly to a breadboard, so
these boards correct that. Pololu and Spark Fun both
make a model.
SF BOB-08891, P 1479 or 1639

 » 1 10-kilohm resistor D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 1 Arduino Ethernet board A A000050
Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242, A 139, AF 201, F 1848680

 » 1 Arduino wireless shield Alternatively, basic XBee
breadboard circuit (see above) will work.
A A000064 or A000065. Alternatives: SF WRL-09976,
AF 126, F 1848697, RS 696-1670, SS WLS114A0P

 » 1 cymbal monkey The one used here is a Charlie
Chimp, ordered from the Aboyd Company (www.aboyd.
com), part number ABC 40-1006.

NOTE: If your monkey uses a 3V power supply (such as two

D batteries), you won’t need the 3.3V regulator. Make sure

that there’s adequate amperage supplied for the radios. If you

connect the circuit as shown and the radios behave erratically,

the monkey’s motor may be drawing all the power. If so, use a

separate power supply for the radio circuit.

 » 1 potentiometer J 29082, SF COM-09939, F 350072,
RS 522-0625

 » 1 TIP120 Darlington NPN transistor D TIP120-ND,
J 32993, F 9804005

 » 1 1N4004 power diode D 1N4004-E3 or 23GI-ND,
J 35992, F 9556109, RS 628-9029

 » 1 1-kilohm resistor D 1.0KQBK-ND, J 29663,
F 1735061, RS 707-8669

SESSIONLESS NETWORKS 225

 » 1 100µF capacitor J 158394, D P10269-ND,
F 1144642, RS 715-1657

PROJECT 14: Relaying Solar Cell Data Wirelessly
 » 1 uSb-Xbee adapter J 32400, SF WRL-08687, AF 247,
PX 32400

 » 1 basic Xbee breadboard circuit As described above.
This will be the base for the solar cell circuit

 » 1 5V regulator J 51262, D LM7805CT-ND, SF COM-
00107, F 1860277, RS 298-8514

 » 3 4700µF electrolytic capacitors J 199006, D
P10237-ND, F 1144683, RS 711-1526

 » 1 MAX8212 voltage monitor You can order free
samples from Maxim (www.maxim-ic.com).
D MAX8212CPA+-ND, F 1610130

 » 1 10-kilohm resistor D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 3 100-kilohm resistors D 100KQBK-ND, J 29997,
F 9337695, RS 707-8940

 » 1 4 .7-kilohm resistor D CF14JT4K70CT-ND, J 691024,
F 735033, RS 707-8693

 » 1 1-kilohm resistor D 1.0KQBK-ND, J 29663,
F 1735061, RS 707-8669

 » 1 2N3906 PNP-type transistor J 178618,
D 2N3906D26ZCT-ND, SF COM-00522, F 1459017,
RS 294-328

 » 1 solar cell SF PRT-07840, P 1691
 » 1 Arduino Ethernet board A A000050

Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242, A 139, AF 201, F 1848680

 » 1 Arduino wireless shield Alternatively, basic XBee
breadboard circuit (see above) will work.
A A000064 or A000065. Alternatives: SF WRL-09976,
AF 126, F 1848697, RS 696-1670, SS WLS114A0P

 » 1 9V battery clip D 2238K-ND, J 101470, SF PRT-09518,
F 1650675

 » 1 9V battery You can use three or four AA batteries
instead—if you have a battery holder for them. Anything
in the 5–12V range should work.

 » Xbee LilyPad This will be the unit for the relay radio.
Alternatively, an XBee Explorer Regulated, or a Basic
XBee breadboard circuit, as described above, will work.
SF DEV-08937

 » 1 Xbee Explorer Regulated This is an alternative to the
XBee LilyPad.
SF WRL-09132

Figure 7-1 . New parts for this chapter: 1 . Charley Chimp 2 . 2N3906 transistor 3 . MAX8212 Voltage trigger 4 . Hanwei gas sensors

5 . Gas sensor breakout board 6 . Trimmer potentiometer 7 . Solar cell 8 . Don't forget plenty of male header pins for the breakout boards.

1

2

34

5

8

7

6

226 MAKING THINGS TALK

Sessions vs. Messages
So far, most of the communication in this book has involved opening a dedicated con-

nection between two points for the duration of the conversation. This is session-based

communication. Sometimes you want to make a network in which objects can talk to

each other more freely, switching conversational partners on the fly, or even address-

ing the whole group if the occasion warrants. For this, you need a more message-based

protocol.

Sessions Versus Messages
In Chapter 5, you learned about the Transmission Control
Protocol, TCP, which is used for much of the communica-
tion on the Internet. To use TCP, your device has to request
a connection to another device. The other device opens
a network port, and the connection is established. Once
the connection is made, information is exchanged; then,
the connection is closed. The whole request-connect-
converse-disconnect sequence constitutes a session. If
you want to talk to multiple devices, you have to open and
maintain multiple sessions. Sessions characterize TCP
communications.

Not all network communication is session-based. There’s
another protocol used on the Internet, called the User
Datagram Protocol, or UDP. With UDP, you compose a
message, give it an address, send it, and forget about it.

Unlike the session-based TCP, UDP communication is all
about messages. UDP messages are called datagrams.
Each datagram is given a destination address and
is sent on its merry way. There is no two-way socket
connection between the sender and receiver. It’s the
receiver’s responsibility to decide what to do if some of
the datagram packets don’t arrive, or if they arrive in the
wrong order.

Because UDP doesn’t rely on a dedicated one-to-one
connection between sender and receiver, it’s possible
to send a broadcast UDP message that goes to every

other object on a given subnet. For example, if your
address is 192.168.1.45, and you send a UDP message
to 192.168.1.255, everybody on your subnet receives
the message. Because this is such a handy thing to
do, a special address is reserved for this purpose:
255.255.255.255. This is the limited broadcast address—it
goes only to addresses on the same LAN, and does not
require you to know your subnet address. This address is
useful for tasks such as finding out who’s on the subnet.

The advantage of UDP is that data moves faster because
there’s no error-checking. It’s also easier to switch the end
device that you’re addressing on the fly. The disadvantage
is that it’s less reliable byte-for-byte, as dropped packets
aren’t resent. UDP is useful for streams of data where
there’s a lot of redundant information, like video or audio.
If a packet is dropped in a video or audio stream, you may
notice a blip, but you can still make sense of the image or
sound.

The relationship between TCP and UDP is similar to the
relationship between Bluetooth and 802.15.4. Bluetooth
devices have to establish a session to each other to com-
municate, whereas 802.15.4 radios (like the XBee radios
in Chapter 6) communicate simply by sending addressed
messages out to the network without waiting for a result.
Like TCP, Bluetooth is reliable for byte-critical applications,
but it's less flexible in its pairings than 802.15.4.
X

SESSIONLESS NETWORKS 227

Who’s Out There? Broadcast Messages
The first advantage to sessionless protocols like UDP and 802.15.4 is that they allow for

broadcasting messages to everyone on the network at once. Although you don’t want

to do this all the time—because you’d flood the network with messages that not every

device needs—it’s a handy ability to have when you want to find out who else is on your

network. You simply send out a broadcast message asking “Who’s there?” and wait for

replies.

Querying for Other Devices Using
UDP
Arduino's Ethernet library includes the ability to send and
receive UDP packets, so you can use it to write a simple
sketch that listens for broadcast messages and responds
to them. It's useful when you want to make a large number
of networked devices all respond at once. You can use Pro-
cessing to send your broadcast query.

There’s no way to send UDP messages using the Process-
ing Network library, but there’s a good free UDP library

by Stephane Cousot available from the Processing.
org's libraries page at http://processing.org/reference/
libraries/#data_protocols. To use it, download it and make
a new directory called udp in the libraries subdirectory of
your Processing sketch directory. Then unzip the contents
of the download and drop them in the directory you
created. After that, restart Processing and you’re ready to
use the UDP library.

Any Arduino with an Ethernet shield connected to your
network will do for this exercise. You don't need any extra
hardware other than the shield.

/*

 UDP broadcast query sender/receiver

 Context: Processing

 */

// import the UDP library:

import hypermedia.net.*;

UDP udp; // initialize the UDP object

void setup() {

 udp = new UDP(this, 43770); // open a UDP port

 udp.listen(true); // listen for incoming messages

}

void draw()

{

}

void keyPressed() {

 String ip = "255.255.255.255"; // the remote IP address

 int port = 43770; // the destination port

 udp.send("Hello!\n", ip, port); // the message to send

}

This Processing sketch
sends out a broadcast

UDP message on port 43770. This is an
arbitrary number that's high enough
that it's probably not used by other
common applications.

It doesn't matter what the IP address
or router of the machine running
this sketch is, because it uses the
special subnet broadcast address:
255.255.255.255.

Unlike session-based messaging,
where you wrote and read bytes from a
stream like serial communication, UDP
messages are all sent with one discrete
message, udp.send(), which includes
the address and port for sending.

 Try It

»

228 MAKING THINGS TALK

Continued from previous page .

void receive(byte[] data) {

 // print the incoming data bytes as ASCII characters:

 for(int thisChar=0; thisChar < data.length; thisChar++) {

 print(char(data[thisChar]));

 }

 println();

}

The response is stored in an array
called data[], and the receive() method
in the UDP library prints it out one
character at a time.

/*

 UDP Query Responder

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

#include <Udp.h>

// Enter a MAC address and IP address for your controller below.

// The IP address will be dependent on your local network:

byte mac[] = {

 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress myIp(192,168,1,20);

unsigned int myPort = 43770; // local port to listen on

// A UDP instance to send and receive packets over UDP

UDP query;

void setup() {

 // start the serial library:

 Serial.begin(9600);

 // start the Ethernet connection:

 Ethernet.begin(mac, myIp);

 // print your address:

 for (int thisByte = 0; thisByte < 4; thisByte++) {

 Serial.print(Ethernet.localIP()[thisByte], DEC);

 Serial.print(".");

 }

 Serial.println();

 query.begin(myPort);

 // give the Ethernet shield a second to initialize:

 delay(1000);

}

Here's an
Arduino

sketch that listens for UDP messages
on the same port and responds in kind.
Load it onto an Arduino connected to
your network with an Ethernet shield.

 Respond To It

 8 Change these to match your own device
and network.

»

SESSIONLESS NETWORKS 229

The loop() just calls the listen()
method, which listens for incoming

UDP packets on the same port on
which the Processing sketch broad-
casts.

Receiving UDP packets is a bit different
than receiving TCP packets. Each
packet contains a header that tells you
who sent it and from what port, kind
of like an envelope. When you receive
a packet, you have to parse out that
data. The parsePacket() method in
the Arduino UDP library does just that.
You can see it in action here. First, you
parsePacket() to separate the header
elements from the message body.
Then, you read the message body byte-
by-byte, just like you've done already
with TCP sockets and serial ports.

The sendPacket() method sends a
response packet to whatever address
and port it receives a message from. It
includes its IP address in the body of
the message as an ASCII string.

You can see that UDP messaging
is different than the socket-based
messaging over TCP. Each message
packet has to be started and ended.
When you beginPacket(), the Ethernet
controller starts saving bytes to send in
its memory; when you endPacket(), it
sends them out.

void loop()

{

 listen(query, myPort);

}

void listen(UDP thisUDP, unsigned int thisPort) {

 // check to see if there's an incoming packet, and

 // parse out the header:

 int messageSize = thisUDP.parsePacket();

 // if there's a payload, parse it all out:

 if (messageSize > 0) {

 Serial.print("message received from: ");

 // get remote address and port:

 IPAddress yourIp = thisUDP.remoteIP();

 unsigned int yourPort = thisUDP.remotePort();

 for (int thisByte = 0; thisByte < 4; thisByte++) {

 Serial.print(yourIp[thisByte], DEC);

 Serial.print(".");

 }

 Serial.println(" on port: " + String(thisPort));

 // send the payload out the serial port:

 while (thisUDP.available() > 0) {

 // read the packet into packetBufffer

 int udpByte = thisUDP.read();

 Serial.write(udpByte);

 }

 sendPacket(thisUDP, Ethernet.localIP(), yourIp, yourPort);

 }

}

Continued from opposite page .

void sendPacket(UDP thisUDP, IPAddress thisAddress,

 IPAddress destAddress, unsigned int destPort) {

 // set up a packet to send:

 thisUDP.beginPacket(destAddress, destPort);

 for (int thisByte = 0; thisByte < 4; thisByte++) {

 // send the byte:

 thisUDP.print(thisAddress[thisByte], DEC);

 thisUDP.print(".");

 }

 thisUDP.println("Hi there!");

 thisUDP.endPacket();

}

8

 8 First, you parse the packet
to get the header items.

 8 Then, you read the rest of
the message body.

8

230 MAKING THINGS TALK

Querying for XBee Radios
Using 802.15.4 Broadcast

Messages

Just as you can query a subnet to discover devices using
UDP, you can also query an XBee personal area net. The
XBee radios have a command to query the air for any
available radios. This is referred to as node discovery.
When given the AT command ATND\r, the XBee radio sends
out a broadcast message requesting that all other radios
on the same personal area network (PAN) identify them-
selves. If a radio receives this message, it responds with its
source address, serial number, received signal strength,
and node identifier.

NOTE: To do node discovery, your radios must have version 10A1

or later of the XBee firmware. See the sidebar "Upgrading the

Firmware on XBee Radios" for more details.

For the purposes of this exercise, you’ll need at least two
XBee radios connected to serial ports on your computer.
The easiest way to do this is by using a USB-to-XBee Serial
adapter like the XBee Explorer.

Once you’ve got the radios connected and working, open
a serial terminal connection to one of them and issue
the following command: +++. Then, wait for the radio to
respond with OK. Then type (remember, \r means carriage
return, so press Enter or Return instead of \r): ATND\r.

If there are other XBee radios on the same personal
area network in range, the radio will respond after a few
seconds with a string like this:

1234

13A200

400842A7

28

TIGOE1

5678

13A200

400842A9

1E

TIGOE3

When you've got the Arduino programmed, open a serial
connection to it using the Serial Monitor. You should see a
message like this in the Arduino Serial Monitor when the
Arduino obtains an IP address:

192.168.1.20.

Next, run the Processing sketch and type any key. In the
Arduino Serial Monitor, you should see:

message received from: 192.168.1.1. on port: 43770

Hello!

The address will be your computer's IP address. In the
Processing monitor pane, you should see:

Hello!

192.168.1.20.Hi there!

The first Hello! is from Processing itself. When you send
a broadcast message, it comes back to you as well!
The second line is from the Arduino. If you have several
Arduinos on your network all running this sketch, you'll get
a response from each one of them. In fact, this exercise is
most satisfying when you have multiple units responding.

This is a handy routine to add to any Ethernet-based
project. You have to provide a separate UDP instance and
port to listen on, but the sendPacket() method can work
with other programs to get a response from your device
when you send broadcast queries.
X

SESSIONLESS NETWORKS 231

To use the node discover, node identifier, and some of the

other XBee AT commands covered in this chapter, your

XBee radios need to be upgraded to at least version 10A1.

To check the firmware version of your radios, send the

following command: ATVR\r. The radio will respond: 10A2.

If the number is 10A1 or above (remember, it’s in

hexadecimal),you’re good to go. If not, go to http://www.

digi.com/support/kbase/kbaseresultdetl.jsp?kb=125

and download the X-CTU software. Bad news, Mac OS X

and Linux users: it only runs on Windows. You can run it

under VirtualBox (free), Parallels ($80), VMWare ($80), or

Windows using Bootcamp (Mac) or by dual booting (Linux).

Once you’ve installed the software, launch it. On the PC

Settings tab, you’ll be able to select the serial port to which

your XBee radio is attached. Pick the port and leave the

rest of the settings at their defaults. Click the Modem Con-

figuration tab and you’ll get to where you can update the

firmware. Click the Read button to read the current firmware

on your radio. You’ll get a screenful of the settings of your

radio, similar to that shown in Figure 7-2. The firmware

version is shown in the upper-righthand corner. You can pull

down that menu to see the latest versions available. Pick

the latest one, then check the "Always update firmware"

checkbox. Leave the Function Set menu choice set to XBEE

802.15.4. Then click the Write button. The software will

download the new firmware to your radio, and you’re ready

to go. The X-CTU software is useful to keep around, because

it also lets you change and record your radio’s settings

without having to use the AT commands.

Upgrading the Firmware on XBee Radios

Figure 7-2 . The X-CTU Modem Configuration tab.

Each grouping represents a different radio. The first
number is the radio’s source address (the number you get
when you send it the command string ATMY). The second
is the high word of the radio’s serial number; the third is
the low word. The fourth number is a measurement of the
radio’s received signal strength—in other words, it tells
you how strong the radio signal of the query message was
when it arrived at the receiving radio. The final line gives
the radio’s node identifier. This is a text string, up to 20
characters long, that you can enter to name the radio. You
didn’t use this function in Chapter 6, so your radios may
not have node identifier strings. If you want to set the node
identifier for further use, type: ATNI myname, WR\r

Replace myname with the name you want.

Broadcast messages are useful for many reasons.
However, they should be used sparingly because they
create more traffic than is necessary. In the next project,
you’ll use broadcast messages to reach all the other
objects in a small, closed network.

232 MAKING THINGS TALK

If you’ve got a workshop, you’ll appreci-

ate this project. By attaching a volatile

gas sensor to an XBee radio, you'll be able

to sense the concentration of solvents in

the air in your shop. When you’re working

in the shop by yourself, it's common to

become insensitive to the fumes of the

chemicals with which you’re working. This

project is an attempt to remedy that issue.

The sensor values are sent to two other radios. One is
attached to an Arduino with an Ethernet shield, which
is connected to the Internet as a web server. The other
radio is attached to a cymbal-playing toy monkey, located
elsewhere in the house, that makes an unholy racket when
the organic solvent levels in the shop get high. That way,
the rest of the family will know immediately if your shop
is toxic. If you don’t share my love of monkeys, this circuit
can control anything that can be switched on from a tran-
sistor Figure 7-3 shows the completed elements of the
project. Figure 7-4 shows this project's network.

Reporting Toxic Chemicals in the Shop

Sensor XBee
Radio

XPort XBee
Radio

Arduino as
web server

Monkey XBee
Radio

Internet

This project is designed for demonstration purposes

only. The sensor circuit hasn’t been calibrated. It won’t save

your life; it’ll just make you a bit more aware of the solvents

in your environment. Don’t rely on this circuit if you need

an accurate measurement of the concentration of organic

compounds. Check with your sensor manufacturer to learn

how to build a properly calibrated sensor circuit.

!

Figure 7-4

Network diagram of

the toxic chemical

sensor project.

Project 13

Figure 7-3

The completed toxic sensor system: sensor, monkey,

and network connection.

SESSIONLESS NETWORKS 233

MATERIALS

 » 1 uSb-to-Xbee serial adapter

Sensor Circuit
 » 1 solderless breadboard
 » 1 Digi Xbee OEM RF module
 » 1 5V regulator
 » 1 3 .3V regulator
 » 1 9–12V DC power supply Either a 9V battery or

plug-in supply will do.
 » 1 Xbee breakout board
 » 2 rows of 0 .1-inch header pins
 » 2 2mm female header rows
 » 1 1µF capacitor
 » 1 10µF capacitor
 » 1 Hanwei gas sensor
 » 1 gas sensor breakout board
 » 2 LEDs
 » 2 220-ohm resistors
 » 1 10-kilohm resistor

Internet Connection Circuit
 » 1 Arduino microcontroller module
 » 1 Arduino Ethernet shield
 » 1 Digi Xbee OEM RF module
 » 1 Arduino wireless shield If you use this, you won't

need the rest of the parts listed below. They are all for
connecting the XBee to your Arduino.

 » 1 solderless breadboard
 » 1 3 .3V regulator
 » 1 1µF capacitor
 » 1 10µF capacitor
 » 1 Xbee breakout board
 » 2 rows of 0 .1-inch header pins
 » 2 2mm female header rows
 » 2 LEDs
 » 2 220-ohm resistors

Cymbal Monkey Circuit
 » 1 solderless breadboard
 » 1 Digi Xbee OEM RF module
 » 1 cymbal monkey

NOTE: If your monkey uses a 3V power supply (such as two

D batteries), you won’t need the 3.3V regulator. Make sure

that there’s adequate amperage supplied for the radios. If you

connect the circuit as shown and the radios behave erratically,

the monkey’s motor may be drawing all the power. If so, use a

separate power supply for the radio circuit.

 » 1 3 .3V regulator
 » 1 Xbee breakout board
 » 2 rows of 0 .1-inch header pins
 » 2 2mm female header rows
 » 2 LEDs
 » 2 220-ohm resistors
 » 1 10K trimmer potentiometer
 » 1 TIP120 Darlington NPN transistor.
 » 1 1N4004 power diode
 » 1 1-kilohm resistor
 » 1 100µF capacitor

234 MAKING THINGS TALK

You’ll be building three separate circuits for this project, so
the parts list is broken down for each one. Most of these
items are available at retailers other than the ones listed
here,.

Radio Settings
Connect one of the radios to the USB-to-XBee serial
adapter. You’ll use this for configuring the radios only.
You’ve got three radios: the sensor’s radio, the monkey’s
radio, and the Arduino's radio. In Chapter 6 you saw how
to configure the radios’ addresses, destination addresses,
and Personal Area Network (PAN) IDs. In this project, you'll
see how to configure some of their I/O pins' behavior.
For example, you can configure the digital and analog I/O
pins to operate as inputs, outputs, or to turn off. You can
also set them to be digital or analog inputs, or digital or
pulse-width modulation (PWM) outputs. You can even link
an output pin’s behavior to the signals it receives from
another radio. (If you don't remember how to configure the
XBee, see Step 1 in Project 10).

The sensor radio is the center of this project. You’ll configure
it to read an analog voltage on its first analog input (AD0,
pin 20) and broadcast the value that it reads to all other
radios on the same PAN. Its settings are as follows:

• ATMY01: Sets the sensor radio’s source address.
• ATDLFFFF: Sets the destination address to broadcast to

the whole PAN.
• ATID1111: Sets the PAN.
• ATD02: Sets I/O pin 0 (D0) to act as an analog input.
• ATIR64: Sets the analog input sample rate to 100

milliseconds (0x64 hex).
• ATIT5: Sets the radio to gather five samples before

sending, so it will send every 500 milliseconds
(5 samples x 100 milliseconds sample rate = 500
milliseconds.

The monkey radio will listen for messages on the PAN, and
if any radio sends it a packet of data with an analog sensor
reading formatted the way it expects, it will set the first
pulse width modulation output (PWM0) to the value of the
received data. In other words, the monkey radio’s PWM0
output will be linked to the sensor radio’s analog input.
Its settings are as follows:

• ATMY02: Sets the monkey radio’s source address.
• ATDL01: Sets the destination address to send only to

the sensor radio (address 01). However, this doesn’t
really matter, as this radio won’t be sending.

• ATID1111: Sets the PAN.
• ATP02: Sets PWM pin 0 (P0) to act as a PWM output.
• ATIU1: Sets the radio to send any I/O data packets out

the serial port. This is used for debugging purposes
only; you won’t actually attach anything to this radio’s
serial port in the final project.

• ATIA01 or ATIAFFFF: Sets the radio to set its PWM
outputs using any I/O data packets received from
address 01 (the sensor radio’s address). If you set this
parameter to FFFF, the radio sets its PWM outputs
using data received from any radio on the PAN.

The Arduino's radio listens for messages on the PAN and
sends them out its serial port to the XBee. This radio’s
settings are the simplest, as it’s doing the least. Its
settings are as follows:

• ATMY03: Sets the radio’s source address.
• ATDL01: Sets the destination address to send only to

the sensor radio (address 01). It doesn't really matter,
though,as this radio won’t be sending.

• ATID1111: Sets the PAN.
• ATIU1: Sets the radio to send any I/O data packets out

the serial port. This data will go to the attached Arduino.

NOTE: If you want to reset your XBee radios to the factory

default settings before configuring for this project, send them the

command ATRE\r.

Here’s a summary of all the settings:

Make sure to save the configuration to each radio’s
memory by finishing your commands with WR. You can
set the whole configuration line by line or all at once. For
example, to set the sensor radio, type:

+++

Then wait for the radio to respond with OK. Next, type the
following (the 0 in D02 is the number 0):

Sensor radio Monkey radio XPort radio

MY = 01

DL = FFFF

ID = 1111

D0 = 2

IR = 64

IT = 5

MY = 02

DL = 01

ID = 1111

P0 = 2

IU = 1

IA = 01 (or FFFF)

MY = 03

DL = 01

ID = 1111

IU = 1

SESSIONLESS NETWORKS 235

ATMY1, DLFFFF\r

ATID1111, D02, IR64\r

ATIT5, WR\r

For the monkey radio, the configuration is:

ATMY2, DL1\r

ATID1111, P02\r

ATIU1, IA1, WR\r

And for the Arduino's radio, it’s:

ATMY3, DL1\r

ATID1111, IU1, WR\r

The Circuits
Once you’ve got the radios configured, set up the circuits
for the sensor, the monkey, and the Arduino. In all of these
circuits, make sure to include the decoupling capacitors
on either side of the voltage regulator—the XBee radios
tend to be unreliable without them.

The sensor circuit
The gas sensor takes a 5V supply voltage, so you need
a 5V regulator for it, a 3.3V regulator for the XBee, and a
power supply that’s at least 9V to supply voltage to the
circuit. A 9V battery will do, or a 9–12V DC power adapter.
Figure 7-5 shows the circuit. The gas sensor's output
voltage should stay below 3.3V under the most likely shop
conditions, but test it before connecting it to an XBee.
Connect and power the circuit, but leave out the wire con-
necting the sensor’s output to the XBee’s analog input.
Power up the circuit, and let it heat for a minute or two.
The circuit takes time to warm up because there’s a heater
element in the sensor. Measure the voltage between
the sensor’s output and ground. You should get about
0.1 volt if the air is free of volatile organic compounds
(VOCs). While still measuring the voltage, take a bottle
of something that has an organic solvent (I used hand
sanitizer, which has a lot of alcohol in it), and gently waft
the fumes over the sensor. Be careful not to breathe it in
yourself. You should get something considerably higher—
up to 3 volts. If the voltage exceeds 3.3V, change the fixed
resistor until you get results in a range below 3.3V, even
when the solvent’s fumes are high. Once you’ve got the
sensor reading in an acceptable range, connect its output
to the XBee’s analog input pin, which is pin 20. Make sure
to connect the XBee’s voltage reference pin (pin 14) to 3.3
volts as well.

NOTE: Air out your workspace as soon as you’ve tested the sensor.

You don’t want to poison yourself making a poison sensor!

To test whether the XBee is reading the sensor correctly,
connect its TX pin to the USB-to-XBee serial adapter’s TX
pin, its RX pin to the adapter’s RX pin, and connect their
ground lines together. Make sure there's no XBee in the
socket when you do this. You're just using the adapter to
connect to this circuit. Then plug the adapter into your
computer and open a serial connection to it. Type +++ and
wait for the OK. Then type ATIS\r. This command forces
the XBee to read the analog inputs and return a series of
values. You’ll get a reply like this:

1

200

3FF

Don’t worry about what the values yet; all that matters is
that you’re getting something. You’ll see the actual values
as the project develops later.

The monkey circuit
To control the monkey, disconnect the monkey’s motor
from its switch and connect the motor directly to the
circuit shown in Figure 7-6. The monkey’s battery pack
supplies 3V, which is enough for the XBee radio, so you can
power the whole radio circuit from the monkey. Connect
leads from the battery pack’s power and ground to the
board. If your monkey runs on a different voltage, make
sure to adapt the circuit accordingly so that your radio
circuit is getting at least 3V. Figure 7-7 shows the modifica-
tions in the monkey’s innards. I used an old telephone cord
to wire the monkey to the board.

The cymbal monkey circuit takes the variable output that
the radio received and turns it into an on-off switch. The
PWM output from the XBee radio controls the base of a
TIP120 transistor. The monkey itself has a motor built into
it, which is controlled by a TIP120 Darlington transistor
in this circuit. When the transistor’s base goes high, the
motor turns on. When it goes low, the motor turns off. The
motor has physical inertia, however, so if the length of the
pulse is short and the length of the pause between pulses
is long, the motor doesn’t turn. When the duty cycle (the
ratio of the pulse and the pause) of the pulse width is high
enough, the motor starts to turn.

236 MAKING THINGS TALK

LD1117-33V
Voltage Reg

In Out

7805
 +5V Voltage Reg

In Out

To +9-12V DC supply

H

H

B

A

Hanwei
MQ-6

Gas Sensor

10K Ω

220Ω

220Ω

10µF 1µF

GND

DTR/DI8

NC

PWM1

PWM0 / RSSI

RESET

RX

TX

AD2 / DIO2

AD3 / DIO3

RTS / AD6 / DIO6

Ass't / AD5 / DIO5

Vref

SLP

CTS / DIO7

AD4 / DIO4

AD1 / DIO1

AD0 / DIO0Vcc

DO8

Xbee Radio

Figure 7-5

XBee radio connected to a gas

sensor. The MQ-6 is shown here,

but the same circuit will work

for many of the Hanwei sensors.

You may have to change the

10K resistor to adjust the output

voltage range, however.

The XBee shown on the bread-

board below is mounted on a

breakout board. The XBee's pins

will not fit into a breadboard

without the breakout board.

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

5V
VREG

3.3V
VREG

 8 Many of the projects in this chapter

are made using the LD1117-33V 3.3V

voltage regulator. The pins on this

regulator are configured differently

from the pins on the other regulators

used in this book. Check the data

sheet for your regulator to be sure

you have the pins correct. You should

make a habit of checking this because,

otherwise, you will damage your

regulator or other parts of your circuit.

SESSIONLESS NETWORKS 237

To +3V DC supply

M
1KΩTIP120

1N4004

DC motor

0 - 10K

100µF

GND

DTR/DI8

NC

PWM1

PWM0 / RSSI

RESET

RX

TX

AD2 / DIO2

AD3 / DIO3

RTS / AD6 / DIO6

Ass't / AD5 / DIO5

Vref

SLP

CTS / DIO7

AD4 / DIO4

AD1 / DIO1

AD0 / DIO0Vcc

DO8

Xbee Radio

Figure 7-6

XBee radio connected to a cymbal monkey.

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

TIP120
NPN

238 MAKING THINGS TALK

Figure 7-7

The insides of the monkey,

showing the wiring modifica-

tions. Solder the power to the

breadboard to the positive

terminal of the battery. Solder

the ground wire to the ground

terminal. Cut the existing motor

leads, and add new ones that

connect to the breadboard.

A

A . Motor wires replaced here b . Power C . Ground

b

C

A

To test this circuit, make sure that the sensor radio is
working, and turn it on. When the sensor’s value is low,
the motor should be turned off; when the sensor reads
a high concentration of VOCs, the motor will turn on and
the monkey will warn you by playing his cymbals. Use the
potentiometer to affect the motor’s activation threshold.
Start with the potentiometer set very high, then slowly
turn it down until the motor turns off. At that point, expose
the sensor to some alcohol—the motor should turn on
again. It should go off when the air around the sensor is
clear. If you’re unsure whether the motor circuit is working
correctly, connect an LED and 220-ohm resistor in series
from 3V to the collector of the transistor instead of the
motor. The LED should grow brighter when the sensor
reading is higher, and dimmer when the sensor reading is
lower. The LED has no physical inertia like the motor does,
and it consumes less current, so it turns on at a much
lower duty cycle.

The Arduino circuit
If you're using an Arduino wireless shield, all you need to do
for this project is stack that on top of an Ethernet shield or
Arduino Ethernet board, and add them both to your micro-
controller. If you're building the circuit yourself, it's shown in
Figure 7-8.

The Arduino Ethernet and XBee circuit look a lot like the
circuit you used for the duplex radio transmission project in
Chapter 6. All you're doing differently is adding an Ethernet

shield. You don't need to connect the XBee's receive line
to the Arduino's transmit line because the Arduino's never
going to talk to the XBee—it will just listen. You also won't
need the LED, or the potentiometer from that project.

When the Arduino receives the message from the gas
sensor XBee, it will parse the message, extract the sensor
value, and convert it to a voltage. It will act as a web server,
so anyone who wants to know the sensor level can check
on the Web. In order to make that happen, it's best to break
the task into two parts: first, establish that you can read
and parse the XBee's messages; then, add the web server
component to your code.

Reading the XBee Protocol
So far, you’ve been able to rely on the XBee radios to do
their work without having to understand their message
protocol. Now it’s time to interpret that protocol. The XBee
radios format the readings from their analog-to-digital
converters into a packet before they transmit. The format
of the packet is explained in the Digi XBee 802.15.4 user’s
manual. It works like this:

• Byte 1: 0x7E, the start byte value.
• Byte 2–3: Packet size, a 2-byte value. This depends on

your other settings.
• Byte 4: API identifier value, a code that says what this

response is.

SESSIONLESS NETWORKS 239

Figure 7-8

XBee radio connected to an Arduino with Ethernet shield.

220Ω

220Ω

GND

DTR/DI8

NC

PWM1

PWM0 / RSSI

RESET

RX

TX

AD2 / DIO2

AD3 / DIO3

RTS / AD6 / DIO6

Ass't / AD5 / DIO5

Vref

SLP

CTS / DIO7

AD4 / DIO4

AD1 / DIO1

AD0 / DIO0Vcc

DO8

Xbee Radio

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

LD1117-33V
Voltage Reg

In

to +5V

Out

10µF 1µF

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Ethernet
Shield

GND

CLK

MOSI

MISO

Eth, SS

SD card SS

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

240 MAKING THINGS TALK

• Byte 5–6: XBee sender’s address.
• Byte 7: Received Signal Strength Indicator (RSSI).
• Byte 8: Broadcast options (not used here).
• Byte 9: Number of samples in the packet (you set it to 5

using the IT command shown earlier).
• Byte 10–11: Which I/O channels are currently being

used. This example assumes only one analog channel,
AD0, and no digital channels are in use.

The following
sketch reads

bytes and puts them in an array until it
sees the value 0x7E. Then, it parses the
array to find the sensor's value. To start,
you need the message length (or packet
length), an array, and a counter to know
where you are in the array. Then, you
need to set up serial communications.

/*

 XBee message reader

 Context: Arduino

 */

const int packetLength = 22; // XBee data messages will be 22 bytes long

int dataPacket[packetLength]; // array to hold the XBee data

int byteCounter = 0; // counter for bytes received from the XBee

void setup() {

 // start serial communications:

 Serial.begin(9600);

}

 Read It

The main loop doesn't do much
in this sketch; it just calls a method,
listenToSerial(), that goes through the
bytes and does the work.

To start with, just read the bytes in
and look for the value 0x7E. When you
see it, print a linefeed. No matter what,
print the byte values separated by a
space.

NOTE: In this circuit, you didn't connect the

Arduino's transmit pin to the XBee's receive

pin on purpose. This way, you can use the

serial connection both to receive from the

XBee and to send debugging information to

the Serial Monitor.

8

8

void loop() {

 // listen for incoming serial data:

 if (Serial.available() > 0) {

 listenToSerial();

 }

}

void listenToSerial() {

 // read incoming byte:

 int inByte = Serial.read();

 // beginning of a new packet is 0x7E:

 if (inByte == 0x7E) {

 Serial.println();

 }

 // print the bytes:

 Serial.print(inByte, DEC);

 Serial.print(" ");

}

• Byte 12–21: 10-bit values, each ADC sample from the
sender. Each 10-bit sample represents a voltage from 0
to the XBee's maximum of 3.3V, so a value of 0 means 0
volts, and a value of 1023 means 3.3 volts. Each point of
the sensor's value is then 3.3/1024, or 0.003 volts.

Because every packet starts with a constant value, 0x7E
(that’s decimal value 126), you can start by looking for that
value.
X

SESSIONLESS NETWORKS 241

When you run this sketch, you’ll
get a result like what's shown to

the right.

Each line that starts with 126 (0x7E
in hexadecimal) is a single XBee
message. Most of the lines have 22
bytes, corresponding to the packet
format described earlier. You may
wonder why the first line of the output
shown here didn’t have a full comple-
ment of bytes. It’s simply because
there’s no way to know what byte the
XBee is sending when the Arduino first
starts listening. That's OK, because the
code below will filter out the incom-
plete packets.

201 1 201 1 200 1 197 91

126 0 18 131 0 1 43 0 5 2 0 1 197 1 196 1 198 1 198 1 197 106

126 0 18 131 0 1 43 0 5 2 0 1 197 1 193 1 193 1 192 1 192 125

126 0 18 131 0 1 44 0 5 2 0 1 194 1 194 1 193 1 190 1 190 130

126 0 18 131 0 1 43 0 5 2 0 1 189 1 189 1 191 1 190 1 190 143

126 0 18 131 0 1 43 0 5 2 0 1 190 1 186 1 186 1 186 1 188 156

126 0 18 131 0 1 43 0 5 2 0 1 187 1 187 1 186 1 183 1 183 166

126 0 18 131 0 1 43 0 5 2 0 1 182 1 182 1 184 1 183 1 183 178

126 0 18 131 0 1 43 0 5 2 0 1 181 1 180 1 179 1 179 1 182 191

126 0 18 131 0 1 43 0 5 2 0 1 181 1 181 1 180 1 178 1 177 195

126

It would be handy
to have each

packet in its own array. That's how
you'll use the global variables you set
up before.

Next, change the listenToSerial()
method, adding code to parse the dat-
aPacket array; then, empty the array to
prepare to receive new data. Replace
everything in the if statement with the
code shown in blue, and remove the
two lines that printed the byte and the
space.

This function calls another function,
parseData(), that extracts and
averages the sensor readings in bytes
12 to 21 of the packet.

void listenToSerial() {

 // read incoming byte:

 int inByte = Serial.read();

 // beginning of a new packet is 0x7E:

 if (inByte == 0x7E) {

 // parse the last packet and get a reading:

 int thisReading = parseData();

 // print the reading:

 Serial.println(thisReading);

 // empty the data array:

 for (int thisByte = 0; thisByte < packetLength; thisByte++) {

 dataPacket[thisByte] = 0;

 }

 // reset the incoming byte counter:

 byteCounter = 0;

 }

 // if the byte counter is less than the data packet length,

 // add this byte to the data array:

 if (byteCounter < packetLength) {

 dataPacket[byteCounter] = inByte;

 // increment the byte counter:

 byteCounter++;

 }

}

 Refine It

8

242 MAKING THINGS TALK

This function
goes through

each complete message packet byte-
by-byte, assembling the relevant values
from the various bytes. When it's
done, it returns the average of the five
samples in the packet.

int parseData() {

 int adcStart = 11; // ADC reading starts at byte 12

 int numSamples = dataPacket[8]; // number of samples in packet

 int total = 0; // sum of all the ADC readings

 // read the address. It's a two-byte value, so you

 // add the two bytes as follows:

 int address = dataPacket[5] + dataPacket[4] * 256;

 // read <numSamples> 10-bit analog values, two at a time

 // because each reading is two bytes long:

 for (int thisByte = 0; thisByte < numSamples * 2; thisByte=thisByte+2) {

 // 10-bit value = high byte * 256 + low byte:

 int thisSample = (dataPacket[thisByte + adcStart] * 256) +

 dataPacket[(thisByte + 1) + adcStart];

 // add the result to the total for averaging later:

 total = total + thisSample;

 }

 // average the result:

 int average = total / numSamples;

 return average;

}

 Parse It

When you run this sketch, you should get a
value between 0 and 1023 every time you get
a message from the sensor XBee radio. Make

sure you're getting good values before you move on. If
you're not, use the first version of the sketch that prints
out the value of each byte to help diagnose the problem.
Seeing every byte that you actually receive before you do
anything with those bytes is the best way to get at the
problem. There are a few common problems to look for:

• Are you getting anything at all? If not, is the sensor
XBee transmitting?

• Does each radio have the correct settings? Connect
them to a USB-to-XBee serial adapter and check in a
serial terminal application.

• Is the receiving radio getting adequate power? Check
the voltage between pins 1 and 10 of the receiving XBee.
If you're using an older Arduino, and you're relying on
the 3.3V output without a regulator, you may not be
giving the radio enough power. The earlier Arduinos
(before the Uno) didn't supply much amperage from the
3.3V output.

Also consider the advice in Figure 7-9 to make trouble-
shooting easier. Once you know you're receiving properly,
move on to adding the web server code.
X

Figure 7-9

Until you're finished troubleshooting, it's a good idea to label

your XBee radios so you can tell them apart without having

to check their configurations serially.

SESSIONLESS NETWORKS 243

Add some code to the main loop to
listen for new clients and deal with

them, and to average the values from the
incoming XBee packets every 10 seconds.
New lines are shown in blue.

8 void loop() {

 // listen for incoming serial data:

 if (Serial.available() > 0) {

 listenToSerial();

 }

 // listen for incoming clients:

 Client client = server.available();

 if (client) {

 listenToClient(client);

 }

 // calculate an average of readings after <averageInterval> seconds

 long now = millis();

 if (now - lastAverageTime > averageInterval) {

 averageVoltage = getAverageReading();

 Serial.println(averageVoltage);

 }

}

Now that you can
read the XBee

messages, add code to make a web
server. The rest of this sketch is much
like the RGB server from Chapter 4.

First, include the Ethernet and SPI
libraries, and add a few more global
variables at the top of your sketch to
manage them. New lines are shown in
blue.

// include SPI and Ethernet libraries:

#include <SPI.h>

#include <Ethernet.h>

// initialize a server instance:

Server server(80);

// Ethernet MAC address and IP address for server:

byte mac[] = {

 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress ip(192,168,1,20);

String requestLine = ""; // incoming HTTP request from client

const int packetLength = 22; // XBee data messages will be 22 bytes long

int dataPacket[packetLength]; // array to hold the XBee data

int byteCounter = 0; // counter for bytes received from the XBee

// variables for calculating a sensor average:

const int averageInterval = 10 * 1000; // time between averages, in seconds

long sensorTotal = 0; // used for averaging sensor values

float averageVoltage = 0.0; // the average value, in volts

long lastAverageTime = 0; // when you last took an average

int readingCount = 0; // readings since last average

 Serve It

 8 Change these to match your own device
and network.

244 MAKING THINGS TALK

Just as you had a method earlier to
listen to serial data, now you're adding
one to listen to incoming HTTP client
requests. This method reads the bytes
and saves them in a string until it gets
a linefeed. It's not actually parsing the
lines, except to look for linefeeds or
carriage returns. Whenever it gets two
linefeeds in a row, it knows the HTTP
request is over, and it should respond
by calling the makeResponse() routine.

8 // this method listens to requests from an HTTP client:

void listenToClient(Client thisClient) {

 while (thisClient.connected()) {

 if (thisClient.available()) {

 // read in a byte:

 char thisChar = thisClient.read();

 // for any other character, increment the line length:

 requestLine = requestLine + thisChar;

 // if you get a linefeed and the request line

 // has only a newline in it, then the request is over:

 if (thisChar == '\n' && requestLine.length() < 2) {

 // send an HTTP response:

 makeResponse(thisClient);

 break;

 }

 //if you get a newline or carriage return,

 // you're at the end of a line:

 if (thisChar == '\n' || thisChar == '\r') {

 // clear the last line:

 requestLine = "";

 }

 }

 }

 // give the web browser time to receive the data

 delay(1);

 // close the connection:

 thisClient.stop();

}

The makeResponse() method
sends an HTTP header and HTML

response to the client, then closes the
connection. It calls a method, getAver-
ageReading(), which gets the average
of all messages in the last 10 seconds
and converts them to a voltage:

8 void makeResponse(Client thisClient) {

 // read the current average voltage:

 float thisVoltage = getAverageReading();

 // print the HTTP header:

 thisClient.print("HTTP/1.1 200 OK\n");

 thisClient.print("Content-Type: text/html\n\n");

 // print the HTML document:

 thisClient.print("<html><head><meta http-equiv=\"refresh\"

 content=\"3\">");

 thisClient.println("</head>");

 // if the reading is good, print it:

 if (thisVoltage > 0.0) {

 thisClient.print("<h1>reading = ");

 thisClient.print(thisVoltage);

 thisClient.print(" volts</h1>");

 } // if the reading is not good, print that:

 else {

 thisClient.print("<h1>No reading</h1>");

 }

 thisClient.println("</html>\n\n");

}

SESSIONLESS NETWORKS 245

What Happens in the Subnet
Stays in the Subnet

You're probably thinking to yourself, "That's great, but
how come I'm not sending these messages over the
Internet via UDP? Isn't that the message-based protocol
that's parallel to the message-based protocol of the XBee
radios?" Yes, it is. However, it's wise to be careful with
the use of UDP outside your own subnet. If you were to
broadcast beyond your own subnet to the rest of the Net,
you'd flood the whole network with unnecessary traffic.
UDP and message-based protocols are used on the wider
Net but, in general, they are used in a directed manner

The getAverageReading() is called
every 10 seconds from the main loop,
as well as every time a client makes
a request. It takes the readings from
a number of XBee messages and
averages them all, as shown at right.

That's the whole sketch. Upload it to
your Arduino, then open the Arduino's
address in a browser, as shown in
Figure 7-10.

Now when you're working in your shop,
your family or friends have two ways
to know whether the air is getting too
foul for you to breathe. They can check
the website or listen for the monkey to
clang his cymbals.

NOTE: This code doesn't actually translate

output voltage into concentration of gases.

To do that calculation, you'll need to read

the datasheet for the sensor you chose.

8 float getAverageReading() {

 int thisAverage = sensorTotal / readingCount;

 // convert to a voltage:

 float voltage = 3.3 * (thisAverage / 1024.0);

 // reset the reading count and totals for next time:

 readingCount = 0;

 sensorTotal = 0;

 // save the time you took this average:

 lastAverageTime = millis();

 // return the result:

 return voltage;

}

rather than as broadcast messages. For example, video
and audio transmissions on the Internet are generally
directed UDP streams. The client contacts the server first
using an HTTP request, or a similar TCP-based request.
The server tells the client to open a port on which to
recieve UDP messages, the client opens the port, and the
server starts a stream of UDP messages. That's a more
polite use of UDP on the wider Internet.

In the next project, you'll use UDP-directed messages from
one device to another, as well as XBee-directed messages.
X

Figure 7-10

The results of the XBee gas server.

246 MAKING THINGS TALK

Directed Messages
The more common way to use sessionless protocols is to send directed messages to

the object to which you want to speak. You saw this in action already in Chapter 6, when

you programmed your microcontrollers to speak to each other using XBee radios. Each

radio had a source address (which you read and set using the ATMY command) and a

destination address (which you read and set using the ATDL command). One radio’s

destination was another’s source, and vice versa. Though there were only two radios

in that example, you could have included many more radios, and decided which one to

address by changing the destination address on the fly.

Sending Directed UDP Datagrams
In the example at the beginning of this chapter, you sent
UDP datagrams between Processing and Arduino. The
Processing sketch sent a broadcast packet, and the
Arduinos sent a directed packet in response, by extracting
the sender's address from the packet. As long as you know
the address to which you want to send a datagram , it's
really that simple.

If you've got more than one Ethernet-connected device
(besides your personal computer), you can try this out
with the following Processing sketch. It's an expansion on
the broadcast sketch, allowing you to send both broadcast
and directed messages. Using the same Arduino UDP
query responder from before, try it on all the receiving
Arduino Ethernet-connected devices. When you type a, all
the receiving devices will respond. When you type b or c,
only the one with that address will respond.

This sketch, along with
the Arduino UDP query

responder sketch, is a useful way to
test whether your network devices
are all working. It's a good idea to do
something simple like this to make
sure the network connections are good
before you try more complex sketches.

 Send It /*

 UDP directed or broadcast query sender/receiver

 Context: Processing

 */

// import the UDP library:

import hypermedia.net.*;

UDP udp; // initialize the UDP object

void setup() {

 udp = new UDP(this, 43770); // open a UDP port

 udp.listen(true); // listen for incoming messages

}

void draw()

{

} »

SESSIONLESS NETWORKS 247

Continued from previous page .

 8 You’ll need to change
these numbers.

void keyPressed() {

 int port = 43770; // the destination port

 String message = ", I'm talking to YOU!"; // the message to send

 String ip = "255.255.255.255"; // the remote IP address

 // send to different addresses depending on which key is pressed:

 switch (key) {

 case 'a': // broadcast query

 message = "Calling all ducks!\n";

 break;

 case 'b': // directed query

 ip = "192.168.1.20"; // the remote IP address

 message = ip + message; // the message to send

 break;

 case 'c': // directed query

 ip = "192.168.1.30"; // the remote IP address

 message = ip + message; // the message to send

 break;

 }

 // send the message to the chosen address:

 udp.send(message, ip, port);

}

void receive(byte[] data) {

 // print the incoming data bytes as ASCII characters:

 for(int thisChar=0; thisChar < data.length; thisChar++) {

 print(char(data[thisChar]));

 }

 println();

}

248 MAKING THINGS TALK

In this project, you’ll relay data from a

solar cell via two XBee radios and an

Arduino to a Processing sketch that

graphs the result. This project is similar

to the previous one in terms of hardware,

but instead of using broadcast messages,

you’ll relay the data from the first to

the second to the third using directed

messages. In addition, the Arduino

uses directed UDP datagrams to send

messages to the Processing program.

This project comes from Gilad Lotan and Angela Pablo
(as shown in Figure 7-11), former students at the Inter-
active Telecommunications Program (ITP) at New York
University. The ITP is on the fourth floor of a 12-story
building in Manhattan, and it maintains an 80-watt solar
panel on the roof. The students wanted to watch how
much useful energy the cell receives each day. Because
it’s used to charge a 12-volt battery, it’s useful only when
the output voltage is higher than 12V. In order to monitor
the cell’s output voltage on the fourth floor, Gilad and
Angela (advised by a third student, Robert Faludi, who
later wrote the book on XBee radios: building Wireless
Sensor Networks [O'Reilly]) arranged three XBee radios
to relay the signal down the building’s stairwell from the
roof to the fourth floor. From there, the data went over
the local network via an Ethernet processor and onto a
SQL database. This example, based on their work, uses
a smaller solar cell from Spark Fun, and a Processing
program to graph the data instead of a SQL database.

There are three radios in this project: one attached to the
solar cell, one relay radio standing on its own, and one
attached to the Arduino. Figure 7-12 shows the network.

Radio Settings
The radio settings are similar to the settings from the
previous project—the only difference is in the destination
addresses. You won’t be using broadcast addresses this
time. Instead, the solar cell radio (address = 1) will send
to the relay radio (address = 2), and that radio will send
to the Arduino radio (address = 3). Instead of forming

Relaying Solar Cell Data Wirelessly
Sensor radio Relay radio XPort radio

MY = 01

DL = 02

ID = 1111

D0 = 2

IR = 0x64

IT = 5

MY = 02

DL = 03

ID = 1111

MY = 03

DL = 01

ID = 1111

a broadcast network, they form a chain, extending the
distance the message travels. Their settings are shown in
the table above. Here are the command strings to set them.
For the solar cell radio:

ATMY1, DL02\r

ATID1111, D02, IR64\r

ATIT5, WR\r

For the relay radio:

ATMY2, DL03, ID1111, WR\r

And for the Arduino radio:

ATMY3, DL01, ID1111, WR\r

The Circuits
The solar cell circuit runs off the solar cell itself, because
the cell can produce the voltage and amperage in daylight
needed to power the radio. The LD1117-33V regulator
can take up to 15V input, and the solar panel’s maximum
output is 12V, so you’re safe there. The MAX8212 IC is a
voltage trigger. When the input voltage on its threshold pin
goes above a level determined by the resistors attached
to the circuit, the output pin switches from high to low.
This change turns on the 2N3906 transistor. The transis-
tor then allows voltage and current from the solar cell to
power the regulator. When the solar cell isn’t producing
enough voltage, the radio will simply turn off. It’s OK if
the radio doesn’t transmit when the cell is dark because
there’s nothing worth reporting then anyhow. The two
resistors attached to the XBee’s AD0 pin form a voltage
divider that drops the voltage from the solar cell propor-
tionally to something within the 3.3V range of the radio’s
analog-to-digital converter. The 4700µF capacitors store
the charge from the solar cell like batteries, keeping the
radio’s supply constant. Figure 7-13 shows the circuit.

Project 14

SESSIONLESS NETWORKS 249

Figure 7-11

ITP students Gilad Lotan

and Angela Pablo with the

solar battery pack and

XBee monitor radio.

Figure 7-12

Network diagram for the

solar project.

Sensor XBee
Radio

Internet

Relay XBee
Radio

Arduino XBee
Radio

Arduino

Processing
program on

personal
computer

The XBee radios can be configured as a mesh network

using the ZigBee protocol. In a mesh network, some radios

function as routers, similar to how the relay radio works

in this project. Routers can not only relay messages,

they can also store and forward them when the radios

at the end node are not on. This provides the whole

network with net power saving, as the end nodes can

be turned off most of the time. To do this, though, you

need different radios: Digi's XBee or XBee-PRO ZigBee

OEM modules. For details on how to use these, see

Robert Faludi's book building Wireless Sensor Networks

(O’Reilly).

Mesh Networking

The Arduino radio circuit is identical to the one used in the
previous project. Build it as shown in Figure 7-8.

The relay radio circuit is very simple. It’s just a radio on a
battery with its transmit pin and receive pin connected.
This is how it will relay the messages. Any incoming
messages will get sent out the serial transmit pin, then

250 MAKING THINGS TALK

MATERIALS

 » 1 uSb-to-Xbee serial adapter

Solar Cell Circuit
 » 1 solderless breadboard
 » 1 Digi Xbee OEM RF module
 » 1 3 .3V regulator
 » 1 Xbee breakout board
 » 2 rows of 0 .1-inch header pins
 » 2 2mm female header rows
 » 1 1µF capacitor
 » 1 10µF capacitor
 » 3 4700µF electrolytic capacitors
 » 1 MAX8212 voltage monitor
 » 1 10-kilhom resistor
 » 3 100-kilhom resistors
 » 1 4 .7-kilhom resistor
 » 1 1-kilhom resistor
 » 1 2N3906 PNP-type transistor
 » 2 LEDs
 » 2 220-ohm resistors
 » 1 solar cell

Arduino Radio Circuit
This is identical to the Arduino radio circuit in the previous
project.

 » 1 Arduino microcontroller module
 » 1 Arduino Ethernet shield
 » 1 Digi Xbee OEM RF module
 » 1 Arduino wireless shield If you use this, you won't

need the rest of the parts listed below. They are all for
connecting the XBee to your Arduino.

 » 1 solderless breadboard
 » 1 3 .3V regulator
 » 1 1µF capacitor
 » 1 10µF capacitor
 » 1 Xbee breakout board
 » 2 rows of 0 .1-inch header pins
 » 2 2mm female header rows
 » 2 LEDs
 » 2 220Ω Resistors

Relay Radio Circuit
This circuit is just an XBee radio by itself, powered by
a battery. If you prefer, you can use the USB-to-XBee
serial adapter instead of any of the three options below.

 » 1 Digi Xbee OEM RF module
 » 1 9V battery clip
 » 1 9V battery

NOTE: If you use either of these, you won't need anything else but

the XBee and the battery and a jumper wire to connect TX to RX.

Option 1:

 » 1 Xbee Explorer Regulated

Option 2:

 » Xbee LilyPad

Option 3:

 » 1 solderless breadboard
 » 1 3 .3V regulator
 » 1 Xbee breakout board
 » 2 rows of 0 .1-inch header pins
 » 2 2mm female header rows
 » 2 LEDs
 » 2 220-ohm resistors
 » 1 10µF capacitor
 » 1 100µF capacitor

SESSIONLESS NETWORKS 251

Figure 7-13

XBee radio attached to a

solar cell. To reveal the com-

ponents and wires beneath,

the detail photos show the

circuit without the 4700µF

capacitors and without the

XBee.

3.3V
Voltage Reg

In Out

10µF 1µF

12V solar cell

4700µF
x3

4.7kΩ

1kΩ

100kΩ

220Ω

220Ω

100kΩ
x2

10kΩ

2N3906

MAX8212
Voltage Monitor

Thresh.

Hyst.

NC

Out

NC

NC.

Vin

GND

GND

DTR/DI8

NC

PWM1

PWM0 / RSSI

RESET

RX

TX

AD2 / DIO2

AD3 / DIO3

RTS / AD6 / DIO6

Ass't / AD5 / DIO5

Vref

SLP

CTS / DIO7

AD4 / DIO4

AD1 / DIO1

AD0 / DIO0Vcc

DO8

Xbee Radio

1 5 10 15 20 25 30 35 40 45 50 55 60

1 5 10 15 20 25 30 35 40 45 50 55 60

A
B
C
D
E

F
G
H
I
J

A
B
C
D
E

F
G
H
I
J

MAX8212

252 MAKING THINGS TALK

Figure 7-14

The XBee radio relay circuit.

LM7833
Voltage Reg

In Out

10µF 1µF

+9V battery

GND

DTR/DI8

NC

PWM1

PWM0 / RSSI

RESET

RX

TX

AD2 / DIO2

AD3 / DIO3

RTS / AD6 / DIO6

Ass't / AD5 / DIO5

Vref

SLP

CTS / DIO7

AD4 / DIO4

AD1 / DIO1

AD0 / DIO0Vcc

DO8

Xbee Radio

220Ω

220Ω

back into the receive pin, where they will be sent out again
as transmissions. Figure 7-14 shows the circuit. You could
also use a LilyPad XBee, XBee Explorer Regulated, or any
USB-to-XBee serial adapter. Just tie the transmit and
receive pins together, and attach a battery to the voltage
input of the regulator.

1
5

10
15

20
25

30

1
5

10
15

20
25

30

ABCDEFGHIJ

Once you’ve got the radios configured and working, you
need to program the Arduino to read the incoming XBee
packets and relay them to Processing. To do this, you'll use
directed UDP datagrams.

Figure 7-15

Alternative to the relay

circuit: XBee LilyPad with

transmit pin attached to

receive pin.

SESSIONLESS NETWORKS 253

The Arduino sketch to
read and send directed

UDP datagrams is pretty simple.
First, you need to include the relevant
libraries and set up some global
variables as usual. Notice that you're
setting up a specific remote IP address
and port—it should be the computer's
address on which the Processing
sketch will run.

setup() starts the Ethernet con-
nection, initializes serial communi-

cations, opens a UDP port, and starts
an initial UDP packet for sending.

loop() just listens for serial input When
it receives a byte of value 0x7E—
indicating the beginning of a new
XBee message—it sends the previous
datagram using endPacket(), and
begins a new packet. Finally, it adds
any new byte to the current packet.
That's it!

 Send It /*

 XBee to UDP

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

#include <Udp.h>

// Enter a MAC address and IP address for your controller below.

// The IP address will be dependent on your local network:

byte mac[] = {

 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };

IPAddress myIp(192,168,1,20);

IPAddress yourIp(192,168,1,21);

unsigned int myPort = 43770; // local port to listen on

unsigned int yourPort = 43770; // remote port to send to

// A UDP instance to send and receive packets over UDP

UDP udp;

void setup() {

 // start the serial library:

 Serial.begin(9600);

 // start the Ethernet connection:

 Ethernet.begin(mac, myIp);

 // start UDP:

 udp.begin(myPort);

 // give the Ethernet shield a second to initialize:

 delay(1000);

 // set up a packet to send:

 udp.beginPacket(yourIp, yourPort);

}

void loop() {

 if (Serial.available()) {

 int serialByte = Serial.read();

 // if you get a 0x7E,

 // send the packet and begin a new one:

 if (serialByte == 0x7E) {

 udp.endPacket();

 // set up a packet to send:

 udp.beginPacket(yourIp, yourPort);

 }

 // send the byte:

 udp.write(serialByte);

 }

}

8

 8 You’ll need to change
these numbers.

254 MAKING THINGS TALK

/* XBee Packet Reader and Graphing Program

 Reads a packet from an XBee radio via UDP and parses it.

 Graphs the results over time.

 Context: Processing

 */

import hypermedia.net.*;

import processing.serial.*;

UDP udp; // define the UDP object

int queryPort = 43770; // the port number for the device query

void setup() {

 // create a new connection to listen for

 // UDP datagrams on query port:

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

}

void draw() {

 // nothing happens here.

}

/*

 listen for UDP responses

 */

void receive(byte[] data, String ip, int port) {

 int[] inString = int(data); // incoming data converted to string

 print(inString);

 println();

}

First, you need to import the UDP
library, initialize it, and write a method
to listen for incoming datagrams.

This program will print out strings of
numbers that look a lot like the initial
ones from the Arduino sketch in the
gas sensor project. That’s because the
datagrams the program is receiving are
the same protocol—the XBee protocol
for sending analog readings.

8

Graphing the Results
Now that all the hardware is ready, it’s time to write a
Processing sketch to graph the data. This sketch will
receive UDP packets from the Arduino, parse the XBee
packets contained therein, and graph the results. You'll
notice that the parsing routine looks very similar to the

parsing routine you wrote for the Arduino in the previous
project. It's useful to compare them to see how the same
algorithm is implemented slightly differently in the two
programming languages.
X

SESSIONLESS NETWORKS 255

Now that you’ve got the average
reading printing out, add some

code to graph the result. For this, you’ll
need a new global variable before
the setup() method that keeps track
of where you are horizontally on the
graph.

8 int hPos = 0; // horizontal position on the graph

You’ll also need to add a line at the
beginning of the setup() method to

set the size of the window.

8 // set the window size:

 size(400,300);

Next, add a method to interpret
the protocol. Not surprisingly, this
looks a lot like the parsePacket()
function from the Arduino sketch in the
previous project. Add this method to
the end of your program.

To call it, replace the print() and
println() statements in the receive()
method with this:

parseData(inString);

8 void parseData(int[] thisPacket) {

 // make sure the packet is 22 bytes long first:

 if (thisPacket.length >= 22) {

 int adcStart = 11; // ADC reading starts at byte 12

 int numSamples = thisPacket[8]; // number of samples in packet

 int[] adcValues = new int[numSamples]; // array to hold the 5 readings

 int total = 0; // sum of all the ADC readings

 // read the address. It's a two-byte value, so you

 // add the two bytes as follows:

 int address = thisPacket[5] + thisPacket[4] * 256;

 // read the received signal strength:

 int signalStrength = thisPacket[6];

 // read <numSamples> 10-bit analog values, two at a time

 // because each reading is two bytes long:

 for (int i = 0; i < numSamples * 2; i=i+2) {

 // 10-bit value = high byte * 256 + low byte:

 int thisSample = (thisPacket[i + adcStart] * 256) +

 thisPacket[(i + 1) + adcStart];

 // put the result in one of 5 bytes:

 adcValues[i/2] = thisSample;

 // add the result to the total for averaging later:

 total = total + thisSample;

 }

 // average the result:

 int average = total / numSamples;

 }

}

256 MAKING THINGS TALK

Now, add a new method,
drawGraph(), to the end of the
program.

Call this from the parseData() method,
replacing the println() statement that
prints out the average, like so:

 // draw a line on the graph:

 drawGraph(average);

Now when you run the program, it
should draw a graph of the sensor
readings, updating every time it gets
a new datagram.

8 void drawGraph(int thisValue) {

 // draw the line:

 stroke(#4F9FE1);

 // map the given value to the height of the window:

 float graphValue = map(thisValue, 0, 1023, 0, height);

 // determine the line height for the graph:

 float graphLineHeight = height - (graphValue);

 // draw the line:

 line(hPos, height, hPos, graphLineHeight);

 // at the edge of the screen, go back to the beginning:

 if (hPos >= width) {

 hPos = 0;

 //wipe the screen:

 background(0);

 }

 else {

 // increment the horizontal position to draw the next line:

 hPos++;

 }

}

Add a method to the end of the
program, drawReadings() . This will
display the date, time, voltage reading,
and received signal strength.

Call this method from a few different
places in the program; first, at the end
of the setup() method:

 // show the readings text:

 drawReadings(0,0);

Next, to draw the latest readings, call it
at the end of the parseData() method:

// draw a line on the graph,

// and the readings:

drawGraph(average);

drawReadings(average, signalStrength);

8 void drawReadings(int thisReading, int thisSignalStrength) {

 // set up an array to get the names of the months

 // from their numeric values:

 String[] months = {

 "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",

 "Sep", "Oct", "Nov", "Dec"

 };

 // format the date string:

 String date = day() + " " + months[month() -1] + " " + year() ;

 // format the time string

 // all digits are number-formatted as two digits:

 String time = nf(hour(), 2) + ":" + nf(minute(), 2) + ":" + nf(second(),

2);

 // calculate the voltage from the reading:

 float voltage = thisReading * 3.3 / 1024;

 // choose a position for the text:

 int xPos = 20;

 int yPos = 20;

Next, add some code to add a time
stamp. First, add a global variable to
set the text line height.

8
int lineHeight = 14; // a variable to set the line height

»

SESSIONLESS NETWORKS 257

That’s the whole program. When
it’s running, it should look like Figure
7-16.

8 Continued from previous page .

 // erase the previous readings:

 noStroke();

 fill(0);

 rect(xPos,yPos, 180, 80);

 // change the fill color for the text:

 fill(#4F9FE1);

 // print the readings:

 text(date, xPos, yPos + lineHeight);

 text(time, xPos, yPos + (2 * lineHeight));

 text("Voltage: " + voltage + "V", xPos, yPos + (3 * lineHeight));

 text("Signal Strength: -" + thisSignalStrength + " dBm", xPos,

 yPos + (4 * lineHeight));

}

Figure 7-16

The output of the solar graph program.

These sensor values were faked with a

flashlight! Your actual values may differ.

258 MAKING THINGS TALK

Conclusion
Sessionless networks can be really handy when you’re just passing short messages

around and don’t need a lot of acknowledgment. They involve a lot less work because

you don’t have to maintain the connection. They also give you a lot more freedom

in how many devices you want to address at once.

By comparing the two projects in this chapter, you can
see there’s not a lot of work to be done to switch from
directed messages and broadcast messages when you’re
making a sessionless network. It’s best to default to directed
messages when you can, which reduces the traffic for
those devices that don’t need to get every message.

Now that you’ve got a good grasp of both session-based
and sessionless networks, the next chapters switch
direction slightly, covering two other activities of connecting
networks to the physical world: location and identification.
X

The solar energy display by Gilad Lotan and Angela Pablo The solar panel powering the

display on the roof of Nyu's

Tisch School of the Arts

SESSIONLESS NETWORKS 259

260 MAKING THINGS TALK

How to Locate
(Almost) Anything
By now, you’ve got a pretty good sense of how to make things talk to each

other over networks. You’ve learned about packets, sockets, datagrams,

clients, servers, and all sorts of protocols. Now that you know how to

talk, this chapter and the next deal with two common questions: “where

am I?”, and “who am I talking to?” Location and identification technolo-

gies share some important properties. As a result, it’s not uncommon

to confuse the two, and to think that a location technology can be used

to identify a person or an object, and vice versa. These are two different

tasks in the physical world, and often in the network environment as

well. Systems for determining physical location aren’t always very good

at determining identity, and identification systems don’t do a good job

of determining precise location. Likewise, knowing who’s talking on a

network doesn’t always help you to know where the speaker is. In the

examples that follow, you’ll see methods for determining location and

identification in both physical and network environments.

8
MAKE: PROJECTS

Address 2007 by Mouna Andraos and Sonali Sridhar

This necklace contains a GPS module. When activated, it displays the distance between the necklace and your

home location. Photo by J. Nordberg.

262 MAKING THINGS TALK

This chapter is all about sensing location,

so most of the new parts are sensors.

You'll also reuse the radios from Chapters

6 and 7.

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww/)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (http://farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• P Pololu (www.pololu.com)
• PX Parallax (www.parallax.com)
• RS RS (www.rs-online.com)
• SF Spark Fun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

Supplies for Chapter 8
PROJECT 15: INFRARED DISTANCE-RANGER

 » 1 Arduino module An Arduino Uno or something based
on the Arduino Uno, but the project should work on
other Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081, SS
ARD132D2P, MS MKSP4

 » 1 Sharp GP2y0A21 infrared ranger This distance-
ranging sensor operates on 5 volts, and outputs a 0–5V
signal when it detects objects from 10 to 80cm away.
It's one of a family of infrared-ranging sensors from
Sharp. Available from many retailers, They are relatively
inexpensive and very easy to use.
D 425-2063-ND, SF SEN-00242, RS 666-6570, P 136

 » 1 3-wire JST connector pigtail This cable allows you to
attach the sensor to your microcontroller easily.
SF SEN-08733

 » 1 10µF capacitor J 29891, D P11212-ND, F 1144605,
RS 715-1638

Figure 8-1 . New parts for this chapter: 1 . Sharp GP20Y0A21 IR ranger 2 . JST pigtail for IR ranger 3 . Maxbotix LV-EZ1 ultrasonic

ranger 4 . EM-406A GPS receiver 5 . Interface cable for EM-406A 6 . LMS303DLH digital compass 7 . LED tactile button 8 . Breakout

board for button 9 . ADXL335 accelerometer. Don't forget plenty of male header pins for the breakout boards.

1

2
3

4

5

9

8

7

6

HOW TO LOCATE (ALMOST) ANYTHING 263

 » 3 0 .1-inch male header pins J 103377, D A26509-
20ND, SF PRT-00116, F 1593411

PROJECT 16: uLTRASONIC DISTANCE-RANGER
 » 1 Arduino module See description in Project 15.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081, SS
ARD132D2P, MS MKSP4

 » 1 Maxbotix LV-EZ1 ultrasonic ranger Another
distance-ranging sensor, this one uses sonar and has a
longer range; 0 to 6.4m.
SF SEN-00639, AF 172, P 726, SS SEN136B5B

 » 3 0 .1-inch male header pins J 103377, D A26509-
20ND, SF PRT-00116, F 1593411

PROJECT 17: READING RECEIVED SIGNAL STRENGTH
uSING XbEE RADIOS

 » 2 Digi Xbee 802 .15 .4 RF modules J 2113375, SF
WRL-08664, AF 128, F 1546394, SS WLS113A4M, MS
MKAD14

 » 1 uSb-Xbee adapter J 32400, SF WRL-08687, AF 247
 » Xbee breakout board Use the circuit you used for the

XBee solar cell or gas monitor in Chapter 7.
J 32403, SF BOB-08276, AF 127

PROJECT 18: READING RECEIVED STRENGTH uSING
bLuETOOTH RADIOS

 » 1 bluetooth Mate module The same one used in
Chapters 2 and 6.
SF WRL-09358 or WRL-10393

 » 1 uSb-to-Serial adapter SF DEV-09718 or DEV-09716,
AF 70, A A000059, M MKAD22, SS PRO101D2P, D TTL-
232R-3V3 or TTL-232R-5V

 » 1 bluetooth-enabled personal computer If your
laptop doesn't have a Bluetooth radio, use a USB
Bluetooth adapter: SF WRL-09434, F 1814756

PROJECT 19: READING THE GPS SERIAL PROTOCOL
 » 1 solderless breadboard Just as you've used for

previous projects. D 438-1045-ND, J 20723 or 20601,
SF PRT-00137, F 4692810, AF 64, SS STR101C2M or
STR102C2M, MS MKKN2

 » 1 EM-406A GPS receiver module S GPS-00465,
PX 28146, AF 99

 » 1 interface cable for GPS module S GPS-09123,
PX 805-00013

 » 1 bluetooth Mate module The same one used in
Chapters 2 and 6. SF WRL-09358 or WRL-10393

 » 12 0 .1-inch male header pins J 103377, D A26509-
20ND, SF PRT-00116, F 1593411

 » 1 5V regulator J 51262, D LM7805CT-ND, SF COM-
00107, F 1860277, RS 298-8514

PROJECT 20: DETERMINING HEADING uSING A
DIGITAL COMPASS

 » 1 solderless breadboard or prototyping shield The
same as used in previous projects.
D 438-1045-ND, J 20723 or 20601, SF PRT-00137,
F 4692810, AF 64, SS STR101C2M or STR102C2M, MS
MKKN2

 » 1 Arduino module See description in Project 15.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 1 ST Microelectronics LSM303DLH digital compass
Both Pololu and Spark Fun carry a module with this
compass. As of this writing, the Pololu model is
operable at 5V with no external components, but the
Spark Fun one is not.
SF SEN-09810, RS 717-3723, P 1250

 » 1 LED tactile button This example uses an LED tactile
button and breakout board from Spark Fun, which has a
built-in LED, but you can use any pushbutton and LED.
SF COM-10443 and SF BOB-10467

 » 1 220-ohm resistor D 220QBK-ND, J 690700, F
9337792, RS 707-8842

 » 1 10-kilohm resistor D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 1 LED Not needed if you are using the Spark Fun LED
tactile button. D 160-1144-ND or 160-1665-ND, J 34761
or 94511, F 1015878, RS 247-1662 or 826-830, SF
COM-09592 or COM-09590

 » 13 0 .1-inch male header pins J 103377, D A26509-
20ND, SF PRT-00116, F 1593411

PROJECT 21: DETERMINING ATTITuDE uSING AN
ACCELEROMETER

 » 1 solderless breadboard or prototyping shield The
same as used in previous projects. D 438-1045-ND, J
20723 or 20601, SF PRT-00137, F 4692810, AF 64, SS
STR101C2M or STR102C2M, MS MKKN2

 » 1 Arduino module See description in Project 15.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 1 Analog Devices ADXL320 accelerometer This
is a three-axis analog accelerometer, the same one
as you used in the balance board client project in
Chapter 5. You can also use the accelerometer on your
LSM303DLH digital compass from the previous project.
J 28017, SF SEN-00692, AF 163, RS 726-3738, P 1247,
MS MKPX7

264 MAKING THINGS TALK

Network Location and Physical Location
Locating things is one of the most common tasks people want to achieve with sensor

systems. Once you understand the wide range of things that sensors can detect, it’s

natural to get excited about the freedom this affords. All of a sudden, you don’t have to

be confined to a chair to interact with computers. You’re free to dance, run, jump—and

it’s still possible for a computer to read your action and respond in some way.

The downside of this freedom is the perception that in a
networked world, you can be located anywhere. Ubiqui-
tous surveillance cameras and systems like Wireless E911
(which locates mobile phones on a network), make it seem
as though anyone or anything can be located anywhere
and at any time—whether you want to be located or not.
The reality of location technologies lies somewhere in
between these extremes.

Locating things on a network is different than locating
things in physical space. As soon as a device is connected
to a network, you can get a general idea of its network
location using a variety of means—from address lookup to
measuring its signal strength—but that doesn’t mean that
you know its physical location. You just know its relation-
ship to other nodes of the network. You might know that
a cell phone is closest to a given cell transmitter tower, or
that a computer is connected to a particular WiFi access
point. You can use that information along with other data
to form a picture of the person using the device. If you
know that the cell transmitter tower is less than a mile
from you, you’d know that the person with the cell phone
is going to reach you soon, and you can act appropriately
in response. For many network applications, you don’t
need to know physical location as much as you need to
know relationship to other nodes in the network.

•Step 1: Ask a Person
People are really good at locating things. At the physical
level, we have a variety of senses to throw at the problem
as well as a brain that’s wonderful at matching patterns of
shapes and determining distances from different sensory
clues. At the behavioral level, we’ve got thousands of
patterns that make it easier to determine why you might
be looking for something. Computer systems don’t have
these same advantages, so when you’re designing an
interactive system to locate things or people, the best
tool you have to work with—and the first one you should
consider—is the person for whom you’re making your
system.

Getting a good location starts with cultural and behavioral
cues. If you want to know where you are, ask another
person near you. In an instant, she’s going to sum up all
kinds of things—your appearance, your behavior, the
setting you’re both in, the things you’re carrying, and
more—in order to give you a reasonably accurate and
contextually relevant answer. No amount of technology
can do that, because the connection between where
you are and why you want to know is seldom explicit
in the question. As a result, the best thing you can do
when you’re designing a locating system is to harness
the connection-making talents of the person who will be
using that system. Providing him with cues as to where
to position himself when he should take action, and what
actions he can take, helps eliminate the need for a lot of
technology. Asking him to tell your system where things
are, or to position them so that the system can easily find
them, makes for a more effective system.

For example, imagine you’re making an interactive space
that responds to the movements of its viewers. This is
popular among interactive artists, who often begin by
imagining a “body-as-cursor” project, in which the viewer
is imagined as a body moving around in the space of
the gallery. Some sort of tracking system is needed to
determine his position and report it back in two dimen-
sions, like the position of a cursor on a computer screen.

What’s missing here is the reason why the viewer might be
moving in the first place. If you start by defining what the
viewer’s doing, and give him cues as to what you expect
him to do at each step, you can narrow down the space
in which you need to track him. Perhaps you only need to
know when he’s approaching one of several sculptures in
the space so that you can trigger the sculpture to move
in response. If you think of the sculptures as nodes in
a network, the task gets easier. Instead of tracking the
viewer in an undefined two-dimensional space, now all
you have to do is determine his proximity to one of several

HOW TO LOCATE (ALMOST) ANYTHING 265

points in the room. Instead of building a tracking system,
you can now just place a proximity sensor near each
object, look up which he’s near, and read how near he is to
it. You’re using a combination of spatial organization and
technology to simplify the task. You can make your job
even easier by giving him visual, auditory, and behavioral
cues to interact appropriately. He’s no longer passive; he’s
now an active participant in the work.

Or, take a different example: let’s say you’re designing
a mobile phone city-guide application for tourists that
relies on knowing the phone’s position relative to nearby
cell towers to determine the user’s position. What do
you do when you can’t get a reliable signal from the cell
towers? Perhaps you ask the tourist to input the address
she’s at, or the postal code she’s in, or some other nearby
cue. Then, your program can combine that data with the
location based on the last reliable signal it received, and
determine a better result. In these cases, and in all loca-
tion-based systems, it’s important to incorporate human
talents in the system to make it better.

•Step 2: Know the Environment
Before you can determine where you are, you need to
determine your environment. For any location, there
are several ways to describe it. For example, you could
describe a street corner in terms of its address, its latitude
and longitude, its postal code, or the businesses nearby.
Which of these coordinates you choose depends in part on
the technology you have on hand to determine it. If you’re
making the mobile city guide described earlier, you might
use several different ones—the nearest cell transmitter
ID, the street address, and the nearby businesses could all
work to define the location. In this case, as in many, your
job in designing the system is to figure out how to relate
one system of coordinates to another in order to give
some meaningful information.

Mapping places to coordinate systems is a lot of work, so
most map databases are incomplete. Geocoding allows
you to look up the latitude and longitude of most any U.S.
street address. It doesn’t work everywhere in the U.S., and
it doesn’t work most places outside the U.S. because the
data hasn’t been gathered and put in the public domain.
Geocoding depends on having an accurate database of
names mapped to locations. If you don’t agree on the
names, you’re out of luck. The Virtual Terrain Project (www.
vterrain.org) has a good list of geocoding resources for
the U.S. and international locations at www.vterrain.org/
Culture/geocoding.html. Geocoder.net offers a free U.S.-

based lookup at www.geocoder.us, and Worldkit offers an
extended version that also looks up international cities:
www.worldkit.org/geocoder.

Street addresses are the most common coordinates
that are mapped to latitude and longitude, but there
are other systems for which it would be useful to have
physical coordinates as well. For example, mobile phone
cell transmitters all have physical locations. It would be
handy to have a database of physical coordinates for
those towers. However, cell towers are privately owned by
mobile telephone carriers, so detailed data about the tower
locations is proprietary, and the data is not in the public
domain. Projects such as OpenCellID (www.opencellid.org)
attempt to map cell towers by using GPS-equipped mobile
phones running custom software. As there are many
different mobile phone operating systems, just developing
the software to do the job is a huge challenge.

IP addresses don’t map exactly to physical addresses
because computers can move. Nevertheless, there are
several geocoding databases for IP addresses. These work
on the assumption that routers don’t move a lot, so if you
know the physical location of a router, then the devices
gaining access to the Net through that router can’t be too
far away. The accuracy of IP geocoding is limited, but it
can help you determine a general area of the world, and
sometimes even a neighborhood or city block, where a
device on the Internet is located. Of course, IP lookup
doesn’t work on private IP addresses. In the next chapter,
you’ll see an example that combines network identity and
geocoding.

You can develop your own database relating physical
locations to cultural or network locations if the amount of
information you need is small, or if you have a large group
of people to do the job. But, generally, it’s better to rely on
existing infrastructures when you can.

•Step 3: Acquire and Refine
Once you know where you’re going to look, there are
two tasks that you have to do continually: acquire a new
position, and refine the position’s accuracy. Acquisition
gives a rough position; it usually starts by identifying which
device on a network is the center of activity. In the inter-
active installation example described earlier, you could
acquire a new position by determining that the viewer
tripped a sensor near one of the objects in the room. Once
you know roughly where he is, you can refine the position
by measuring his distance with the proximity sensor
attached to the object.

266 MAKING THINGS TALK

At the 2004 O’Reilly Emerging Technology Confer-

ence (ETech), interaction designer and writer Chris

Heathcote gave an excellent presentation on cultural

and technological solutions to finding things, entitled

35 Ways to Find Your Location. He outlined a number of

important factors to keep in mind before you choose

tools to do the job. He pointed out that the best way to

locate someone or something involves a combination

of technological methods and interpretation of cultural

and behavioral cues. His list is a handy tool for inspiring

solutions when you need to develop a system to find

locations. A few of the more popular techniques that

Chris listed are:

• Assume: the Earth. Or a smaller domain, but assume
that's the largest space you have to look in.

• Use the time.

• Ask someone.

• Association: who or what are you near?

• Proximity to phone boxes, public transport stops,
and utility markings.

• Use a map.

• Which cell phone operators are available?

• Public phone operators?

• Phone number syntax?

• Newspapers available?

• Language being spoken?

• Post codes/ZIP codes.

• Street names.

• Street corners/intersections.

• Street numbers.

• Business names.

• Mobile phone location, through triangulation or
trilateration.

• Triangulation and trilateration on other radio
infrastructures, such as TV, radio, and public WiFi.

• GPS, assisted GPS, WAAS, and other GPS
enhancements.

• Landmarks and “littlemarks.”

• Dead reckoning.

35 Ways to Find
Your Location

Refining doesn’t have to mean getting a more accurate
physical position. Sometimes you refine what you know
about the context or activity, not the position. When you
have a rough idea of where something’s happening, you
need to know about the activity at that location in order to
provide a response. In the interactive installation example,
you may never need to know the viewer’s physical coor-
dinates in feet and inches (or meters and centimeters).
When you know which object he’s close to in the room—
and whether he’s close enough to relate to it—you can
make that object respond. You might be changing the
graphics on a display when he walks near, or activating an
animatronic sculpture as he walks by. In both cases, you
don’t need to know the precise distance; you just need
to know he’s close enough to pay attention. Sometimes
distance-ranging sensors are used as motion detectors
to define general zones of activity rather than to measure
distance.

Determining proximity doesn’t always give you enough
information to take action. Refining can also involve deter-
mining the orientation of one object relative to another.
For example, if you’re giving directions, you need to know
which way you’re oriented. It’s also valuable information
when two people or objects are close to each other. You
don’t want to activate the animatronic sculpture if the
viewer has his back to the thing!
X

HOW TO LOCATE (ALMOST) ANYTHING 267

Determining Distance
Electronic locating systems—like GPS, mobile phone location, and sonar—seem

magical at first because there’s no visible evidence as to how they work. However, when

you break the job down into its components, it becomes relatively straightforward. Most

physical location systems are based on one of two methods: measuring the time of a

signal's travel from a known location, or measuring its strength at the point of reception.

Both methods combine measurements from multiple sources to determine a position in

two or three dimensions using trilateration.

For example, a GPS receiver determines its position on
the surface of the planet by measuring the time delay
of received radio signals from several geosynchronous
satellites. Mobile phone location systems function
similarly, using the signal from nearby cell towers to
determine the phone's position. Systems like Skyhook
(www.skyhookwireless.com) use several different systems
(WiFi, GPS, and cell tower location) to refine their posi-
tional accuracy. Sonar and infrared-ranging sensors work
by sending out an acoustic signal (sonar) or an infrared
signal (IR rangers), and then measuring the strength of
that signal when it’s reflected off the target.

Distance ranging techniques can be classified as active or
passive. In active systems, the target has a radio, light, or
acoustic source on it, and the receiver listens for the signal
generated directly by the target. In passive systems, the
target doesn’t need to have any technology on board. The
receiver emits a signal, then listens for the signal reflected
back from the target. Mobile phone location is active
because it relies on a two-way transmission between
the phone and the cell tower. GPS is also active, even
though the transmission is one-way, because the signal
used to determine location is direct, not reflected. The
target is a radio receiver. Sonar and infrared ranging are
passive because the signal is reflected off the target, not
generated by it.

Sometimes distance ranging is used for acquiring a
position; other times, it’s used for refining it. In the
following examples, the passive distance rangers deliver a
measurement of physical distance.

Passive Distance Ranging
Ultrasonic rangers like the MaxBotix LV-EZ1, and infrared
rangers like the Sharp GP2Y0A21YK, shown in Figure 8-2,
are examples of distance rangers. The MaxBotix sensor
sends out an ultrasonic signal and listens for an echo.
The Sharp sensor sends out an infrared light beam, and
senses the reflection of that beam. These sensors work in
a short range only. The Sharp sensor can read about 10cm
to 80cm, and the MaxBotix sensor reads from about 0 to
7.5m. Passive sensors like these are handy when you want
to measure the distance of a person in a limited space, and
you don’t want to put any hardware on the person. They’re
also useful when you’re building moving objects that need
to know their proximity to other objects in the same space
as they move.
X

268 MAKING THINGS TALK

The Sharp GP2xx series of infrared-rang-

ing sensors give a decent measurement

of short-range distance by bouncing an

infrared light signal off the target, and

then measuring the returned brightness.

They’re very simple to use. Figure 8-2

shows a circuit for a Sharp GP2Y0A21

IR ranger, which can detect an object in

front of it within about 10cm to 80cm. The

sensor requires 5V power, and it outputs

an analog voltage from 0 to 5V, depending

on the distance to the nearest object in its

sensing area.

MATERIALS

 » 1 Arduino module
 » 1 Sharp GP2y0A21 IR ranger
 » 1 10µF capacitor
 » 3 male header pins

Infrared Distance Ranger Example

This sketch reads the sensor
and converts the results to a voltage.
Then, it uses the result explained above
to convert the voltage to a distance
measured in centimeters.

The conversion formula gives only
an approximation, but it’s accurate
enough for general purposes.

For many applications, though, you
don't need the absolute distance, but
the relative distance. Is the person
nearer or farther away? Has she
passed a threshold that should trigger
some other interaction? For such
applications, you won't need this con-
version. You can just use the output
of the analogRead() command and
choose a value for your threshold by
experimentation.

8 /*

 Sharp GP2xx IR ranger reader

 Context: Arduino

*/

void setup() {

 // initialize serial communications at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 int sensorValue = analogRead(A0);

 // convert to a voltage:

 float voltage = map(sensorValue, 0, 5, 0, 1023);

 // the sensor actually gives results that aren't linear.

 // This formula is derived from the datasheet's graph

 // of voltage over 1/distance. The slope of that line

 // is approximately 27:

 float distance = 27.0 /voltage;

 // print the sensor value

 Serial.print(distance);

 Serial.println(" cm");

 // wait 10 milliseconds before the next reading

 delay(10);

}

Project 15

The Sharp sensors’ outputs are not linear, so if you want
to get a linear range, you need to make a graph of the
voltage over distance, and do some math. Fortunately, the
good folks at Acroname Robotics have done the math for
you. For the details, see www.acroname.com/robotics/
info/articles/irlinear/irlinear.html. The sensor's datasheet
at http://www.sharpsma.com/webfm_send/1208
includes a graph of voltage over the inverse of the
distance. It shows a pretty linear relationship between the
two from about 10 to 80cm, and the slope of that line is
about 27V*cm. You can get a decent approximation of the
distance using that.

www.acroname.com/robotics/info/articles/irlinear/irlinear.html
www.acroname.com/robotics/info/articles/irlinear/irlinear.html

HOW TO LOCATE (ALMOST) ANYTHING 269

+5V

GND

Analog out

10µF

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V
POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Figure 8-2

The Sharp GP2Y0A21YK IR ranger

attached to a microcontroller. The

capacitor attached to the body of the

sensor smoothes out fluctuations due

to the sensor’s current load.

270 MAKING THINGS TALK

The MaxBotix (www.maxbotix.com) ultra-

sonic sensors measure distance using

a similar method to the Sharp sensors,

but theirs have a greater sensing range.

Instead of infrared, they send out an ultra-

sonic signal and wait for the echo. Then

they measure the distance based on the

time required for the echo to return. These

sensors require 5V power (the LV series

can operate on 2.5–5V), and return their

results via analog, pulse width, or asyn-

chronous serial interface. They're available

from MaxBotix, Spark Fun, Adafruit,

Pololu, and many of the other retailers

listed in this book.

MATERIALS

 » 1 Arduino module
 » 1 Maxbotix LV-EZ1 ultrasonic ranger
 » 3 male header pins or 3 jumper wires

Ultrasonic Distance Ranger Example
BWPWANRXTX+5V

G
N
D

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Distance rangers are great for measuring linear distance,
but they have a limited conical field of sensitivity, so
they’re not great for determining location over a large
two-dimensional area. The MaxBotix LV-EZ1 sensor, for
example, has a cone-shaped field of sensitivity that’s
about 80-degrees wide (though the sensitivity drops off at
the edges) and 6.4 meters from the sensor to the edge of
the range. In order to use it to cover a room, you’d need to
use several of them and arrange them creatively. Figure
8-3 shows one way to cover a 4m x 4m space using five
of the rangers. In this case, you’d need to make sure that
no two of the sensors were operating at the same instant,
because their signals would interfere with each other. The
sensors would have to be activated one after another in
sequence. Because each one takes up to 5 milliseconds to
return a result, you’d need up to 250 milliseconds to make
a complete scan of the space.

Project 16

Sensor
1

Sensor
2

Measuring distance top-to-bottom

Measuring distance side-to-side

Sensor
4

Sensor
5

Sensor
3

HOW TO LOCATE (ALMOST) ANYTHING 271

+5V

GND

Analog out

TX

RX

PW out

BW +5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

 Figure 8-4

at right, opposite page

MaxBotix LV-EZ1 ultrasonic sensor

connected to an Arduino module.

Figure 8-5

Schematic for MaxBotix

LV-EZ1 ultrasonic sensor

connected to an Arduino

module.

 Figure 8-3

at left, opposite page

Measuring distance in two dimen-

sions using ultrasonic distance

rangers. The square in each drawing

is a 4m × 4m floor plan of a room.

In order to cover the whole of a

rectangular space, you need several

sensors placed around the sides of

the room.

This sketch is similar to the
infrared ranging sketch in Project 15.
It reads the sensor and converts the
results to a voltage, then converts that
to a distance measured in centimeters.
The conversion formula again gives
only an approximation.

The MaxBotix sensors can read only
every 50 milliseconds, so you need a
delay after each read to give the sensor
time to stabilize before the next read.

8 /*

 MaxBotix LV-EZ1 ultrasonic ranger reader

 Context: Arduino

*/

void setup() {

 // initialize serial communications at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 // read the sensor value and convert to a voltage:

 int sensorValue = analogRead(A0);

 float voltage = map(sensorValue, 0, 5, 0, 1023);

 // the sensor's output is about 9.8mV per inch,

 // so multiply by 2.54 to get it in centimeters:

 float distance = voltage * 2.54 / 0.0098;

 // print the sensor value

 Serial.print(distance);

 Serial.println(" cm");

 // wait 50 milliseconds before the next reading

 // so the sensor can stabilize:

 delay(50);

}

272 MAKING THINGS TALK

Active Distance Ranging
The ultrasonic and infrared rangers in the preceding
sections are passive distance-sensing systems. Mobile
phones and the Global Positioning System (GPS) measure
longer distances by using ranging as well. These systems
include a radio beacon (the cell tower or GPS satellite)
and a radio receiver (the phone or GPS receiver). The
receiver determines its distance from the beacon based
on the received signal from the beacon. These systems
can measure much greater distances on an urban or
global scale. The disadvantage of active distance ranging
is that you must have a powered device at both ends. You
can’t measure a person’s distance from somewhere using
active distance ranging unless you attach a receiver to the
person.

GPS and cellular location systems don’t actually give you
the distance from their radio beacons, just the relative
signal strength of the radio signal. Bluetooth, 802.15.4,

ZigBee, and WiFi radios all provide data about signal
strength as well. In order to relate this to distance, you
need to be able to calculate that distance as a function
of signal strength. The main function of a GPS receiver
is to calculate distances to the GPS satellites based on
signal strength, and then determine a position using those
distances. The other radio systems mentioned here don’t
do those calculations for you.

In many applications, though, you don’t need to know the
distance—you just need to know how relatively near or far
one person or object is to another. For example, if you’re
making a pet door lock that opens in response to the pet,
you could imagine a Bluetooth beacon on the pet’s collar
and a receiver on the door lock. When the signal strength
from the pet’s collar is strong enough, the door lock opens.
In this case, and in others like it, there’s no need to know
the actual distance.
X

Active distance ranging

Initial signal generated by
base unit (e.g., cell tower)

Response signal generated by
mobile unit (e.g., cell phone).

Passive distance ranging

Base unit (sensor) sends out
signal, reads reflection from

mobile object or person

Figure 8-6

Active vs. passive

distance ranging

HOW TO LOCATE (ALMOST) ANYTHING 273

In the previous chapter, you saw the received signal strength, but you didn’t do anything

with it. The Processing code that read the solar cell’s voltage output parsed the XBee

packet for the received signal strength (RSSI). Here’s a simpler variation on it that just

reads the signal strength. To test it, you can use the same radio settings from Project 14,

Relaying Solar Cell Data Wirelessly. Use a USB-to-XBee serial adapter for the receiving

circuit, and see Figure 7-5 (the gas sensor circuit) or Figure 7-13 (the solar cell circuit)

for circuits that work well as transmitters.

Reading Received Signal Strength Using XBee Radios

Run this Processing sketch to
connect to the receiver radio via the
USB-to-XBee serial adapter. When you
run this program, you’ll get a graphing
bar like that shown in Figure 8-7.

8 /*

 XBee Signal Strength Reader

 Context: Processing

 Reads a packet from an XBee radio and parses it. The packet

 should be 22 bytes long. It should be made up of the following:

 byte 1: 0x7E, the start byte value

 byte 2-3: packet size, a 2-byte value (not used here)

 byte 4: API identifier value, a code that says what this response

 is (not used here)

 byte 5-6: Sender's address

 byte 7: RSSI, Received Signal Strength Indicator (not used here)

 byte 8: Broadcast options (not used here)

 byte 9: Number of samples to follow

 byte 10-11: Active channels indicator (not used here)

 byte 12-21: 5 10-bit values, each ADC samples from the sender

 */

import processing.serial.*;

Serial XBee ; // input serial port from the XBee Radio

int[] packet = new int[22]; // with 5 samples, the XBee packet is

 // 22 bytes long

int byteCounter; // keeps track of where you are in

 // the packet

int rssi = 0; // received signal strength

int address = 0; // the sending XBee's address

int lastReading = 0; // value of the previous incoming byte

void setup () {

 size(320, 480); // window size

 // get a list of the serial ports:

 println(Serial.list());

 // open the serial port attached to your XBee radio:

 XBee = new Serial(this, Serial.list()[0], 9600);

} »

Project 17

274 MAKING THINGS TALK

Continued from previous page .

void draw() {

 // if you have new data and it's valid (>0), graph it:

 if ((rssi > 0) && (rssi != lastReading)) {

 // set the background:

 background(0);

 // set the bar height and width:

 int rectHeight = rssi;

 int rectWidth = 50;

 // draw the rect:

 stroke(23, 127, 255);

 fill (23, 127, 255);

 rect(width/2 - rectWidth, height-rectHeight, rectWidth, height);

 // write the number:

 text("XBee Radio Signal Strength test", 10, 20);

 text("Received from XBee with address: " + hex(address), 10, 40);

 text ("Received signal strength: -" + rssi + " dBm", 10, 60);

 // save the current byte for next read:

 lastReading = rssi;

 }

}

void serialEvent(Serial XBee) {

 // read a byte from the port:

 int thisByte = XBee.read();

 // if the byte = 0x7E, the value of a start byte, you have

 // a new packet:

 if (thisByte == 0x7E) { // start byte

 // parse the previous packet if there's data:

 if (packet[2] > 0) {

 rssi = parseData(packet);

 }

 // reset the byte counter:

 byteCounter = 0;

 }

 // put the current byte into the packet at the current position:

 packet[byteCounter] = thisByte;

 // increment the byte counter:

 byteCounter++;

}

/*

 Once you've got a packet, you need to extract the useful data.

 This method gets the address of the sender and RSSI.

 */

int parseData(int[] thisPacket) {

 int result = -1; // if you get no result, -1 will indicate that.

 // make sure you've got enough of a packet to read the data:

 if (thisPacket.length > 6) { »

HOW TO LOCATE (ALMOST) ANYTHING 275

Continued from opposite page .

 // read the address. It's a two-byte value, so you

 // add the two bytes as follows:

 address = thisPacket[5] + thisPacket[4] * 256;

 // get RSSI:

 result = thisPacket[6];

 }

 return result;

}

Radio signal strength is measured in decibel-
milliwatts (dBm). You might wonder why the
signal reads -65dBm. How can the signal

strength be negative? The relationship between milliwatts
of power and dBm is logarithmic. To get the dBm, take
the log of the milliwatts. So, for example, if you receive 1
milliwatt of signal strength, you’ve got log 1 dBm. Log 1 = 0,
so 1 mW = 0 dBm. When the power drops below 1 mW, the
dBm drops below 0, like so: 0.5 mW = (log 0.0005) dBm or
-3.01 dBm. 0.25mW = (log 0.00025) dBm, or -6.02 dBm.

If logarithms confuse you, just remember that 0 dBm
is the maximum transmission power, which means that
signal strength is going to start at 0 dBm and go down
from there. The minimum signal that the XBee radios
you're using here can receive is -92 dBm. Bluetooth radios
and WiFi radios typically have a similar range of sensitivity.
In a perfect world, with no obstructions to create errors,
the relationship between signal strength and distance
would be a logarithmic curve.

Figure 8-7

Output of the XBee RSSI test program.

276 MAKING THINGS TALK

The Bluetooth modules used in Chapters 2 and 6 can also give you an RSSI reading.

To see this, the radio needs to be connected to another Bluetooth radio. The simplest way

is to pair your radio with your computer, as shown in Project #4.

Reading Received Signal Strength
Using Bluetooth Radios

primary
signal

reflected
signal reflected

signal

phantom
beacon

phantom
beacon

Building
Building

Actual
beacon

Receiver

Figure 8-8

The multipath effect. Reflected radio waves create phantom

beacons that the receiver can’t tell from the real beacon, causing

errors in calculating the distance based on signal strength.

Once you’ve done this, open a serial connection to the
radio via Bluetooth. Once you’re connected, drop out of
data mode into command mode by typing the following:

$$$

You’ll get a CMD prompt from the radio. Next, type L and
hit Return. The radio will respond like so:

RSSI=ff,ff

RSSI=ff,ff

Project 18

These are the signal strength values of the link, in hexa-
decimal. FF is the strongest possible value, and 00 is
the weakest. The first of the two values is the current
link quality; the second is the lowest recorded value so
far. As you move the radio closer to or farther from your
computer, the values will change just as it did in the XBee
example in the preceding project. To turn this off and get
back to sending data, type L and hit Return again. Then,
type --- and press Return to leave command mode.

The Multipath Effect
The biggest source of error in distance ranging is what’s
called the multipath effect (see Figure 8-8). When elec-
tromagnetic waves radiate, they bounce off things. Your
phone may receive multiple signals from a nearby cell
tower if, for example, you’re positioned near a large
obstacle, such as a building. The reflected waves off the
building create “phantom” signals that look as real to the
receiver as the original signal. This issue makes it impos-
sible for the receiver to calculate the distance from the
beacon accurately, that causes degradation in the signal
quality of mobile phone reception, as well as errors in
locating the phones. For GPS receivers, multipath results
in a much wider range of possible locations, as the error
means that you can’t calculate the position as accurately.
It is possible to filter for the reflected signals, but not all
radios incorporate such filtering.

HOW TO LOCATE (ALMOST) ANYTHING 277

In order to locate it within a two- or three-dimensional
space, though, you need to know more than distance. The
most common way to do this is by measuring the distance
from at least three points. This method is called trilatera-
tion. If you measure the object’s distance from two points,
you get two possible places it could be on a plane, as
shown in Figure 8-9. When you add a third circle, you have
one distinct point on the plane where your object could
be. A similar method, triangulation, uses two known points
and calculates the position using the distance between
these points; it then uses the angles of the triangle formed
by those points and the position you want to know.

Determining Position Through Trilateration
Distance ranging tells you how far away an object is from your measuring point in one

dimension, but it doesn’t define the whole position. The distance between your position

and the target object determines a circle around your position (or a sphere, if you’re

measuring in three dimensions). Your object could be anywhere on that circle.

Figure 8-9

Trilateration on a two-dimensional plane. Knowing the distance from one point defines a circle of

possible locations. Knowing the distance from two points narrows it to two possible points on the plane.

Knowing the distance from three points determines a single point on the plane.

The Global Positioning System uses trilateration to determine
an object’s position. GPS uses a network of satellites circling
the globe. The position of each satellite can be determined
from its flight path and the current time. Each one is broad-
casting its clock signal, and GPS receivers pick up that
broadcast. When a receiver has at least three satellites,
it can determine a rough position using the time difference
between transmission and reception. Most receivers use at
least six satellite signals to calculate their position, in order
to correct any errors. Cell phone location systems like
Wireless E911 calculate a phone’s approximate position in
a similar fashion, by measuring the distance from multiple
cell towers based on the time difference of arrival (TDOA)
of signals from those towers.

278 MAKING THINGS TALK

The good news is that if you’re using GPS,

you never have to do trilateration or trian-

gulation calculations—GPS receivers do

the work for you. They then give you the

position in terms of latitude and longitude.

There are several data protocols for GPS

receivers, but the most common is the

NMEA 0183 protocol established by the

National Marine Electronics Association in

the United States. Just about all receivers

on the market output NMEA 0183, and

usually one or two other protocols as well.

MATERIALS

 » 1 solderless breadboard
 » 1 EM-406A GPS receiver
 » 1 interface cable for GPS receiver
 » 12 male header pins
 » 1 bluetooth Mate
 » 1 5V voltage regulator

Reading the GPS Serial Protocol

$GPGGA,180226.000,4040.6559,N,07358.1789,W,1,04,6.6,75.4,M,-34.3,M,,0000*5B

$GPGSA,A,3,12,25,09,18,,,,,,,,,6.7,6.6,1.0*36

$GPGSV,3,1,10,22,72,171,,14,67,338,,25,39,126,39,18,39,146,35*70

$GPGSV,3,2,10,31,35,228,20,12,35,073,37,09,15,047,29,11,09,302,20*7D

$GPGSV,3,3,10,32,04,314,17,27,02,049,15*73

$GPRMC,180226.000,A,4040.6559,N,07358.1789,W,0.29,290.90,220411,,*12

$GPGGA,180227.000,4040.6559,N,07358.1789,W,1,04,6.6,75.4,M,-34.3,M,,0000*5A

$GPGSA,A,3,12,25,09,18,,,,,,,,,6.7,6.6,1.0*36

$GPRMC,180227.000,A,4040.6559,N,07358.1789,W,0.30,289.06,220411,,*1C

NMEA 0183 is a serial protocol that operates at 4800 bits
per second, 8 data bits, no parity, and 1 stop bit (4800-8-
N-1). Most receivers send this data using either RS-232 or
TTL serial levels. The receiver used for this example, a US
GlobalSat EM-406a receiver, sends NMEA data at 5V TTL
levels.

You're going to connect the GPS receiver to a Bluetooth
Mate for this project. Before you do, however, you need to
match their data rates by resetting the Bluetooth Mate to
4800bps. To do this, connect your Mate to a USB-to-Serial
adapter and open a connection to it in a serial terminal
application (like CoolTerm or PuTTY) at 115200 bits per
second (see Project 4 in Chapter 2 for more details). First,
type: $$$. This command takes the radio out of data mode
and puts it in command mode. The radio will respond: CMD

 8 This reboots the radio.

Project 19

 8 This sets the radio to

9600 bps.

Next, type:

SU,48\r

R,1\r

Your radio will save the new setting at 4800bps and
reboot. Now you can connect it to the GPS module.

Figure 8-10 shows the module connected to a Bluetooth
Mate radio. The GPS data will be sent over Bluetooth to a
personal computer running Processing. If it’s not already
paired, you can pair the Bluetooth Mate to your personal
computer using the instructions from Project 3 in Chapter
2. That will give you a Bluetooth serial port in your list of
ports, as in that project. Open a connection to that port in
a serial terminal application, and you should see data in
the NMEA protocol, like what you see below.

HOW TO LOCATE (ALMOST) ANYTHING 279

CTS

+5V

GND

TX

RX

RTS

Bluetooth
Mate

GND

PPS

TX

RX

+5V

GND

7805
Voltage Reg

In
to battery +

to battery -

+5V Out

EM-406A
GPS Receiver

Figure 8-10

EM-406a GPS receiver attached to a

Bluetooth radio. In order to get a real

GPS signal, you’ll have to go outside,

so wireless data and a battery power

source are handy.

NOTE: If your power is inconsistent,

add in the decoupling capacitors on

the input and output sides of the

regulator, as seen in other projects

using this regulator.

1 5 10 15 20

1 5 10 15 20

A
B
C
D
E

F
G
H
I
J

R
X

TX G
N
D

G
N
D

Vi
n

G
N
D

5V
 o

ut

V
 in 1P
P
S

R
X

T
X

Vc
c

G
n

d

S
tat

C
onnect

R
N
-42

R
X

T
X

Vcc

G
n

d

There are several types of sentences within the NMEA
protocol, and each serves a different function. Some tell
you your position, some tell you about the satellites in
view of the receiver, some deliver information about your
course heading, and so on. Each sentence begins with a

dollar sign ($), followed by five letters that identify the
type of sentence. After that come each of the parameters
of the sentence, separated by commas. An asterisk comes
after the parameters, then a checksum, then a carriage
return and a linefeed.

280 MAKING THINGS TALK

Take a look at the $GPRMC
sentence as an example:

8 $GPRMC,155125.000,A,4043.8432,N,07359.7654,W,0.10,11.88,200407,,*20

Message identifier $GPRMC

Time 155125.000 or 15:51:25 GMT

Status of the data (valid or not valid) A = valid data (V = not valid)

Latitude 4043.8432 or 40°43.8432'

North/South indicator N = North (S = South)

Longitude 07359.7654 or 73°59.7654'

East/West indicator W = West (E = East)

Speed over ground 0.10 knots

Course over ground 11.88° from north

Date 200407 or April 20, 2007

Magnetic variation none

Mode none

Checksum (there is no comma before the
checksum; magnetic variation would appear to
the left of that final comma, and mode would
appear to the right)

*20

NOTE: Extra credit. Figure out where I was

when I wrote this chapter. Thanks to reader

Derrick O'Brien who figured out from the

first edition that there was an error in my

calculations, and introduced me to Glen

Murphy's excellent GPS processing example

at http://bodytag.org/p5gps/p5gps.pde. With

the changes in this edition, it will be easier

to find me.

Figure 8-11

The output of the Processing

GPS parser.

RMC stands for Recommended
Minimum specifiC global navigation
system satellite data. It gives the basic
information almost any application
might need. This sentence contains the
information shown in the table.

Using the NMEA protocol in a program
is just a matter of deciding which
sentence gives you the information you
need, reading the data in serially, and
converting the data into values you can
use. In most cases, the RMC sentence
gives you all the data you need about
position.

The Processing sketch shown next
reads NMEA serial data in and parses
out the time, date, latitude, longitude,
and heading. It uses the $GPRMC
sentence to get basic info, the $GPGSV
sentence to get the satellites in view,
and the $GPGGA sentence to get the
number of satellites used to obtain a
fix. It draws an arrow on the screen
to indicate heading. The output looks
like Figure 8-11. (Be sure to use the
Bluetooth serial port when opening the
serial port!)

HOW TO LOCATE (ALMOST) ANYTHING 281

First, set up your global
variables as usual.

The setup() method sets the
window size, defines the drawing
parameters, and opens the serial port.

8

 Find It /*

 GPS parser

 Context: Processing

 This program takes in NMEA 0183 serial data and parses

 out the date, time, latitude, and longitude using the GPRMC sentence.

 */

// import the serial library:

import processing.serial.*;

Serial myPort; // The serial port

float latitude = 0.0; // the latitude reading in degrees

String northSouth = "N"; // north or south?

float longitude = 0.0; // the longitude reading in degrees

String eastWest = "W"; // east or west?

float heading = 0.0; // the heading in degrees

int hrs, mins, secs; // time units

int currentDay, currentMonth, currentYear;

int satellitesInView = 0; // satellites in view

int satellitesToFix = 0; // satellites used to calculate fix

float textX = 50; // position of the text on the screen

float textY = 30;

void setup() {

 size(400, 400); // window size

 // settings for drawing:

 noStroke();

 smooth();

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 // for a Bluetooth device, this may be further down your

 // serial port list:

 String portName = Serial.list()[6];

 myPort = new Serial(this, portName, 9600);

 // read bytes into a buffer until you get a carriage

 // return (ASCII 13):

 myPort.bufferUntil('\r');

}

 8 You will probably
need to look at the
output of Serial.list()
and change this number
to match the serial port
that corresponds to your
Bluetooth device.

282 MAKING THINGS TALK

The draw() method prints the
readings in the window, and calls
another method, drawArrow(), to draw
the arrow and circle.

8 void draw() {

 // deep blue background:

 background(#0D1133);

 // pale slightly blue text:

 fill(#A3B5CF);

 // put all the text together in one big string:

 // display the date and time from the GPS sentence

 // as MM/DD/YYYY, HH:MM:SS GMT

 // all numbers are formatted using nf() to make them 2- or 4-digit:

 String displayString = nf(currentMonth, 2)+ "/"+ nf(currentDay, 2)

 + "/"+ nf(currentYear, 4) + ", " + nf(hrs, 2)+ ":"

 + nf(mins, 2)+ ":"+ nf(secs, 2) + " GMT\n";

 // display the position from the GPS sentence:

 displayString = displayString + latitude + " " + northSouth + ", "

 + longitude + " " + eastWest + "\n";

 // display the heading:

 displayString = displayString + "heading " + heading + " degrees\n";

 // show some info about the satellites used:

 displayString = displayString + "satellites in view: "

 + satellitesInView + "\n";

 displayString = displayString + "satellites used to calculate position: "

 + satellitesToFix;

 text(displayString, textX, textY);

 // draw an arrow using the heading:

 drawArrow(heading);

}

drawArrow() is called by the
draw() method. It draws the arrow
and the circle.

8 void drawArrow(float angle) {

 // move whatever you draw next so that (0,0) is centered on the screen:

 translate(width/2, height/2);

 // draw a circle in light blue:

 fill(80,200,230);

 ellipse(0,0,50,50);

 // make the arrow black:

 fill(0);

 // rotate using the heading:

 rotate(radians(angle));

 // draw the arrow. center of the arrow is at (0,0):

 triangle(-10, 0, 0, -20, 10, 0);

 rect(-2,0, 4,20);

}

HOW TO LOCATE (ALMOST) ANYTHING 283

void getRMC(String[] data) {

 // move the items from the string into the variables:

 int time = int(data[1]);

 // first two digits of the time are hours:

 hrs = time/10000;

 // second two digits of the time are minutes:

 mins = (time % 10000)/100;

 // last two digits of the time are seconds:

 secs = (time%100);

 // if you have a valid reading, parse the rest of it:

 if (data[2].equals("A")) {

 latitude = minutesToDegrees(float(data[3]));

 northSouth = data[4];

 longitude = minutesToDegrees(float(data[5]));

 eastWest = data[6];

 heading = float(data[8]);

 int date = int(data[9]);

The serialEvent() method gets any
incoming data as usual, and passes it
off to a method called parseString().
That method splits the incoming string
into all the parts of the GPS sentence.
It passes the incoming sentences to a
few methods—getRMC(), getGGA(),
and getGSV(), as appropriate—to
handle them. If you were writing a more
universal parser, you’d write similar
methods for each type of sentence.

8

The getRMC() method converts
the latitude, longitude, and other
numerical parts of the sentence into
numbers.

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed, parse it:

 if (myString != null) {

 print(myString);

 parseString(myString);

 }

}

void parseString (String serialString) {

 // split the string at the commas:

 String items[] = (split(serialString, ','));

 // if the first item in the sentence is the identifier, parse the rest

 if (items[0].equals("$GPRMC")) {

 // $GPRMC gives time, date, position, course, and speed

 getRMC(items);

 }

 if (items[0].equals("$GPGGA")) {

 // $GPGGA gives time, date, position, satellites used

 getGGA(items);

 }

 if (items[0].equals("$GPGSV")) {

 // $GPGSV gives satellites in view

 satellitesInView = getGSV(items);

 }

}

8

»

284 MAKING THINGS TALK

 // last two digits of the date are year. Add the century too:

 currentYear = date % 100 + 2000;

 // second two digits of the date are month:

 currentMonth = (date % 10000)/100;

 // first two digits of the date are day:

 currentDay = date/10000;

 }

}

Continued from previous page .

void getGGA(String[] data) {

 // move the items from the string into the variables:

 int time = int(data[1]);

 // first two digits of the time are hours:

 hrs = time/10000;

 // second two digits of the time are minutes:

 mins = (time % 10000)/100;

 // last two digits of the time are seconds:

 secs = (time % 100);

 // if you have a valid reading, parse the rest of it:

 if (data[6].equals("1")) {

 latitude = minutesToDegrees(float(data[2]));

 northSouth = data[3];

 longitude = minutesToDegrees(float(data[4]));

 eastWest = data[5];

 satellitesToFix = int(data[7]);

 }

}

int getGSV(String[] data) {

 int satellites = int(data[3]);

 return satellites;

}

float minutesToDegrees(float thisValue) {

 // get the integer portion of the degree measurement:

 int wholeNumber = (int)(thisValue / 100);

 // get the fraction portion, and convert minutes to a decimal fraction:

 float fraction = (thisValue - (wholeNumber) * 100) / 60;

 // combine the two and return it:

 float result = wholeNumber + fraction;

 return result;

}

The getGGA() method parses out
the parts of the $GPGGA sentence.

Some of it is redundant with the
$GPRMC sentence, but the number of
satellites to fix a position is new.

The getGSV() method parses out
the parts of the $GPGSV sentence. It
returns a single integer—the number of
satellites in view.

Finally, the minutesToDegrees()
method is used by both the getRMC()
and getGGA() methods. The NMEA
protocol sends latitude and longitude
like this:

ddmm.mmmm

where dd is degrees, and mm.mmm
is minutes. This method converts the
minutes to a decimal fraction of the
degrees.

8

8

8

HOW TO LOCATE (ALMOST) ANYTHING 285

When you run this sketch, it may take several
minutes before you get a position. Different
receivers take varying times to acquire an initial

position when first started, or when moved to a new place
on the planet. So, pick a spot with a clear view of the skies
and be patient. Pay attention to the number of satellites in
view as well. If that number is less than four, your receiv-
er's not going to acquire a position too well. Satellites
move, though, so if you don't get anything, wait a half-hour
or so and try again.

Many mobile phones on the market these days feature a
GPS receiver, and seem to have a signal most of the time,
which may make you wonder why your receiver can't get a
signal as fast. Remember, mobile phones tend to use both

GPS and cellular location tracking together. So, even if
they don't have enough satellite signals, they can generally
determine their position relative to the nearest cell towers,
and—using the known locations of those towers—approxi-
mate a fix.

NMEA 0183 is just one of many protocols used in mapping
GPS data. You'll learn about a few more, as well as some
tools for using them to map routes and locations, in
Chapter 11. The great thing about NMEA, though, is that
it's nearly ubiquitous among GPS receivers. No matter
what other protocols they use, they all seem to have NMEA
as an option. So it's a good one to know about no matter
what GPS tools you're working with.
X

Choosing Which GPS Accessories to Buy

There are many GPS receiver modules on the market, and

it can get confusing choosing the right tools for this job.

Here are a few things to consider.

Most common GPS receivers communicate with the

microcontroller via TTL serial, using the NMEA 0183

protocol. So when it comes to connecting them to your

microcontroller, and reading their data, they're largely

interchangeable. The big difference between them is how

well they receive a GPS signal, which is influenced by how

many channels they receive (generally more is better),

what kind of antenna they have (generally larger is better),

and how much power they consume. I prefer the EM-406a

receiver mentioned in this project because it gets good

reception, acquires a fix fast, and has been the most reliable

compared to others I've tested. There are other good ones,

though. Spark Fun has a nice GPS receiver buying guide on

their site.

To connect a GPS receiver, all you need is a serial transmit

connection, power, and ground. There are some shields

available that allow you to mount a receiver to your Arduino,

but they're optional. You need only three wires.

Images courtesy of Spark Fun. Thanks to the students of

2011's Wildlife Tracking class for confirming my tests.

X

EM-406a GPS receiver.

20 channels, good

reception, less expensive

than other alternatives.

D2523T GPS receiver.

50 channels, great

reception, but more

expensive.

LS20126 receiver. Has a

very small antenna, but

works decently in open

areas.

GPS MiniMod with GR10/

MN1010 receiver. Smallest

I could find. Takes a long

time to acquire a signal.

286 MAKING THINGS TALK

You can calculate heading using a

compass if you are in a space that doesn’t

have a lot of magnetic interference. There

are many digital compasses on the market.

These acquire a heading by measuring

the change in Earth’s magnetic field along

two axes, just as an analog compass does.

Like analog compasses, they are subject

to interference from other magnetic fields,

including those generated by strong elec-

trical induction.

MATERIALS

 » 1 solderless breadboard or prototyping shield
 » 1 Arduino module
 » 1 digital compass, ST Microelectronics model
LSM303DLH

 » 1 LED tactile pushbutton This example uses an
LED tactile button from Spark Fun, which has a
built-in LED, but you can use any pushbutton and
LED

 » 1 220-ohm resistor
 » 1 10-kilohm resistor
 » 13 male header pins

Determining Heading Using a Digital Compass
This example uses a digital compass from ST Microelec-
tronics, model LSM303DLH. Both Spark Fun and Pololu
carry breakout boards for this compass. The Pololu
version was used for this example because it has built-in
voltage level shifters and works better at 5V. It measures
magnetic field strength along three axes, and it has a
three-axis accelerometer built in as well to help compen-
sate for tilt. It reports the results via synchronous serial
data sent over an I2C connection via the Wire library.

Figure 8-12 shows the compass connected to an Arduino.
The compass requires calibration, so this project features a
pushbutton to toggle between calibration mode and normal
mode, and an LED to indicate when you're calibrating.

The compass operates on 5V. Its pins are as follows:

1. 1V8: 1.8V output. You won't use this pin.
2. 3V: 3-volt output. You won't use this pin.
3. Vin: 5-volt input. Connect to the microcontroller's 5V.
4. GND: ground. Connect to the microcontroller's ground.
5. SCL: Serial clock. Connect to microcontroller's SCL pin

(analog pin 5).
6. SDA: Serial data. Connect to microcontroller's SDA pin

(analog pin 4).
7. DRDY: Data ready indicator: outputs 1.8V when the

compass is ready to be read. You won't use this pin.
8. INT1: interrupt 1. You won't use this pin.
9. INT2: interrupt 2. You won't use this pin.

Determining Orientation
People have an innate ability to determine their orientation relative to the world around

them, but objects don’t. So, orientation sensors are typically used for refining the

position of objects rather than of people. In this section, you’ll see two types of orientation

sensors:

a digital compass for determining heading relative to Earth’s magnetic field, and an

accelerometer for determining orientation relative to Earth’s gravitational field. Using

these two sensors, you can determine which way is north and which way is up.

Project 20

HOW TO LOCATE (ALMOST) ANYTHING 287

INT2

INT1

DRDY

SDA

SCL

GND

VIN

3V

1V8

LSM303DLH
Compass

Module

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

+5V

220Ω

10kΩ

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

Figure 8-12

ST Microelectronics LSM303DLH compass connected to an

Arduino.

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER
G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

1V8 3V

VIN

G
N
D

SCL

SDA

D
RD

Y

IN
T1

IN
T2

ACB1B2

NOTE: To calibrate the compass, rotate it slowly through 360

degrees on a flat, level surface while in calibration mode (see

code). When calibrating the compass, you need to know the

cardinal directions precisely. Get a magnetic needle compass

and check properly. You should calibrate away from lots of

electronic equipment and sources of magnetic energy (except

the earth). For example, in my office, needle compasses tend to

point west-southwest, so I calibrate outside, powering the whole

Arduino circuit from a battery. To calibrate the accelerometer,

rotate the module through every possible axis.

288 MAKING THINGS TALK

There are no global
variables, but before the

setup() method, you have to include
the library and define a couple of
constants.

// include the necessary libraries:

#include <Wire.h>

#include <LSM303DLH.h>

#include <Button.h>

const int modeButton = 2; // pushbutton for calibration mode

const int buttonLed = 3; // LED for the button

// initialize the compass library

LSM303DLH compass;

// initialize a button on pin 2 :

Button button = Button(modeButton,BUTTON_PULLDOWN);

boolean calibrating = false; // keep track of calibration state

void setup() {

 // initialize serial:

 Serial.begin(9600);

 // set up the button LED:

 pinMode(buttonLed,OUTPUT);

 // start the Wire library and enable the compass:

 Wire.begin();

 compass.enable();

}

void loop() {

 // if the button changes state, change the calibration state

 // and the state of the LED:

 if(button.isPressed() && button.stateChanged()){

 calibrating = !calibrating;

 digitalWrite(buttonLed, calibrating);

 }

The setup() method initializes
the Wire and Serial libraries and

enables the compass.

8

The main loop starts by checking
the button. If the button is currently
pressed and its state has changed
since the last check, the sketch toggles
between normal mode and calibrating
mode. It also changes the LED state:
on means you're calibrating, off means
normal mode.

8

 Try It

This sketch uses the Wire library to communicate via I2C
with the compass. The Wire library is encapsulated in
another library, the LSM303DLH library, originally written
by Ryan Mulligan of Pololu. I've made a variation on it with
a few extra functions, available at http://github.com/
tigoe/LSM303DLH. Download version 1.1.0 (the latest as
of this writing) and copy the LSM303DLH folder into the
libraries directory of your Arduino sketch directory. Note
that there is a folder called LSM303DLH inside the folder
you download. It's the inner folder that you want.

This sketch also uses Alexander Brevig's Button library;
the current Wiring version is at http://wiring.uniandes.
edu.co/source/trunk/wiring/firmware/libraries/Button;
the current Arduino version is at http://github.com/tigoe/
Button. Download it to your libraries directory as well. Then,
restart Arduino and you're ready to begin.
X

http://github.com/tigoe/LSM303DLH
http://github.com/tigoe/LSM303DLH
http://wiring.uniandes.edu.co/source/trunk/wiring/firmware/libraries/Button
http://wiring.uniandes.edu.co/source/trunk/wiring/firmware/libraries/Button
http://github.com/tigoe/Button
http://github.com/tigoe/Button

HOW TO LOCATE (ALMOST) ANYTHING 289

If the sketch is in calibrating
mode, it calls the compass calibrate()
method continuously. If not, it reads
the compass and reports the heading.
Then it waits 100 milliseconds to let
the compass stabilize before reading
again.

When you run this sketch, open the
Serial Monitor, and then put the
compass in calibrating mode by
pressing the button. Turn it around 360
degrees on a level surface for a second
or two, then rotate it through all three
axes for a few seconds. Next, press
the button to put it in normal mode,
and you'll see the heading values. Zero
degrees should be due north, 180
degrees is due south, 90 degrees is
east, and 270 degrees is west.

8

+5V
RX
CTS
RTS
NC
NC

The LSM303DLH compass uses a form of synchronous

serial communication called Inter-Integrated Circuit, or I2C.

Sometimes called Two-Wire Interface, or TWI, it's the other

common synchronous serial protocol besides SPI, which you

learned about in Chapter 4.

I2C is comparable to SPI, in that it uses a single clock on the

master device to coordinate the devices that are communi-

cating. Every I2C device uses two wires to send and receive

data: a serial clock pin, called the SCL pin, that the micro-

controller pulses at a regular interval; and a serial data pin,

called the SDA pin, over which data is transmitted. For each

serial clock pulse, a bit of data is sent or received. When the

clock changes from low to high (known as the rising edge

of the clock), a bit of data is transferred from the microcon-

troller to the I2C device. When the clock changes from high

to low (known as the falling edge of the clock), a bit of data

is transferred from the I2C device to the microcontroller.

Unlike SPI, I2C devices don't need a chip select pin. Each

has a unique address, and the master device starts each

exchange by sending the address of the device with which it

wants to communicate.

I2C connections have just two connections between the

controlling device (or master device) and the peripheral

device (or slave), as follows:

Clock (SCK): The pin that the master pulses regularly .

Data (SDA): The pin that data is sent on, in both directions .

All devices on an I2C bus can share the same two lines.

The Arduino Wire library is the interface for I2C. On most

Arduino boards, the SDA pin is analog input pin 4, and the

SCL pin is on analog input pin 5. On the Arduino Mega, SDA

is digital pin 20 and SCL is 21.

Introducing the I2C Interface

 // if you're in calibration mode, calibrate:

 if (calibrating) {

 compass.calibrate();

 }

 else { // if in normal mode, read the heading:

 compass.read();

 int heading = compass.heading();

 Serial.println("Heading: " + String(heading) + " degrees");

 }

 delay(100);

}

290 MAKING THINGS TALK

Compass heading is an excellent way

to determine orientation if you’re level

with the earth. And if you’ve ever used an

analog compass, you know how important

it is to keep the compass level in order to

get an accurate reading. In navigational

terms, your tilt relative to the earth is

called your attitude, and there are two

major aspects to it: roll and pitch. Roll

refers to how you’re tilted side-to-side.

Pitch refers to how you’re tilted front-to-

back.

MATERIALS

 » 1 solderless breadboard or prototyping shield
 » 1 Arduino module
 » 1 Analog Devices ADXL320 accelerometer

You can also use the accelerometer on your
LSM303DLH digital compass. An alternate sketch
to do so is shown below.

 » 6 male header pins

Determining Attitude Using an Accelerometer

Pitch and roll are only two of six navigational terms used
to refer to movement. Pitch, roll, and yaw refer to angular
motion around the X, Y, and Z axes. These are called
rotations. Surge, sway, and heave refer to linear motion
along those same axes. These are called translations.
Figure 8-14 illustrates these six motions.

Measuring roll and pitch is relatively easy to do using an
accelerometer. You used one of these already in Chapter
5, in the balance board ping-pong client. Accelerometers
measure changing acceleration. At the center of an accel-
erometer is a tiny mass that’s free to swing in one, two, or
three dimensions. As the accelerometer tilts relative to the
earth, the gravitational force exerted on the mass changes.
Because force equals mass times acceleration, and
because the mass of the accelerometer is constant, the
change is read as a changing acceleration. In this project,
you’ll use an accelerometer to control the pitch and roll of
a disk onscreen in Processing. The numeric values from
the sensor are written on the disk as it tilts.

Project 21

You can use the ADXL335 accelerometer module (the
Adafruit version is shown in Figure 8-13) (or another
analog accelerometer), or the accelerometer in the
LSM303DLH compass module from the previous project.

Accelerometers come with various interfaces. The one
on the compass module shares an I2C interface with the
magnetometer. Others use a pulse-width interface. Many
simply have analog outputs for each axis, like the ADXL
accelerometers shown below. Accelerometers also come
in a variety of resolutions. For many human activities,
around 3–6g, or six times the acceleration due to gravity
(9.8 meters per second, per second) will do. Most com-
mercial products using accelerometers, like the Nintendo
Wii or the majority of mobile phones, use an accelerom-
eter in this range. The ADXL335 is a 3g accelerometer.
Other activities require a much higher range. For example,
a boxer's fist can decelerate at up to 100g when he hits!

If you're using the accelerometer on the LSM303DLH
compass for this project, use the circuit as shown back
in Figure 8-12, but without the LED and pushbutton. The
first sketch below will work with any two- or three-axis
analog accelerometer, and the second will work with the
compass module's accelerometer. Both will communicate
with the Processing sketch that follows them.
X

HOW TO LOCATE (ALMOST) ANYTHING 291

TST

3V

X

Y

Z

GND

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

ADXL335
Accelerometer

Figure 8-13

ADXL335 accelerometer connected

to an Arduino. Shown here is an

Adafruit breakout board for the

ADXL335. This accelerometer

operates on 3.3V, so its output

range is also 0 to 3.3V. The micro-

controller's analog reference pin

is connected to 3.3V as well, so it

knows that the maximum range of

the analog inputs is from 0 to 3.3V.

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

G
N
D

ZYX3VTST

292 MAKING THINGS TALK

surge

roll

heave

yaw

pitch

sway

X

Z

Y
gravity

Θ

Figure 8-14

Rotations and translations of a body

in three dimensions.

Figure 8-15

Calculating the portion of the force of

gravity based on the angle of tilt.

Determining Pitch and Roll
from an Accelerometer

Three-axis accelerometers like the one you're using
measure the linear acceleration of a body on each axis—in
other words, the surge, sway, or heave of a body. They
don't give you the roll, pitch, or yaw. However, you can
calculate the roll and pitch when you know the accel-
eration along each axis. That calculation takes some
tricky trigonometry. For a full explanation, see Freescale
Semiconductor's application note on accelerometers at
http://cache.freescale.com/files/sensors/doc/app_note/
AN3461.pdf. Here are the highlights:

The force of gravity always acts perpendicular to the
earth's surface. So when an object is tilted at an angle
(called theta, or q), part of that force acts along the X axis
of the object, and part acts along the Y axis (see Figure
8-15). The X-axis acceleration and the Y-axis acceleration
add up to the total force of gravity using the Pythagorean
Theorem: x2 + y2 = z2.

Since you know that, you can calculate the portions of the
acceleration using sines and cosines. The X-axis portion
of the acceleration is gravity * sinq, and the Y-axis portion
is gravity * cosq (remember, sine = opposite/hypotenuse,
and cosine = adjacent/hypotenuse).

http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf
http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf

HOW TO LOCATE (ALMOST) ANYTHING 293

The
setup() method initializes serial com-
munications, and configures the
analog-to-digital converter to take its
reference from the external analog
reference pin.

NOTE: Use this sketch with the Analog

Devices ADXL320 accelerometer.

/*

 Accelerometer reader

 Context: Arduino

 Reads 2 axes of an accelerometer, calculates pitch and roll,

 and sends the values out the serial port

 */

void setup() {

 // initialize serial communication:

 Serial.begin(9600);

 // tell the microcontroller to read the external

 // analog reference voltage:

 analogReference(EXTERNAL);

}

 Listen to It (Analog)

From there, you have to calculate the portions along all
three axes at once. It turns out that:

roll = arctan (x-axis / √(y-axis2 + z-axis2))

and:

pitch = arctan (y-axis / √(x-axis2 + z-axis2))

In order to know the acceleration on each axis, though, you
have to convert the reading you get from the analogRead()
command. It's not too difficult. You already know that the
accelerometer's range is from 0 volts to 3.3 volts (because
the accelerometer operates on 3.3 volts), and that it gets
converted to a range from 0 to 1023. So, you can say that:

voltage = analogRead(axis) * 3.3 / 1024;

Each axis has a zero acceleration point at half its range,
or 1.65 volts. So subtract that from your reading, and any
negative reading means tilt in the opposite direction.

From the accelerometer's data sheet, you can find out that
the sensitivity of the accelerometer is 300 millivolts per g,
where 1g is the amount of the acceleration due to gravity.
When any axis is perpendicular to the ground, it experienc-
es 1g of force, and should read about 300 mV, or 0.3V. So,
the acceleration on each axis is the voltage reading divided
by the sensitivity, or:

acceleration = voltage / 0.3;

Once you've got the acceleration for each axis, you can
apply the earlier trigonometric formulas to get the pitch
and roll.

The following sketch reads an analog accelerometer's X
and Y axes, calculates pitch and roll as an angle from -90
degrees to 90 degrees, and sends the results out serially.
If you want to use this sketch with an analog accelerom-
eter other than the Adafruit ADXL335 module, rearrange
the pins to match your accelerometer. If you're using a 5V
accelerometer, change the voltage calculation as well.
X

294 MAKING THINGS TALK

The readAcceleration() method
takes an analog reading and converts it
to an acceleration value from 0 to 1g.

8 float readAcceleration(int thisAxis) {

 // the accelerometer's zero reading is at half

 // its voltage range:

 float zeroPoint = 1.65;

 // convert the reading into a voltage:

 float voltage = (thisAxis * 3.3 / 1024.0) - zeroPoint;

 // divide by the accelerometer's sensitivity:

 float acceleration = voltage / 0.3;

 // return the acceleration in g's:

 return acceleration;

}

The loop() calls a method to
convert the analog readings to acceler-
ation values. Then it plugs those results
into the trigonometric calculations
described above, and prints the results.

8 void loop() {

 // read the accelerometer axes, and convert

 // the results to acceleration values:

 float xAxis = readAcceleration(analogRead(A0));

 delay(10);

 float yAxis= readAcceleration(analogRead(A1));

 delay(10);

 float zAxis = readAcceleration(analogRead(A2));

 // apply trigonometry to get the pitch and roll:

 float pitch = atan(xAxis/sqrt(pow(yAxis,2) + pow(zAxis,2)));

 float roll = atan(yAxis/sqrt(pow(xAxis,2) + pow(zAxis,2)));

 pitch = pitch * (180.0/PI);

 roll = roll * (180.0/PI) ;

 // print the results:

 Serial.print(pitch);

 Serial.print(",");

 Serial.println(roll);

}

HOW TO LOCATE (ALMOST) ANYTHING 295

This
sketch

reads the LSM303DLH accelerome-
ter's X and Y axes and sends the results
out serially. Like the previous project, it
uses the LSM303DLH library, so make
sure you have it installed.

NOTE: This sketch uses the accelerometer

on the LSM303DLH digital compass.

 Listen to It (I2C)

Regardless of the accelerometer you're using,
you'll find that the angle readings aren't always
accurate, and that they can be quite noisy. The

calculations explained above assume there are no forces
acting on the accelerometer besides gravity, but that is
seldom the case. As you move the accelerometer through
space, your movement accelerates and decelerates,
adding more force along all three axes to the calculation.
Generally, accelerometer data is combined with data from
gyrometers to help adjust for these forces.

If you're using the accelerometer on the LSM303DLH
compass from the earlier project, you're in luck. The
Arduino library for that accelerometer does the pitch and
roll calculations for you, and simply returns the results as
pitch and roll. The sketch below reads them and returns
the values as angles from -90 degrees to 90 degrees, just
like the analog accelerometer sketch above.
X

/*

 I2C accelerometer

 Context: Arduino

 Reads an ST Microelectronics LSM303DLH compass and prints

 the X and Y axes accelerometer output.

 */

// include the necessary libraries:

#include <LSM303DLH.h>

#include <Wire.h>

// initialize the compass:

LSM303DLH compass;

void setup() {

 // initialize serial and Wire, and enable the compass:

 Serial.begin(9600);

 Wire.begin();

 compass.enable();

 // calibrate for the first five seconds after startup:

 while (millis() < 5000) {

 compass.calibrate();

 }

}

void loop() {

 // read the compass and print the accelerometer

 // X and Y readings:

 compass.read();

 Serial.print(compass.pitch()); // X axis angle

 Serial.print(",");

 Serial.println(compass.roll()); // Y axis angle

 delay(100);

}

296 MAKING THINGS TALK

This Processing
sketch reads the

incoming data from the microcontroller
and uses it to change the attitude of
a disc onscreen in three dimensions.
It will work with either of the accel-
erometer sketches above, because
they both output the same data in the
same format. Make sure the serial port
opened by the sketch matches the
one to which your microcontroller is
connected.

/*

 Accelerometer Tilt

 Context: Processing

 Takes the values in serially from an accelerometer

 attached to a microcontroller and uses them to set the

 attitude of a disk on the screen.

 */

import processing.serial.*; // import the serial lib

float pitch, roll; // pitch and roll

float position; // position to translate to

Serial myPort; // the serial port

 Connect It

The setup() method initializes the
window, the serial connection, and sets
the graphics smoothing.

8 void setup() {

 // draw the window:

 size(400, 400, P3D);

 // calculate translate position for disc:

 position = width/2;

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[2], 9600);

 // only generate a serial event when you get a newline:

 myPort.bufferUntil('\n');

 // enable smoothing for 3D:

 hint(ENABLE_OPENGL_4X_SMOOTH);

}

The draw() method just refreshes
the screen in the window, as usual.
It calls a method, setAttitude(), to
calculate the tilt of the plane. Then it
calls a method, tilt(), to actually tilt the
plane.

8 void draw () {

 // colors inspired by the Amazon rainforest:

 background(#20542E);

 fill(#79BF3D);

 // draw the disc:

 tilt();

}

 8 You will probably need
to look at the output of
Serial.list() and change
this number to match
the serial port that cor-
responds to your micro-
controller.

HOW TO LOCATE (ALMOST) ANYTHING 297

The 3D system in Processing
works on rotations from zero to 2*PI.
tilt() maps the accelerometer angles
into that range. It uses Processing’s
translate() and rotate() methods to
move and rotate the plane of the disc
to correspond with the accelerometer’s
movement.

8 void tilt() {

 // translate from origin to center:

 translate(position, position, position);

 // X is front-to-back:

 rotateX(radians(roll + 90));

 // Y is left-to-right:

 rotateY(radians(pitch));

 // set the disc fill color:

 fill(#79BF3D);

 // draw the disc:

 ellipse(0, 0, width/4, width/4);

 // set the text fill color:

 fill(#20542E);

 // Draw some text so you can tell front from back:

 text(pitch + "," + roll, -40, 10, 1);

}

The serialEvent() method reads all
the incoming serial bytes and parses
them as comma-separated ASCII
values, just as you did in Project 2,
Monski pong in Chapter 2.

8
void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 String items[] = split(myString, ',');

 if (items.length > 1) {

 pitch = float(items[0]);

 roll = float(items[1]);

 }

 }

}

298 MAKING THINGS TALK

Figure 8-16

The output of the Processing

accelerometer sketch.

Though it may seem like a lot of work to go
from the raw output of an accelerometer to
the visualization shown in Figure 8-16, it's

useful to understand the process. You went from the
translation of acclerations along three axes into analog
voltages, then converted those voltages to digital values
in the microcontroller's memory using analogRead().
From there, you converted the digital values into voltage
readings, and then converted those to acceleration mea-
surements relative to the acceleration due to gravity.
Then, you used some trigonometry to convert the
results to angles in degrees.

 Address 2007 by Mouna Andraos and Sonali Sridhar

Address shows that location technologies don't have to be purely utilitarian.

Photo by J. Nordberg.

The advantage of having the results in degrees is that
it's a known standard measurement, so you didn't have
to do a lot of mapping when you sent the values to Pro-
cessing. Instead, Processing could take the output from
an accelerometer that gave it pitch and roll in degrees.

You don't always need this level of standardization. For
many applications, all you care about is that the accel-
erometer readings are changing. However, if you want to
convert those readings into a measurement of attitude
relative to the ground, the process you went through is
the process you'll use.
X

HOW TO LOCATE (ALMOST) ANYTHING 299

Conclusion
When you start to develop projects that use location systems, you usually find that

less is more. It’s not unusual to start a project thinking you need to know position,

distance, and orientation, then pare away systems as you develop the project.

The physical limitations of the things you build and the spaces you build them in

solve many problems for you.

This effect, combined with your users’ innate ability to
locate and orient themselves, makes your job much
easier. Before you start to solve all problems in code or
electronics, put yourself physically in the place for which
you’re building, and do what you intend for your users to
do. You’ll learn a lot about your project, and save yourself
time, aggravation, and money.

The examples in this chapter are all focused on a solitary
person or object. As soon as you introduce multiple par-
ticipants, location and identification become more tightly
connected. This is because you need to know whose
signal is coming from a given location, or what location a
given speaker is at. In the next chapter, you’ll see methods
crossing the line from physical identity to network identity.
X

300 MAKING THINGS TALK

Identification
In the previous chapters, you assumed that identity equals address. Once

you knew a device’s address on the network, you started talking. Think

about how disastrous this would be if you used this formula in everyday

life: you pick up the phone, dial a number, and just start talking. What if

you dialed the wrong number? What if someone other than the person you

expected answers the phone?

 Networked objects mark the boundaries of networks, but not of the

communications that travel across them. We use these devices to send

messages to other people. The network identity of the device and the

physical identity of the person are two different things. Physical identity

generally equates to presence (is it near me?) or address (where is it?), but

network identity also takes into consideration network capabilities of the

device and the state it’s in when you contact it. In this chapter, you’ll learn

some methods for giving physical objects network identities. You’ll also

learn ways that devices on a network can learn each other’s capabilities

through the messages they send and the protocols they use.

9
MAKE: PROJECTS

Sniff, a toy for sight-impaired children, by Sara Johansson

The dog’s nose contains an RFID reader. When he detects RFID-tagged objects, he gives sound and tactile feedback—a

unique response for each object. Designed by Sara Johansson, a student in the Tangible Interaction course at the

Oslo School of Architecture and Design, under the instruction of tutors Timo Arnall and Mosse Sjaastad.

Photo courtesy of Sara Johansson.

302 MAKING THINGS TALK

Supplies for Chapter 9

Cameras and RFID readers are your main

new components in this chapter. You’ll be

using them to identify colors, faces, tags,

and tokens.

Distributor KEy
• A Arduino Store (store.arduino.com)
• AF Adafruit (http://adafruit.com)
• CR CoreRFID (www.rfidshop.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• RSH Radio Shack(www.radioshack.com)
• RS RS (www.rs-online.com)
• SF SparkFun (www.sparkfun.com)
• SH Smarthome (www.smarthome.com)
• SS Seeed Studio (www.seeedstudio.com)
• ST SamTec (www.samtec.com)

PROJECT 22: Color Recognition using a Webcam
 » Personal computer with uSb or FireWire port
 » uSb or FireWire webcam
 » Colored objects

PROJECT 23: Face Detection using a Webcam
 » Personal computer with uSb or FireWire port
 » uSb or FireWire webcam
 » Face

PROJECT 24: 2D barcode Recognition using Webcam
 » Personal computer with uSb or FireWire port
 » uSb or FireWire webcam
 » Printer

PROJECT 25: Reading RFID Tags in Processing
 » RFID reader The ID Innovations ID-12 or ID-20 can work

in this project. The ID-20 has a slightly longer range than
the ID-12, but otherwise their operation is identical.
CR IDI003 or IDI004, SF SEN-08419

 » RFID breakout board Works for either of the ID
Innovations readers. SF SEN-08423

Figure 9-1 . New parts for this chapter: 1 . Prototyping shield 2 . X10 interface module 3 . X10 lamp module or

4 . X10 appliance module 5 . Four-wire telephone (RJ-11) cable 6 . Perforated circuit board 7 . Eight-wire Ethernet

cable 8 . EM4001 RFID tags 9 . Mifare RFID tags 10 . ID Innovations ID-12 or ID-20 125kHz RFID reader 11 . Spark

Fun 13.56 MHz RFID board or 12 . TinkerKit RFID shield 13 . Antenna for SM130 RFID reader 14 . Extra-long female

header pins 15 . 2x16 LCD screen. Don't forget plenty of male header pins for the breakout boards.

1

2

3

4

5

9

10

11

12

13

14

15

8

7

6

IDENTIFICATION 303

 » 0 .1-inch male header pins J 103377, D A26509-20ND,
SF PRT-00116, F 1593411

 » RFID tags Get the tags that match your reader. All the
retailers listed sell tags that match their readers in a
variety of physical packages, so choose the ones you
like best. The examples use EM4001 tags, which are
interchangeable with EM4102 tags.
CR WON002, SF COM-10169

 » 1 FTDI uSb-to-Serial adapter You could use the one
you’ve been using throughout this book in conjunction
with the RFID breakout board mentioned above. If you
want a breakout that’s designed specifically for your
reader, you can use the RFID USB reader from Spark
Fun, part SEN-09963.
SF DEV-09718 or DEV-09716, AF 70, A A000059,
M MKAD22, SS PRO101D2P, D TTL-232R-3V3 or TTL-
232R-5V

PROJECT 26: RFID Meets Home Automation
 » 1 Arduino module An Arduino Uno or something based

on the Arduino Uno, but the project should work on
other Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 1 prototyping shield J 2124314, SF DEV-07914, AF 51,
F 1848696, SS STR104B2P, M MSMS01

 » RFID reader The ID Innovations ID-12 or ID-20 can work
in this project. The ID-20 has a slightly longer range
than the ID-12, but otherwise their operation is identical.
CR IDI003 or IDI004, SF SEN-08419

 » RFID reader breakout Or use the parts below.
SF SEN-08423

 » Two 2mm 10 pin female header rows Not necessary
if using the breakout board. Samtec, like many part
makers, supplies free samples of this part in small
quantities.
ST MMS-110-01-L-SV, J 164822, SF PRT-08272, F
1109732

 » 2 rows of 20 0 .1-inch male header pins J 103377, D
A26509-20ND, SF PRT-00116, F 1593411

 » 2mm 5-pin socket SF PRT-10519
 » 2mm 7-pin socket SF PRT-10518
 » RFID tags Get the tags that match your reader. All the

retailers listed sell tags that match their readers in a
variety of physical packages, so choose the ones you
like best. The examples use EM4001 tags, which are
interchangeable with EM4102 tags.
CR WON002, SF COM-10169

 » 1 LED D 160-1144-ND or 160-1665-ND, J 34761 or 94511,
F 1015878, RS 247-1662 or 826-830, SF COM-09592 or
COM-09590

 » 1 220-ohm resistor D 220QBK-ND, J 690700,
F 9337792, RS 707-8842

 » Interface module: X10 One-Way Interface Module
SH 1134B

 » 2 X10 modules Either: 2 appliance modules from
Smarthome, part number 2002; or 2 Powerhouse X10
lamp modules from Smarthome, part number 2000.
You’ll need two modules total. Choose one of each,
or two of one as you see fit. If you’re going to control
incandescent lamps only, get lamp modules. For
anything else, get appliance modules.

 » 4-wire phone cable with RJ-11 connector
You can take this from any discarded phone,
or get one at your local electronics shop.
D A1642R-07-ND, J 115617, F 1335141

PROJECT 27: Tweets from RFID
 » 1 SonMicro SM130 RFID read/write module SF SEN-

10126
 » 3 Mifare RFID read/write tags SF SEN-10127
 » 1 Arduino Ethernet board A A000050

Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242, A A000056, AF 201,
F 1848680

 » 1 RFID shield SF DEV-10406, A T040030 or T040031
 » 13 .56MHz antenna Unless your reader incorporates an

antenna, A C000027
 » 2 potentiometers J 29082, SF COM-09939, F 350072,
RS 522-0625

 » 1 perforated printed circuit board RSH 276-150, D
V2018-ND, J 616673, SS STR125C2B, F 4903213, RS 159-
5420

 » 1/16-inch Mat board
 » 16 pin female header rows ST MMS-110-01-L-SV, J

164822, SF PRT-08272, F 1109732
 » 6 pin stackable header SF PRT-09280, AF 85
 » 8-conductor wire Ribbon cable or Ethernet cable will do.
D AE08A-5-ND , F 1301013

 » 16x2 character LCD SF LCD-00709

The parts for building the reader circuit without a shield are listed below,
for those who prefer that option:

 » 2 4 .7-kilohm resistors J 691024, D CF14JT4K70CT-ND,
F 735033, RS 707-8693

 » 1 solderless breadboard D 438-1045-ND, J 20723
or 20601, SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M, M MKKN2

304 MAKING THINGS TALK

Physical Identification
The process of identifying physical objects is such a fundamental part of our experience

that we seldom think about how we do it. We use our senses, of course: we look at, feel,

pick up, shake and listen to, smell, and taste objects until we have a reference—then we

give them a label. The whole process relies on some pretty sophisticated work by our

brains and bodies, and anyone who’s ever dabbled in computer vision or artificial intel-

ligence in general can tell you that teaching a computer to recognize physical objects is

no small feat. Just as it’s easier to determine location by having a human narrow it down

for you, it’s easier to distinguish objects computationally if you can limit the field—and if

you can label the important objects.

Just as we identify things using information from our
senses, so do computers. They can identify physical
objects only by using information from their sensors.
Two of the best-known digital identification techniques
are optical recognition and radio frequency identification
(RFID). Optical recognition can take many forms, from
video color tracking and shape recognition to the ubiq-
uitous barcode. Once an object has been recognized by
a computer, the computer can give it an address on the
network.

The network identity of a physical object can be centrally
assigned and universally available, or it can be provisional.
It can be used only by a small subset of devices on a
larger network or used only for a short time. RFID is an
interesting case in point. The RFID tag pasted on the side
of a book may seem like a universal marker, but what it
means depends on who reads it. The owner of a store may
assign that tag’s number a place in his inventory, but to
the consumer who buys it, it means nothing unless she
has a tool to read it and a database in which to categorize
it. She has no way of knowing what the number meant to
the store owner unless she has access to his database.
Perhaps he linked that ID tag number to the book’s title, or
to the date on which it arrived in the store. Once it leaves
the store, he may delete it from his database, so it loses
all meaning to him. The consumer, on the other hand, may
link it to entirely different data in her own database, or she
may choose to ignore it, relying on other means to identify
it. In other words, there is no central database linking
RFID tags and the things to which they’re attached or the
people who possessed them.

Like locations, identities become more uniquely descrip-
tive as the context they describe becomes larger. For
example, knowing that my name is Tom doesn’t give you
much to go on. Knowing my last name narrows it down
some more, but how effective that is depends on where
you’re looking. In the United States, there are dozens of
Tom Igoes. In New York, there are at least three. When you
need a unique identifier, you might choose a universal
label, like using my Social Security number, or you might
choose a provisional label, like calling me “Frank’s son,
Tom.” Which you choose depends on your needs in a
given situation. Likewise, you may choose to identify
physical objects on a network using universal identifiers,
or you might choose to use provisional labels in a given
temporary situation.

The capabilities assigned to an identifier can be fluid as
well. Considering the RFID example again: in the store,
a given tag’s number might be enough to set off alarms
at the entrance gates, or to cause a cash register to add
a price to your total purchase. In another store, that
same tag might be assigned no capabilities at all, even
if it’s using the same protocol as other tags in the store.
Confusion can set in when different contexts use similar
identifiers. Have you ever left a store with a purchase
and tripped the alarm, only to be waved on by the clerk
who forgot to deactivate the tag on your purchase? Try
walking into a Barnes & Noble bookstore with jeans you
just bought at a Gap store. You’re likely to trip the alarms
because the two companies use the same RFID tags, but
they don’t always set their security systems to filter out
tags that are not in their inventory.

IDENTIFICATION 305

Video Identification
All video identification relies on the same basic method:
the computer reads a camera’s image and stores it as a
two-dimensional array of pixels. Each pixel has a char-
acteristic brightness and color that can be measured
using any one of a number of palettes: red-green-blue is
a common scheme for video- and screen-based applica-
tions, as is hue-saturation-value. Cyan-magenta-yellow-
black is common in print applications. The properties of
the pixels, taken as a group, form patterns of color, bright-
ness, and shape. When those patterns resemble other
patterns in the computer’s memory, it can identify those
patterns as objects. Figure 9-2 shows an example, using a
bright pink monkey.

In the three projects below, you’ll use a computer-vision
library called OpenCV to read an image from your personal
computer’s camera or webcam, and then analyze the
image. The first, and simplest, will look for a color. The
second will look for something resembling a face. The third
will look for a 2D barcode called a QR (Quick Response)
code.

OpenCV is a computer-vision library originally developed
by Intel and released under an open source license. It’s
been adapted for many programming environments,
including Processing. The Processing version can be found
linked off the Processing site at http://processing.org/
reference/libraries/. Follow the OpenCV link from that

page, then follow the directions to install OpenCV on your
platform. Download the Processing OpenCV library and
copy it to the libraries directory of your Processing sketch-
book directory (find it listed in Processing’s preferences).
Now you’re all set to build the examples below.

NOTE: The current home of OpenCV for Processing as of this

writing is at http://ubaa.net/shared/processing/opencv. A new

version is in the works, so check the Processing site for the most

up-to-date link.

Color Recognition
Recognizing objects by color is a relatively simple process,
if you know that the color you’re looking for is unique in
the camera’s image. This technique is used in film and
television production to make superheroes fly. The actor
is filmed against a screen of a unique color, usually green,
which isn’t a natural color for human skin. Then, the pixels
of that color are removed, and the image is combined with
a background image.

Color identification can be an effective way to track
physi-cal objects in a controlled environment. Assuming
you’ve got a limited number of objects in the camera’s view,
and each object’s color is unique and doesn’t change with
the lighting conditions, you can identify each object reason-
ably well. Even slight changes in lighting can change the
color of a pixel, however, so lighting conditions need to be
tightly controlled, as the following project illustrates.
X

Figure 9-2

Video color recognition in

Processing, using the code in

Project 22. This simple sketch

works well with vibrantly pink

monkeys.

306 MAKING THINGS TALK

In this project, you’ll get a firsthand

look at how computer vision works. The

Processing sketch shown here uses a

video camera to generate a digital image,

looks for pixels of a specific color, and

then marks them on the copy of the

image that it displays onscreen. The

OpenCV library for Processing enables

you to capture the image from a webcam

attached to your computer and analyze

the pixels.

MATERIALS

 » Personal computer with uSb or FireWire port
 » uSb or FireWire webcam
 » Colored objects

The following Processing sketch is an example of color
tracking using the OpenCV library. To use this, you’ll need
to have a camera attached to your computer, and also
have the drivers installed. The camera you used in Chapter
3 for the cat camera should do the job fine. You’ll also
need some small colored objects—stickers or toy balls
work well.

Color Recognition Using a Webcam

Before the setup(), set up a few
global variables, including an instance
of the OpenCV library, an array to
hold the pixel color values, and a color
variable for the color you want to track.

The setup() sets the initial condi-
tions as usual, in this case, initial-
izing OpenCV using the first camera
available to your computer, sizing the
window, and initializing smooth, anti-
alised graphics.

NOTE: Because the OpenCV application

uses the first camera available, you may

have problems if you have both a built-in

camera on a laptop and an external webcam.

One solution is to open the camera you

don’t want to use in another application,

so only the one you want is available to

OpenCV. It’s a crude solution, but it works.

8 /*

 ColorTracking with openCV

 Context: Processing

 Based on an example by Daniel Shiffman

 */

// import the opencv library:

import hypermedia.video.*;

OpenCV opencv; // opencv instance

int[] pixelArray; // array to copy the pixel array to

color trackColor; // the color you're looking for

void setup() {

 // initialize the window:

 size(640, 480);

 // initialize opencv

 opencv = new OpenCV(this);

 opencv.capture(width, height);

 // Start off tracking for red

 trackColor = color(255, 0, 0);

 // draw smooth edges:

 smooth();

}

Project 22

IDENTIFICATION 307

The draw() method begins by
establishing a value for the closest
matching color, a threshold for similar-
ity, and X and Y positions of the closest
matching pixel. Then it reads the
camera and saves the resulting image
in a pixel array.

8 void draw() {

 float closestMatch = 500; // value representing the closest color match

 float colorThreshold = 10; // the threshold of color similarity

 int closestX = 0; // horizontal position of the closest color

 int closestY = 0; // vertical position of the closest color

 // read the camera:

 opencv.read();

 // draw the camera image to the window:

 image(opencv.image(), 0, 0);

 // copy the camera pixel array:

 pixelArray = opencv.pixels();

 // Begin loop to walk through every pixel

 for (int x = 0; x < opencv.width; x++) {

 for (int y = 0; y < opencv.height; y++) {

 // calculate the pixel's position in the array

 // based on its width and height:

 int loc = x + y*opencv.width;

 // get the color of the current pixel:

 color currentColor = pixelArray[loc];

 float r1 = red(currentColor);

 float g1 = green(currentColor);

 float b1 = blue(currentColor);

 float r2 = red(trackColor);

 float g2 = green(trackColor);

 float b2 = blue(trackColor);

 // use the dist() function to figure the aggregate color

 // of the current pixel. This method treats the red, green, and blue

 // of the current pixel's color and of the target color as

 // coordinates

 // in 3D space and calculates the difference between them

 // as Euclidean distance.

 // In this formula, closer distance = closer color similarity:

 float d = dist(r1, g1, b1, r2, g2, b2);

 // If current color is more similar to tracked color than

 // closest color, save current location and current difference

 if (d < closestMatch) {

 closestMatch = d;

 closestX = x;

 closestY = y;

 }

 }

 }

Next, calculate the difference between
the two colors. By treating the red, green,
and blue values of each color as positions
in 3-dimensional space, you can find the
difference by calculating the Euclidean
distance between them. Processing’s dist()
function is handy for this.

Once you know the difference, compare
that to the closest match so far (which was
set arbitrarily high for the first match). If the
current difference is less than the closest
match, the current pixel is the new closest
match.

8

Next comes a pair of nested for
loops that iterates over the rows and
columns of pixels. This is a standard
algorithm for examining all the pixels
of an image. With each pixel, you
determine its position in the array with
the following formula (which you’ll see
frequently.)

arrayLocation = x + (y * width);

Once you have the pixel’s position, you
extract the red, green, and blue values,
as well as the values for the color you
wish to track.

8

»

308 MAKING THINGS TALK

Continued from previous page .

 // Only consider the color found if its color distance is less than

 // the color threshold. For greater color accuracy, make this lower.

 // For more forgiving matching, make it higher:

 if (closestMatch < colorThreshold) {

 // Draw a circle at the tracked pixel

 fill(trackColor);

 strokeWeight(2.0);

 stroke(0);

 ellipse(closestX, closestY, 16, 16);

 }

}

Now, add a handler for when the
mouse is pressed. This changes

the tracked color to whatever color is
at the mouse location.

Once you have the closest match,
the nested for loops are over. All that
remains in the draw() method is to see
whether the closest match is less than
the threshold you set as an acceptable
match. If it is, draw a circle there.

8

8

void mousePressed() {

 // Save color where the mouse is clicked in trackColor variable

 int loc = mouseX + mouseY*opencv.width;

 trackColor = pixelArray[loc];

}

Lighting for Color Tracking
As you can see when you run this sketch, it’s not the most
robust color tracker! The closest match tends to jump
around a lot. Changing the color-
Threshold helps, but not a lot. You can get it to be more
precise by controlling the image and the lighting very
carefully. There are some lighting tricks you can use as
well:

• DayGlo colors under ultraviolet fluorescent lighting tend
to be the easiest to track, but they lock you into a very
specific visual aesthetic.

• Objects that produce their own light are easier to track,
especially if you put a filter on the camera to block
out stray light. A black piece of 35mm film negative (if
you can still find 35mm film!) works well as a visible
light filter, blocking most everything but infrared light.
Two polarizers, placed so that their polarizing axes are
perpendicular, are also effective. Infrared LEDs track
very well through this kind of filter, as do incandescent
flashlight lamps.

• Regular LEDs don’t work well as color-tracking objects
unless they’re relatively dim. Brighter LEDs tend to show
up as white in a camera image because their brightness
overwhelms the camera’s sensor.

• Color recognition doesn’t have to be done with a
camera; color sensors can do the same job. Texas
Advanced Optoelectronic Solutions (www.taosinc.com)
makes a few different color sensors, including the TAOS
TCS230. This sensor contains four photodiodes, three
of which are covered with color filters; the fourth is not,
so it can read red, green, blue, and white light. It outputs
the intensity of all four channels as a changing pulse
width. The cheaper TAOS TSL230R has no LEDs—it
just detects ambient color. Other color sensors are
available as well. Their shortcoming is that they are
designed to detect color only relatively close (within a
few centimeters), and they don’t have the ability to see
a coherent image. They are basically one-pixel camera
sensors.

IDENTIFICATION 309

Designer Durrell Bishop’s marble telephone answering

machine is an excellent example of the challenges of identi-

fying physical tokens. With every new message the machine

receives, it drops a marble into a tray on the front of the

machine. The listener hears the messages played back by

placing a marble on the machine’s “play” tray. Messages are

erased and the marbles are recycled when they are dropped

back into the machine’s hopper. Marbles become physical

tokens representing the messages, making it very easy to

tell at a glance how many messages there are.

Bishop tried many different methods to reliably identify and

categorize physical tokens representing the messages:

I first made a working version with a motor and large

screw (like a vending machine delivery mechanism), with

pieces of paper tickets hung on the screw, and had different

color gray levels on the back. When it got a new message,

the machine read the next gray before it rotated once and

dropped the ticket. It was a bit painful, so I bought beads and

stuffed resistors into the hole which was capped (soldered)

with sticky-backed copper tape. When I went to Apple and

worked with Jonathan Cohen, we built a properly hacked

version for the Mac with networked barcodes.

Later, again with Jonathan but this time at Interval Research,

we used the Dallas ID chips.

Color by itself isn’t enough to give you identity in most

cases, but there are ways in which you can design a system

to use color as a marker of physical identity. However, it

has its limitations. In order to tell the marbles apart, Bishop

could have used color recognition to read the marbles, but

that would limit the design in at least two ways. First, there

would be no way to tell the difference between multiple

marbles of the same color. If, for example, he wanted to use

color to identify the different people who received messages

on the same answering machine, there would then be no

way to tell the difference between multiple messages for

each person. Second, the system would be limited by the

number of colors between which the color recognition can

reliably differentiate.

Challenges of Identifying Physical Tokens

Shape and Pattern Recognition
Recognizing a color is relatively simple computationally;
but recognizing a physical object is more challenging. To
do this, you need to know the two-dimensional geometry
of the object from every angle so that you can compare
any view you get of the object.

A computer can’t actually “see” in three dimensions using
a single camera. The view it has of any object is just a
two-dimensional shadow. Furthermore, it has no way of
distinguishing one object from another in the camera
view without some visual reference. The computer has
no concept of a physical object. It can only compare and
match patterns. It can rotate the view, stretch it, and do
all kinds of mathematical transformations on the pixel
array, but the computer doesn’t understand an object as a
discrete entity the same way a human does.

Face Detection
If you’ve used a digital camera developed in the past five
years or so, chances are it’s got a face-detection algorithm
built in. It’ll put a rectangle around each human face and
attempt to focus on it. Face detection is a good example
of visual pattern recognition. The camera looks for a pre-
described pattern that describes, generically, a face. It has
a particular proportion of height to width: there are two
darker spots about one-third of the way from the top, a
second darker spot about two-thirds of the way down, and
so forth. Facial detection is not facial recognition—a face-
detection algorithm generally isn’t looking specificially
enough at an image to tell you who the person is, just that
they have something that more or less resembles a face.

OpenCV has patterns for facial detection that are very
simple to use. The following project shows you how to
detect faces.
X

310 MAKING THINGS TALK

Now that you’ve got a basic understand-

ing of how optical detection works from

the color-tracking project, it’s time to try

some simple pattern detection. In this

project, you’ll use OpenCV’s facial-detec-

tion methods to look for faces in a camera

image.

OpenCV’s pattern detection uses pattern description files
called cascades to describe the characteristics of a partic-
ular patern. A cascade describes the subregions of a given
pattern, including their relative sizes, shapes, and contrast
ratios. The patterns are designed to be general enough to
allow for some variation, but specific enough to tell it from
other patterns. The Processing OpenCV library comes with
patterns for the following human features:

MATERIALS

 » Personal computer with uSb or FireWire port
 » uSb or FireWire webcam
 » Faces

Face Detection Using a Webcam

Before the setup(), set up the
global variables as usual. These are
almost identical to the last project,
but you also need the Java Rectangle
object. This is because the OpenCV
detection method returns an array of
Rectangles that it thinks contain faces.

The setup() is similar, but this time,
you’re going to have OpenCV look for
detection pattern using the library’s
cascade() method. The available
patterns are described on the Process-
ing OpenCV site at http://ubaa.net/
shared/processing/opencv/opencv_
cascade.html.

Finally, the setup() sets the drawing
conditions for ellipses, so you can draw
circles over the faces.

8 /*

 Face detection using openCV

 Context: Processing

*/

// import the opencv and Rectangle libraries:

import hypermedia.video.*;

import java.awt.Rectangle;

OpenCV opencv; // new instance of the openCV library

void setup() {

 // initialize the window:

 size(320,240);

 // initialize opencv:

 opencv = new OpenCV(this);

 opencv.capture(width, height);

 // choose a detection description to use:

 opencv.cascade(OpenCV.CASCADE_FRONTALFACE_DEFAULT);

 // draw smooth edges:

 smooth();

 // set ellipses to draw from the upper left corner:

 ellipseMode(CORNER);

}

Project 23

Frontal face view (four variations)
Profile face view
Full-body view
Lower-body view
Upper-body view

The sketch attempts basic facial recognition; see if you
can fool it.

IDENTIFICATION 311

The draw() method is much
simpler than the last project because
you’re not looking at every pixel. It uses
the OpenCV detect() method to look
for rectangles matching the pattern
you chose, and delivers them in an
array. Then it iterates over the array
and draws ellipses over each face.

When you run this, point your face at it,
and you’ll get a nice fuchsia mask, as
shown in Figure 9-3.

Try the program on different versions
of faces and different conditions. Also
try the other face-detection cascades
mentioned on the OpenCV for Process-
ing site.

8 void draw() {

 // grab a new frame:

 opencv.read();

 // Look for faces:

 Rectangle[] faces = opencv.detect();

 // display the image:

 image(opencv.image(), 0, 0);

 // draw circles around the faces:

 fill(0xFF, 0x00, 0x84, 0x3F); // a nice shade of fuchsia

 noStroke(); // no border

 for (int thisFace=0; thisFace<faces.length; thisFace++) {

 ellipse(faces[thisFace].x, faces[thisFace].y,

 faces[thisFace].width, faces[thisFace].height);

 }

}

Figure 9-3

The face detection finds

me fairly well.

Turning sideways, I

disappear.

It does well with a photo

of people, even the

abstracted face on my

shirt. Facial hair and other

markings make a person

harder to detect.

Animals are not detected

by this algorithm.

Noodles is not detected

(and not happy either).

312 MAKING THINGS TALK

to write a more comprehensive piece of software that
can interpret several symbologies, or you have to know
which one you’re reading in advance. There are numerous
software libraries for generating barcodes and several
barcode fonts for printing the more popular symbologies.

Barcodes, such as the one shown in Figure 9-4, are called
one-dimensional barcodes because the scanner or camera
needs to read the image only along one axis. There are
also two-dimensional barcodes that encode data in a
two-dimensional matrix for more information density.
As with one-dimensional barcodes, there are a variety of
symbologies. Figure 9-5 shows a typical two-dimensional
barcode. This type of code, the QR (Quick Response)
code, was created in Japan and originally used for tracking
vehicle parts, but it’s since become popular for all kinds of
product labeling. The inclusion of software to read these
tags on many camera phones in Japan has made the tags
more popular. The following project uses an open source
Java library to read QR codes in Processing.

ConQwest, designed for Qwest Wireless in 2003, by Area/Code

www .areacodeinc .com

The first ever use of Semacode, 2D barcodes scanned by phonecams. A
city-wide treasure hunt designed for high-school students, players went
through the city “shooting treasure” with Qwest phonecams and moving their
totem pieces to capture territory. A website tracked the players’ locations and
game progress, turning it into a spectacular audience-facing event.
Photo courtesy of Area/Code and Kevin Slavin.

Barcode Recognition
A barcode is simply a pattern of dark and light lines or cells
used to encode an alphanumeric string. A computer reads
a barcode by scanning the image and interpreting the
widths of the light and dark bands as zeroes or ones. This
scanning can be done using a camera or a single photodi-
ode, if the barcode can be passed over the photodiode at a
constant speed. Many handheld barcode scanners work by
having the user run a wand with an LED and a photodiode
in the tip over the barcode, and reading the pattern of light
and dark that the photodiode detects.

The best known barcode application is the Universal
Product Code, or UPC, used by nearly every major manu-
facturer on the planet to label goods. There are many
dozen different barcode symbologies, which are used
for a wide range of applications. For example, the U.S.
Postal Service uses POSTNET to automate mail sorting.
European Article Numbering (EAN) and Japanese Article
Numbering (JAN) are supersets of the UPC system
developed to facilitate the international exchange of goods.
Each symbology represents a different mapping of bars to
characters. The symbologies are not interchangeable, so
you can’t properly interpret a POSTNET barcode if you’re
using an EAN interpreter. This means that either you have

Figure 9-4

A one-dimensional

barcode. This is the ISBN

bar code for this book.

IDENTIFICATION 313

In the setup() for this sketch, you’ll
import the pqrcode and OpenCV

libraries, and initialize a few global
variables.

In this project, you’ll generate some two-

dimensional barcodes from text using an

online QR code generator. Then you’ll decode

your tags using a camera and a computer.

Once this works, try decoding the QR code

illustrations in this book.

2D Barcode Recognition Using a Webcam

/*

 QRCode reader

 Context: Processing

*/

import hypermedia.video.*;

import pqrcode.*;

OpenCV opencv; // instance of the opencv library

Decoder decoder; // instance of the pqrcode library

// a string to return messages:

String statusMsg = "Waiting for an image";

void setup() {

 // initialize the window:

 size(400, 320);

 // initialize opencv:

 opencv = new OpenCV(this);

 opencv.capture(width, height);

 // initialize the decoder:

 decoder = new Decoder(this);

}

MATERIALS

 » Personal computer with uSb or FireWire port
 » Web Access
 » uSb or FireWire Webcam
 » Printer

This sketch reads QR codes using a camera attached to a
personal computer. The video component is very similar to
the color-tracking example earlier. Before you start on the
sketch, though, you’ll need some QR codes to read. Fortu-
nately, there are a number of QR code generators available
online. Just type the term into a search engine and see
how many pop up. There’s a good one at http://qrcode.
kaywa.com, from which you can generate URLs, phone
numbers, or plain text. The more text you enter, the larger
the symbol. Generate a few codes and print them out for
use later. Save them as .png files, because you’ll need them
for the sketch.

To run this sketch, you’ll need to download the pqrcode
library for Processing by Daniel Shiffman, It’s based on the
qrcode library from http://qrcode.sourceforge.jp. You can
download the pqrcode library from www.shiffman.net/p5/
pqrcode. Unzip it, and you’ll get a directory called pqrcode.
Drop it into the libraries subdirectory of your Processing
application directory and restart Processing. Make a
new sketch, and within the sketch’s directory, make a
subdirectory called data, and put in the .jpg or .png files of
the QR codes that you generated earlier. Now
you’re ready to begin writing the sketch.

Project 24

8

314 MAKING THINGS TALK

The draw() method draws the
camera image and prints a status

message to the screen. If the decoder
library is in the middle of reading an
image, it displays that image in the
upper-lefthand corner, and changes the
status message.

8 void draw() {

 // read the camera:

 opencv.read();

 // show the camera image:

 image(opencv.image(), 0, 0);

 // Display status message:

 text(statusMsg, 10, height-4);

 // If you're currently decoding:

 if (decoder.decoding()) {

 // Display the image being decoded:

 PImage show = decoder.getImage();

 image(show, 0, 0, show.width/4, show.height/4);

 // update the status message:

 statusMsg = "Decoding image";

 // add a dot after every tenth frame:

 for (int dotCount = 0; dotCount < (frameCount) % 10; dotCount++) {

 statusMsg += ".";

 }

 }

}

The pqrcode library has a method
called decodeImage(). To use it, pass it
an image in the keyReleased() method.
A switch statement checks to see
which key has been pressed. If you type
f, it passes the decoder a file called
qrcode.png from the data subdirectory.
If you press the space bar, it passes the
camera image. If you type s, it brings
up a camera settings dialog box.

8
void keyReleased() {

 String code = "";

 // Depending on which key is hit, do different things:

 switch (key) {

 case ' ': // space bar takes a picture and tests it:

 // Decode the image:

 decoder.decodeImage(opencv.image());

 break;

 case 'f': // f runs a test on a file

 PImage preservedFrame = loadImage("qrcode.png");

 // Decode the file

 decoder.decodeImage(preservedFrame);

 break;

 }

}

Once you’ve given the decoder an
image, you wait. When it’s decoded

the image, it generates a decoder-
Event(), and you can read the tag’s ID
using the getDecodedString() method.

8

// When the decoder object finishes

// this method will be invoked.

void decoderEvent(Decoder decoder) {

 statusMsg = decoder.getDecodedString();

}

IDENTIFICATION 315

Radio Frequency
Identification (RFID)

Like barcode recognition, RFID relies on tagging objects
in order to identify them. Unlike barcodes, however, RFID
tags don’t need to be visible to be read. An RFID reader
sends out a short-range radio signal, which is picked up by
an RFID tag. The tag then transmits back a short string
of data. Depending on the size and sensitivity of the
reader’s antenna and the strength of the transmission,
the tag can be several feet away from the reader, enclosed
in a book, box, or item of clothing, and still be read. In fact,
some clothing manufacturers are now sewing RFID tags
into their merchandise, which customers remove after
purchasing.

Figure 9-5

A two-dimensional barcode (a QR code, to be specific) with crop

marks around it. The image parsers won’t read the crop marks,

but they help users center the tag for image capture.

There are two types of RFID system: passive and active,
just like distance-ranging systems. Passive RFID tags
contain an integrated circuit that has a basic radio
transceiver and a small amount of nonvolatile memory.
They are powered by the current that the reader’s signal
induces in their antennas. The received energy is just
enough to power the tag to transmit its data once, and the
signal is relatively weak. Most passive readers can only
read tags a few inches to a few feet away.

In an active RFID system, the tag has its own power supply
and radio transceiver, and it transmits a signal in response
to a received message from a reader. Active systems can
transmit for a much longer range than passive systems,
and they are less error-prone. They are also much more
expensive. If you’re a regular automobile commuter, and
you pass through a toll gate during your commute, you’re
probably an active RFID user. Systems like E-ZPass use
active RFID tags so that the reader can be placed several
meters away from the tag.

When you run this, notice how the .jpg or .png
images scan much more reliably than the
camera images. The distortion from the analog-

to-digital conversion through the camera causes many
errors. This error is made worse by poor optics or low-end
camera imaging chips in mobile phones and webcams.
Even with a good lens, if the code to be scanned isn’t
centered, the distortion at the edge of an image can throw
off the pattern-recognition routine. You can improve the
reliability of the scan by guiding the user to center the
tag before taking an image. Even simple graphic hints like
putting crop marks around the tag, as shown in Figure 9-5,
can help. When you do this, users framing the image tend
to frame to the crop marks, which ensures more space
around the code and a better scan. Such methods help
with any optical pattern recognition through a camera,
whether it’s one- or two-dimensional barcodes, or another
type of pattern altogether.

Optical recognition forces one additional limitation
besides those mentioned earlier: you have to be able to
see the barcode. By now, most of the world is familiar with
barcodes, because they decorate everything we buy or
ship. This limitation is not only aesthetic. If you’ve ever
turned a box over and over trying to get the barcode to
scan, you know that it’s also a functional limitation. A
system that allowed for machine recognition of physical
objects—but didn’t rely on a line of sight to the identifying
tag—would be an improvement. This is one of the main

reasons that RFID is beginning to supersede bar codes in
inventory control and other ID applications.

316 MAKING THINGS TALK

You might think that because RFID is radio-based, you
could use it to do radio distance ranging as well, but that’s
not the case. Neither passive nor active RFID systems are
typically designed to report the signal strength received
from the tag. Without this information, it’s impossible
to use RFID systems to determine the actual location of
a tag. All the reader can tell you is that the tag is within
reading range. Although some high-end systems can
report the tag signal strength, the vast majority of readers
are not made for location as well as identification.

RFID systems vary widely in cost. Active systems can cost
tens of thousands of dollars to purchase and install. Com-
mercial passive systems can also be expensive. A typical
passive reader that can read a tag a meter away from
the antenna typically costs a few thousand dollars. At the
low end, short-range passive readers can come as cheap
as $30 or less. As of this writing, $30 to $100 gets you a
reader that can read a few inches. Anything that can read
a longer distance will be more expensive.

There are many different RFID protocols, just as with
barcodes. Short-range passive readers come in at least
three common frequencies: two low-frequency bands
at 125 and 134.2kHz, and high-frequency readers at
13.56MHz. The higher-frequency readers allow for faster
read rates and longer-range reading distances. In addition

to different frequencies, there are also different protocols.
For example, in the 13.56 band alone, there are the ISO
15693 and ISO 14443 and 14443-A standards. Within the
ISO 15693 standard, there are different implementations
by different manufacturers—Philips’ I-Code, Texas Instru-
ments’ Tag-IT HF, Picotag—as well as implementations by
Infineon, STMicroelectronics, and others. Within the ISO
14443 standard, there’s Philips’ Mifare and Mifare UL, ST’s
SR176, and others. So, you can’t expect one reader to read
every tag. You can’t even count on one reader to read all
the tags in a given frequency range. You have to match the
tag to the reader.

There are a number of cheap and simple readers on the
market now, covering the range of passive RFID frequen-
cies and protocols. ID Innovations makes a range of small,
inexpensive, and easy-to-use 125kHz readers with a serial
output. The smallest of these is less than 1.5 inches on a
side and is capable of reading the EM4001 protocol tags.
Spark Fun and CoreRFID both sell these readers and
matching tags. You’ll use one of these in the next project.

Figure 9-6

The field of an RFID reader, by Timo Arnall. This stop-motion

photo shows the effective range and shape of the RFID reader’s

field. The reader shown is an ID Innovations ID-20, which you’ll see

in the next project.

IDENTIFICATION 317

Parallax sells a 125kHz reader that can also read EM Micro-
electronic tags, such as EM4001. It has a built-in antenna,
and the whole module is about 2.5" x 3.5" on a flat circuit
board. The ID Innovations readers and the Parallax readers
can read the same tags. The EM4001 protocol isn’t as
common in everyday applications as the Mifare protocol,
a variation on the ISO 14443 standard in the 13.56MHz
range. Mifare shows up in many transit systems, like the
London Tube. SonMicro makes a module that can both
read from and write to these tags, which you’ll see in the
project after next.

As shown in Figure 9-7, RFID tags come in a number of
different forms: sticker tags, coin discs, key fobs, credit
cards, playing cards, even capsules designed for injection
under the skin. The last are used for pet tracking and
are not designed for human use, though there are some
adventurous hackers who have inserted these tags under
their own skin. Like any radio signal, RFID can be read
through a number of materials, but it is blocked by any
kind of RF shielding, such as wire mesh, conductive fabric
lamé, metal foil, or adamantium skeletons. This feature
means that you can embed it in all kinds of projects, as
long as your reader has the signal strength to penetrate
the materials.

Before picking a reader, think about the environment in
which you plan to deploy it, and how that affects both the
tags and the reading. Will the environment have a lot of
RF noise? In what range? Then, consider a reader outside
that range. Will you need a relatively long-range read? If so,
look at the high-frequency readers. If you’re planning to
read existing tags rather than tags you purchase yourself,

Most RFID capsules are not sterilized for internal

use in animals (humans included), and they’re

definitely not designed to be inserted without qualified

medical supervision. Besides, insertion hurts. Don’t

RFID-enable yourself or your friends. Don’t even do it

to your pets—let your vet do it. If you’re really gung-ho

to be RFID-tagged, make yourself a nice set of RFID-tag

earrings.

Figure 9-7

RFID tags in all shapes and sizes. All

of thes items have RFID tags in them.

Photo by Timo Arnall. For more infor-

mation on RFID design research by

Arnall and his colleagues, see www.

nearfield.org.

!

research carefully in advance, because not all readers will
read all tags. Pet tags can be some of the trickiest—many
of them operate in the 134.2kHz range, in which there are
fewer readers to choose from.

You also have to consider how it behaves when tags are in
range. For example, even though the Parallax reader and
the ID Innovations readers can read the same tags, they
behave very differently when a tag is in range. The ID Inno-
vations reader reports the tag ID only once. The Parallax
reader reports it continually until the tag is out of range.
The behavior of the reader can affect your project design,
as you’ll see later on.

The readers mentioned here have TTL serial interfaces, so
they can be connected to a microcontroller or a USB-to-
Serial module very easily. The ID Innovations and Parallax
readers have a similar serial behavior, so you could swap
one for the other with only a few code changes to your
program.
X

318 MAKING THINGS TALK

In this project, you’ll read some RFID tags

to get a sense for how the readers behave.

You’ll see how far away from your reader

a tag can be read. This is a handy test

program to use any time you’re adding

RFID to a project.

Reading RFID Tags in Processing

The ID Innovations readers operate on 5 volts and have a
TTL serial output, so the circuit is very simple.

There’s also a buzzer pin, which goes high whenever a
tag is read, so you know that the reader’s working. An
LED will work fine in place of the buzzer. Figure 9-8 shows
the circuit for the ID Innovations reader connected to a
USB-to-Serial adapter. The Parallax reader can work for
this project too, though you’ll have to modify the code to
match its protocol.

MATERIALS

 » ID Innovations ID-12 or ID-20 RFID reader
 » EM4001 RFID tags
 » RFID breakout board
 » Male header pins
 » 1 uSb-to-TTL serial adapter

Project 25

All the ID Innovations readers use the same protocol. They
operate at 9600bps. The serial sentence begins with a
start-of-transmission (STX) byte (ASCII 02) and ends with
an end-of-transmission (ETX) byte (ASCII 03). The STX is
followed by the 10-byte tag ID. A checksum follows that,
then a carriage return (ASCII 13) and linefeed (ASCII 10),
then the ETX. The EM4001 tags format their tag IDs as
ASCII-encoded hexadecimal values, so the string will never
contain anything but the ASCII digits 0 through 9 and the
letters A through F.

The Processing sketch
shown here reads from

an ID Innovations reader. The setup()
should look very familiar to you by
now—it’s just opening the serial port
and establishing a string for incoming
data. Since the ID Innovations serial
sentence ends with the value 03, you’ll
buffer any incoming serial until you see
a byte of value 03.

/*

 ID Innovations RFID Reader

 Context: Processing

 Reads data serially from an ID Innovations ID-12 RFID reader.

*/

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

String tagID = ""; // the string for the tag ID

void setup() {

 size(150,150);

 // list all the serial ports:

 println(Serial.list());

 // change the number below to match your port:

 String portnum = Serial.list()[2];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 9600);

 // incoming string will end with 0x03:

 myPort.bufferUntil(0x03);

}

 Try It

IDENTIFICATION 319

Vdd

LED

FormatGND

TX

220ΩRES ID Innovations
ID12 reader

GND

CTS

Vcc

TX

RX

RTS

FTDI-style
USB-to-Serial

adapter

Figure 9-8

The ID Innovations ID-12 RFID

reader attached to an FTDI USB-

to-Serial adapter. The ID-12 has

pins spaced 2mm apart. Spark

Fun’s breakout board breaks it out

to standard breadboard spacing,

however.

If you plan to use the ID Innova-

tions readers a lot, you might

consider replacing this circuit with

Spark Fun’s RFID USB reader (part

no. SEN-09963), which combines

the FTDI adapter and mount for

the reader in one module.

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

Part
Title

ID12
INNOVATIONS

FTDI-style
USB-to-serial

Adapter

RX
TX
Vcc

Gnd

320 MAKING THINGS TALK

The draw() method draws the tag
ID to the screen.

The real work happens in the
serialEvent() method. It’s called

whenever a byte of value 03 comes in
the serial port. It checks to see whether
the string starts with a byte of value 02
and ends with 03. If so, it takes the first
10 bytes after the 02 as the tag ID.

Run this sketch with the ID Innova-
tions reader attached, and wave some
tags in front of it. With each tag, you
should get a result like the screenshot
in Figure 9-9.

void draw() {

 // clear the screen and choose

 // pleasant colors inspired by a seascape:

 background(#022E61);

 fill(#D9EADD);

 // print the string to the screen:

 text(tagID, width/4, height/2);

}

void serialEvent(Serial myPort) {

 // get the serial input buffer in a string:

 String inputString = myPort.readString();

 // filter out the tag ID from the string:

 // first character of the input:

 char firstChar = inputString.charAt(0);

 // last character of the input:

 char lastChar = inputString.charAt(inputString.length() -1);

 // if the first char is STX (0x02) and the last char

 // is ETX (0x03), then put the next 10 bytes

 // into the tagID string:

 if ((firstChar == 0x02) && (lastChar == 0x03)) {

 tagID = inputString.substring(1, 11);

 }

}

8

8

Figure 9-9

Output of the ID Innovations Reader sketch.

When you have this sketch working, use it to test the range
of your reader to see from how far away you can read a
tag. You’ll notice that the tag has to leave the reader’s
range before it can be read a second time. You may not be
able to tell that from the screen output, but you’ll notice
that the LED goes off when the tag goes out of range,
and it turns on again when it comes back in range. Many
readers have a similar behavior. You should also see that
the reader can’t read more than one tag at a time—this is
common among all the readers mentioned here.
X

IDENTIFICATION 321

Between my officemate and me, we have

dozens of devices drawing power in our

office: several computers, two monitors,

four or five lamps, a few hard drives, a

soldering iron, Ethernet hubs, speakers,

and so forth. Even when we’re not in the

office, the room is drawing a lot of power.

The devices that are turned on at any

given time depends largely on which of us

is here, and what we’re doing. This project

is a system to reduce our power consump-

tion, particularly when we’re not there.

 When we come into the office, all we

have to do is touch our keys on a plate

by the door, and the room turns on or off

the devices we normally use. Each of us

has a key ring with an RFID-tag key fob.

The module behind the plate has an RFID

reader in it, which reads the tags.

MATERIALS

 » 1 solderless breadboard
 » 1 Arduino module
 » 1 ID Innovations ID-12 or ID-20 RFID reader
 » 2 EM4001 RFID tags
 » 1 RFID breakout board
 » Male header pins
 » Interface module: X10 One-Way Interface Module
 » 2 X10 modules
 » 4-wire phone cable with RJ-11 connector

RFID Meets Home Automation

The reader is connected to a microcontroller module that
communicates over the AC power lines using the X10
protocol. Each of the various power strips is plugged into
an X10 appliance module. Depending on which tag is read,
the microcontroller knows which modules to turn on or off.
Figure 9-10 shows the system.

The Circuit
The X10 interface module connects to the microcontroller
via a four-wire phone cable. Clip one end of the cable and
solder headers onto the four wires. Then connect them to
the microcontroller as shown in Figure 9-11. The schematic
shows the phone jack (an RJ-11 jack) on the interface
module as you’re looking at it from the bottom. Make sure
the wires at the header ends correspond with the pins on
the jack from right to left.

NOTE: The colors for the four-wire cable shown in Figure 9-11 are

typical for many four-wire phone cables in the U.S., but they do

not correspond to the colors used in other diagrams in this book,

so be careful to connect the circuit exactly as shown.

The RFID reader’s reset pin is connected to the microcon-
troller’s reset pin so that whenever the latter is reset, the
former will be as well.

The RFID reader is connected to the microcontroller a little
differently than you might expect. Its serial transmit pin is
connected to pin 7. You’re going to use the SoftwareSerial
library to add an extra serial connection to the Arduino this
time. The SoftwareSerial library is included in the standard
download for Arduino, so you won’t need to download
anything in order to use it.

To send X10 commands, use the X10 library for Arduino.
You can download it from https://github.com/tigoe/x10.
Unzip it and place the resulting directory in the libraries
subdirectory of your Arduino sketch directory. Then restart
the Arduino environment.

This project doesn’t receive any X10 data, it only sends
from the microcontroller to the modules. However, the
circuit should be compatible with two-way interface
modules. Likewise, the library—though not written to send
both ways—could be adapted to send as well as receive.
You’ll need to add your own sending methods to the library,
as the current ones are just stubs. The library should be
compatible with both 50Hz and 60Hz AC systems as
well. For experienced programmers, the stubs of receive
methods can be found in the library’s source code—feel
free to adapt it as you see fit. For readers seeking a more
advanced X10 library, see http://load-8-1.blogspot.
com/2010_06_01_archive.html. Thanks to reader Tom
Crites for the link.

Project 26

322 MAKING THINGS TALK

Figure 9-10

An RFID-controlled home

(or office) automation system

using X10.

X10, a communications protocol that works over AC power

lines, is designed for use in home automation. Companies

such as Smarthome (www.smarthome.com) and X10.com

(www.x10.com) sell various devices that communicate over

power lines using X10: cameras, motion sensors, switch

control panels, and more. It’s a slow and limited protocol,

but it has been popular with home automation enthusiasts

for years because the equipment is relatively inexpensive

and easy to obtain.

X10 is basically a synchronous serial protocol, like I2C and

SPI. Instead of sending bits every time a master clock signal

changes, X10 devices send a bit every time the AC power

line crosses zero volts. This means that X10’s maximum

data rate is 120 bits per second in the U.S., as the AC signal

crosses the zero point twice per cycle, and AC signals are

60Hz in the U.S. The protocol is tricky to program if you

have to do it yourself, but many microcontroller-develop-

ment systems include libraries to send X10 signals.

There are four devices that come in handy for developing

X10 projects: an interface module, an appliance control

module, a lamp control module, and a control panel module.

You’ll be building your own controllers, but the control panel

module is useful as a diagnostic tool because it already

works. When you can’t get the appliance or lamp modules

to respond to your own projects, you can at least get them

to respond to the control panel module—that way, you

know whether the bits are passing over the power lines.

Smarthome sells versions of all four of these:

• Interface module: X10 One-Way Interface Module, part

number 1134B. You’ll see two common versions of this:

the PL513 and the TW523. They both work essentially the

same way. The TW523 is a two-way module—it can send

and receive X10 signals—while the PL513 can only send.

• Appliance control module: X10 Appliance Module 3-Pin,

part number 2002. These can control anything you can

plug into an AC socket, up to 15 Amps.

• Lamp control module: Powerhouse X10 Lamp Module,

part number 2000. These can control incandescent (not

fluorescent or neon) lamps only.

• Control panel module: X10 Mini Controller, part

number 4030.

What Is X10?

TTL

Serial
Synchronous Serial

(X10)

AC
power lines

X10

over AC

Computer station
power strip

Computer station
power strip

Lamp

X10 Interface
Module

MicrocontrollerRFID
Reader

X10 Appliance
Module

X10 Lamp
Module

X10 Appliance
Module

IDENTIFICATION 323

+5V

PL513
X10 Interface

10KΩ

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

Vdd

LED

FormatGND

TX

RES ID Innovations
ID12 reader

220Ω

+5V

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN
TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

Part
Title

ID12
INNOVATIONS

X10 Interface Module
RJ-11 connector

WARNING: These colors correspond
to the typical RJ-11 phone cable. They
do not indicate power, ground, or data

as usual

Figure 9-11

The circuit for

the RFID-to-X10

project. The

ID Innovations

reader’s reset is

connected to the

microcontroller’s

reset so that they

will always reset

together.

324 MAKING THINGS TALK

The Arduino's hardware serial connection (digital pins

0 and 1, labeled RX and TX) allow it to send and receive

serial data reliably, no matter what your code is doing,

because the processor has a dedicated UART (Universal

Asynchronous Receiver-Transmitter) module that listens

for serial all the time. What do you do when you need

to attach more than one asynchronous serial device to

your Arduino? The Arduino Mega 2560 has four UARTs,

but you may not need all that a Mega has to offer just to

get another serial port. This is where the SoftwareSerial

library comes in handy. SoftwareSerial allows you to use

two digital pins as a "fake" UART. The library can listen

for incoming serial on those pins, and transmit as well.

Because it's not a dedicated hardware UART, Softwa-

reSerial isn't as reliable as hardware serial at very high

or very low speeds, though it does well from 4800bps

through 57.6kbps. It can be very useful when you need

an extra port, or when you want to use the hardware

serial port for diagnostic purposes, as in this project.

More Serial Ports:
Software Serial

X10 device addresses have a two-tier structure. There are
16 house codes—labeled A through P—and within each
house code you can have 16 individual units. These are
assigned unit codes. Each X10 module has two click-wheels
to set the house code and the unit code. For this project,
get at least two appliance or lamp modules. Set the first
module to house code A, unit 1, and the second module to
house code A, unit 2.

Construction
The box for this project is similar to the ones for the Pong
clients in Chapter 5. In fact, it’s made from the same
template, with the side heights and widths changed
slightly. There’s only a single LED hole, and there’s no
hole for the Ethernet jack (since there isn’t one!). Instead,
there’s a hole for the X10 cable to go through. Figure 9-12
shows the finished prototype, and a commercially available
version of an RFID door lock as well.
X

The first thing you
want to do is test

both parts of your circuit. This sketch
just reads from the RFID reader via a
software serial port, and writes what it
got to the hardware serial port. Open
the Serial Monitor and wave a tag or
two in front of the reader. You should
see their tag numbers show up in the
Serial Monitor. Write down your tags’
IDs—you’ll need them later.

/*

 RFID Reader

 Context: Arduino

*/

#include <SoftwareSerial.h>

SoftwareSerial rfid(7,8); // 7 is rx, 8 is tx

void setup() {

 // begin serial:

 Serial.begin(9600);

 rfid.begin(9600);

}

void loop() {

 // read in from the reader and

 // write it out to the serial monitor:

 if (rfid.available()) {

 char thisChar = rfid.read();

 Serial.write(thisChar);

 }

}

 Test the RFID

IDENTIFICATION 325

Once you know
the RFID reader

works, it’s time to test the X10 output.
This sketch turns on Unit 1 in house
A for half a second, then turns it off.
To test it, plug in your X10 interface
module to the wall, and plug in a lamp
module with a lamp connected and
turned on to the same circuit in your
house. When the sketch runs, the lamp
should blink.

/*

 X10 blink

 Context: Arduino

 */

#include <x10.h>

const int rxPin = 3; // data receive pin

const int txPin = 4; // data transmit pin

const int zcPin = 2; // zero crossing pin

void setup() {

 // initialize serial and X10:

 Serial.begin(9600);

 x10.begin(rxPin, txPin, zcPin);

}

void loop() {

 // open transmission to house code A:

 x10.beginTransmission(A);

 Serial.println("Lights on:");

 // send a "lights on" command:

 x10.write(ON);

 delay(500);

 Serial.println("Lights off:");

 // send a "lights off" command:

 x10.write(OFF);

 x10.endTransmission();

 delay(500);

}

 Test the X10

It’s unlikely that this will work the first time.
X10 is notorious for having synchronization
problems while you’re developing the hardware

and firmware. For one thing, it doesn’t work when the
transmitter and receiver are on different circuits, so
you need to know which circuits in your house’s circuit-
breaker panel control which outlets. Some surge pro-
tectors and power strips might filter out X10 as well, so
make sure that the X10 units are plugged into the wall,
not the surge protector. You can plug surge protectors
into X10 appliance modules, but avoid plugging them into
lamp modules unless everything plugged into the surge
protector is an incandescent lamp.

X10 lamp modules allow you to dim incandescent lights,
but they will control only resistive loads—that means no
blow dryers, blenders, or anything with a motor. Compact

fluorescent bulbs are generally not dimmable, and they
are not designed for use on lamp modules either. If
you’re unsure, use an appliance module instead of a lamp
module.

If your lights don’t turn on correctly, first unplug every-
thing, then set the addresses, then plug everything back in,
then reset the Arduino. If that fails, make sure your units
are on the same circuit, and eliminate surge protectors (if
you’re using them.) Try to turn the modules using a control
panel module. Make sure the control panel isn’t sending an
ALL UNITS OFF signal at the same time as your Arduino. If
needed, unplug the control panel once you know the lamp
module is responding. Once you’ve got control over your
modules, you can combine the RFID and X10 programs.
X

326 MAKING THINGS TALK

This sketch reads
incoming tags and

checks them against a list of tags in
memory. When it sees a tag it knows,
it checks the status of an X10 lamp or
appliance module that corresponds to
that tag, and then changes the status.

The global variables are the X10 pin
and SoftwareSerial pin numbers, the
number of tags being used, and a
bunch of arrays for the tag IDs, unit
names, and unit states.

The setup() method initializes serial,
software serial, and X10, then sends an
ALL LIGHTS OFF code to reset all the
remote X10 units.

/*

 RFID Tag checker

 Context: Arduino

*/

// include the X10 and softwareSerial library files:

#include <x10.h>

#include <SoftwareSerial.h>

const int x10ZeroCrossing = 2; // x10 zero crossing pin

const int x10Tx = 3; // x10 transmit pin

const int x10Rx = 4; // x10 receive pin (not used)

const int rfidRx = 7; // rfid receive pin

const int rfidTx = 8; // rfid transmit pin (not used)

int numTags = 2; // how many tags in your list

String currentTag; // String to hold the tag you're reading

// lists of tags, unit names, and unit states:

String tag[] = {

 "10000CDFF7","0F00AD72B5"};

int unit[] = {

 UNIT_1, UNIT_2};

int unitState[] = {

 OFF, OFF};

SoftwareSerial rfid(rfidRx,rfidTx);

void setup() {

 // begin serial:

 Serial.begin(9600);

 rfid.begin(9600);

 // begin x10:

 x10.begin(x10Tx, x10Rx,x10ZeroCrossing);

 // Turn off all lights:

 x10.beginTransmission(A);

 x10.write(ALL_LIGHTS_OFF);

 x10.endTransmission();

}

 Refine It

The loop() method just checks
for new serial bytes from the RFID

reader. The real work is left to a pair of
other methods.

8

void loop() {

 // read in and parse serial data:

 if (rfid.available()) {

 readByte();

 }

}

IDENTIFICATION 327

The readByte() method is called
every time a new byte comes in from
the RFID reader. If the incoming byte is
02, it starts a new current tag string. If
the byte is 03, it checks the current tag
against the list of known tags using a
method called checkTags(). If it’s any
other byte, it checks to see whether the
current tag string is long enough; if not,
it adds the new byte to that string.

The checkTags() method checks
the current tag string against the
known list. When it finds the tag, it
checks the state of the corresponding
X10 unit from a list of unit states. Then
it sends that unit a message to change
its state from ON to OFF, or vice versa.

8

8

void readByte() {

 char thisChar = rfid.read();

 // depending on the byte's value,

 // take different actions:

 switch(thisChar) {

 // if the byte = 02, you're at the beginning

 // of a new tag:

 case 0x02:

 currentTag = "";

 break;

 // if the byte = 03, you're at the end of a tag:

 case 0x03:

 checkTags();

 break;

 // other bytes, if the current tag is less than

 // 10 bytes, you're still reading it:

 default:

 if (currentTag.length() < 10) {

 currentTag += thisChar;

 }

 }

}

void checkTags() {

 // iterate over the list of tags:

 for (int thisTag = 0; thisTag < numTags; thisTag++) {

 // if the current tag matches the tag you're on:

 if (currentTag.equals(tag[thisTag])) {

 // unit number starts at 1, but list position starts at 0:

 Serial.print("unit " + String(thisTag +1));

 // start transmission to unit:

 x10.beginTransmission(A);

 x10.write(unit[thisTag]);

 // change the status of the corresponding unit:

 if (unitState[thisTag] == ON) {

 unitState[thisTag] = OFF;

 Serial.println(" turning OFF");

 }

 else {

 unitState[thisTag] = ON;

 Serial.println(" turning ON");

 }

 // send the new status:

 x10.write(unitState[thisTag]);

 // end transmission to unit:

 x10.endTransmission();

 }

 }

}

328 MAKING THINGS TALK

When you run this code, you’ll see that the
RFID reader only reads when a new tag enters
its field. The ID Innovations readers don’t have

the ability to read multiple tags if more than one tag is in
the field. That’s an important limitation. It means that you
have to design the interaction so that the person using the
system places only one tag at a time, and then removes it
before placing the second one. In effect, it means that two
people can’t place their key tags on the reader at the same
time. Users of the system need to take explicit action to
make something happen. Presence isn’t enough.

The simplest solution is to design the project physically
so that the user has to remove the tag once he passes it
by the reader, as shown in Figure 9-12. This is the most
common commercial solution as well. For example, the
front door of my apartment building uses an RFID lock.

The reader is vertical so I can’t leave my keys on it, and the
inside locks are regular keys, so I have incentive to remove
the keyring once I open the front door if I want to open the
inner door.
X

Figure 9-12

The finished RFID reader box, left, and a com-

mmercially available RFID door lock on the front

of an apartment building, right. Mounted by the

door, it ensures that the user has to remove the

tag. This works around the reader’s limitation

of being able to read only one tag at a time, To

avoid a second wire, the prototype on the left is

battery-powered.

IDENTIFICATION 329

You’ve seen RFID readers in action, but

there are some RFID tags that can be

written to as well. In the first part of this

project, you’ll use the popular Mifare

standard RFID read/write tags and a

SonMicro high-frequency reader to write

Twitter handles to tags. In the second part,

you’ll build a microcontroller-based reader

to read the data from those tags and

display it on a 2x16-character LCD display.

This links the physical identity of an RFID

tag to your network identity on Twitter.

MATERIALS

 » 1 SonMicro SM130 RFID read/write module
 » 3 Mifare RFID read/write tags
 » Arduino Ethernet module
 » 1 RFID shield
 » 13 .56MHz antenna Unless your reader

incorporates an antenna

The parts for building the reader circuit without a shield are listed
below, for those who prefer that option:

 » 2 4 .7-kilohm resistors
 » 1 solderless breadboard

Tweets from RFID

RFID tags are often used for more than just the serial
number stored on them. In some mass-transit systems,
the customer’s available balance is read from, decre-
mented, and written to the card with each transaction.
Some conferences use the RFID tag to store business card
information, so attendees can exchange data digitally by
tapping their cards to a reader. Near field communica-
tions (NFC) enhances this kind of exchange even further.
NFC involves both passive and active exchange, where
two devices communicate with each other over short
distances. NFC accommodates a number of communica-
tions standards, including some of the RFID standards
like ISO14443A and B, which includes Mifare. Because of
this, NFC devices are often compatible with Mifare RFID
readers and tags. It is starting to gain popularity in mobile
phones and other portable devices, so look for many NFC
and RFID applications in the near future. Projects like this
one here may become relatively commonplace.

Project 27

The Circuit
The SonMicro SM130 RFID reader operates on 5 volts, and
it can communicate with a microcontroller using either
asynchronous serial communication or synchronous serial
via I2C. You’ll see both in practice in this project. For the
first part, you’ll communicate with Processing directly
using asynchronous serial. In the second part, you’ll com-
municate with the microcontroller directly using I2C.

There are two Arduino shields available to connect the
SM130 to an Arduino: the TinkerKit RFID shield and the
Spark Fun RFID Evaluation shield 13.56MHz. Both allow
you to connect to either the asynchronous serial or the I2C
connections. The Spark Fun board uses solder jumpers,
which let you choose whether to connect to digital pins 7
and 8 for a software serial connection. The TinkerKit shield
has a switch that turns the serial connection hardware on
or off. The Spark Fun comes with a built-in antenna. The
TinkerKit shield has connections for an external antenna
so you can place it where you wish, relative to the board.

To communicate with Processing, you could use a USB-to-
Serial adapter, like you’ve done with many other projects,
or you could use the Arduino as a USB-to-Serial adapter.
For the Spark Fun board, you would need to include a
sketch to pass the software serial data to the hardware
serial, and vice versa. For the TinkerKit board, you would
need to switch the serial switch to ON and put a blank
sketch on the board. Both sketches are shown below.

330 MAKING THINGS TALK

This sketch passes data from a
SonMicro RFID reader on a Spark Fun
RFID shield to the Arduino’s hardware
serial port, and vice versa. When
your board is programmed this way,
the Arduino acts as a USB-to-Serial
adapter for the SonMicro reader.

This sketch passes data from a
SonMicro RFID reader on a TinkerKit
RFID shield to the Arduino’s USB-
to-Serial adapter, bypassing the
microcontroller. When your board is
programmed this way, the Arduino
acts as a USB-to-Serial adapter for the
SonMicro reader.

/*

 Spark Fun RFID shield serial pass through

 Context: Arduino

*/

#include <SoftwareSerial.h>

// using pins 7 and 8 (7 is the Arduino's RX, 8 is TX)

SoftwareSerial rfid(7,8);

void setup() {

 rfid.begin(19200); // set up software serial port

 Serial.begin(19200); // set up serial port

}

void loop() {

 // pass any hardware serial to the software serial:

 if (Serial.available()) {

 rfid.write(Serial.read());

 }

 // pass any software serial to the hardware serial:

 if (rfid.available()) {

 Serial.write(rfid.read());

 }

}

/*

 TinkerKit RFID shield serial pass through

 Context: Arduino

*/

void setup() {

}

void loop() {

}

 bypass It (Spark Fun)

 bypass It (TinkerKit)

There’s only a difference between these two shields when
you’re communicating with the RFID reader via asynchro-
nous serial, because they use differing pins for that. When
you’re communicating with the reader using I2C, as you
will later in the project, they’re functionally identical.

This project was built using the TinkerKit RFID shield. It’s
been tested on both, however.

If you’re not using a shield, connect the SonMicro reader
to a USB-to-Serial adapter, as shown in Figure 9-13. Then
load the appropriate Arduino sketch below, and you’re
ready to try the Processing sketch on the following pages.
X

IDENTIFICATION 331

Figure 9-13

SonMicro RFID reader attached to a USB-to-Serial

adapter, exploded view. The reader and antenna

normally sit on the breadboard in the same

position as shown in the I2C breadboard view in

Figure 9-14.

Figure 9-14

SonMicro RFID reader attached to an Arduino

via I2C, exploded view, showing the connections

under the module on the breadboard. The circuit

here is basically the same as both the TinkerKit

shield and the Spark Fun shield. The I2C connec-

tions need the two 4.7-kilohm pullup resistors.

You don’t need this circuit if you’re using an RFID

shield.

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

FTDI
USB-to-Serial

Cable

RX
TX

Vcc

Gnd

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

332 MAKING THINGS TALK

Figure 9-15

SonMicro RFID reader attached to an Arduino

via I2C, normal position on the breadboard. The

module sits in the same position on the board for

the USB-to-Serial adapter circuit as well.

 Figure 9-16

SonMicro RFID reader schematic. The I2C con-

nections need pullup resistors. These resistors

are built into the TinkerKit shield and the Spark

Fun shield.

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

GND

VccRF Vcc

I2C SCL

I2C SDA

UART RX

UART TX

RF GND

ANT2

RF GND

ANT1

RF GND

O2

O1

I2

I1

RESET

ERROR

OK

SonMicro
RFID reader

+5V +5V +5V

to A4

to A5

4.7kΩ

Antenna

IDENTIFICATION 333

SonMicro Communications
Protocol

The SonMicro readers use a binary communications
protocol to communicate with other devices. The protocol
is similar whether you’re communicating over asynchro-
nous serial or I2C. The I2C version looks like this:

The serial version just adds two extra header bytes. It
looks like this:

The commands for the reader are single-byte values. The
most common ones are shown below:

The length byte indicates the length of the command,
plus any data that goes with it. So, for example, a reset
command—which has no data to follow the command—
has a length of 1. A read command has one byte of data
indicating the address you want to read from, so the length
is 2.

The checksum is an error-checking value. To calculate the
checksum, add together the command and data bytes;
and if the value is greater than 255, take the lowest byte.
For example, Here’s the reset command’s checksum:

0x01 (length) + 0x80 (command) = 0x81 (checksum)

Length Command Data Checksum

1 byte 1 byte N bytes 1 byte

byte value Command

0x80 Reset

0x81 Get firmware version

0x82 Seek for tag

0x83 Select tag

0x85 Authenticate

0x86 Read memory block

0x89 Write memory block

0x90 Antenna power (turns on or off antenna)

Header Reserved Length Command Data Checksum

1 byte 1 byte 1 byte 1 byte N bytes 1 byte

If you were reading from memory address 04, the
checksum would be as follows (note that these values are
in hexadecimal):

0x02 (length) + 0x86 (command) + 0x04 (address) = 0x8C

(checksum)

For the asynchronous serial protocol, the header byte is
always 0xFF, and the reserved byte is always 0. They’re
not added in the checksum, so you can use the same
commands and calculations as you do for the I2C version,
and just add 0xFF and 0x00 at the beginning. The replies
sent back from the reader follow this same protocol.

There are both Processing and Arduino libraries to handle
this protocol so you don’t have to, but it’s useful to know
the basics. To start out, write a simple Processing sketch
that sends the command to get the firmware version, and
then reads the reply. Readers come with different firmware
versions, and you might need to change the firmware on
yours (see the sidebar on page 336), so you’ll save a lot of
troubleshooting time up front by knowing the firmware
version.

When you run this sketch, you can see the responses in
hexadecimal at the top, and in ASCII at the bottom (see
Figure 9-17). The firmware command is the only one that
returns any ASCII, because this is a binary protocol. The
select tag command returns a binary string similar to the
command protocol. It starts with the header and reserved
byte (0xFF, 0x00), then the data length (0x06 if there’s a
tag, 0x02 if not), the command received (0x83), the tag
type (0x02 means Mifare classic), four bytes representing
the tag number (0x0A, 0xD4, 0xF0, 0x28, in my case), and
the checksum (0x81). The ASCII representation, on the
other hand, looks like garbage.
X

334 MAKING THINGS TALK

This Processing sketch
sends commands

to the SM130 module, and reads the
result. The SM130’s default data rate is
19200bps. Type s to select a tag in the
field, and type any other key to read
the firmware version.

/*

 SonMicro Firmware version reader

 Context: Processing

 */

import processing.serial.*;

Serial myPort; // The serial port

String binaryString = "";

String asciiString = "";

void setup() {

 size(500, 200); // window size

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[2], 19200);

}

void draw() {

 // Dystopian waterscape color scheme,

 // by arem114, http://kuler.adobe.com/

 background(#7B9B9D);

 fill(#59462E);

 // write the response, in hex and ASCII:

 text(binaryString, 10, height/3);

 text(asciiString, 10, 2*height/3);

}

void keyReleased() {

 int command = 0x81; // read firmware command is the default

 int dataLength = 1; // data length for both commands here is 1

 if (key == 's') { // "select tag" command

 command = 0x83;

 }

 // send command:

 myPort.write(0xFF);

 myPort.write(0x00);

 myPort.write(dataLength);

 myPort.write(command);

 myPort.write(command + dataLength);

 // reset the response strings:

 binaryString = "";

 asciiString = "";

}

void serialEvent(Serial myPort) {

 // get the next incoming byte:

 char thisChar = (char)myPort.read();

 // add the byte to the response strings:

 binaryString += hex(thisChar, 2) + " ";

 asciiString += thisChar;

}

 Talk to It

IDENTIFICATION 335

Figure 9-17

Screenshots of the Processing sketch to read

SonMicro firmware, showing the results of the

read firmware command (top) and the select tag

command (bottom).

Writing to Mifare Tags
Now that you know a little about the SonMicro protocol,
it’s time to get on with writing data to the tags. To do this,
you can use the Processing SonMicroReader library, which
you can download from https://github.com/tigoe/SonMi-
croReader-for-Processing. Download the library, unzip it,
copy the resulting folder to the libraries folder of your Pro-
cessing sketch folder, and restart Processing. In the File →
Examples menu, you should see a new entry for SonMicro-
Reader under Contributed Libraries. The example called
SonMicroWriter0002.pde follows.

This sketch has a graphical user interface with buttons for
many of the common commands, and text responses in
plain language as well as hexadecimal representations of
the reader’s responses. When you’re working with a device
that has a lot of functionality like this, sometimes it’s
worthwhile to write a tool to work all of its functions—or at
least the most common ones.

When you run the sketch, you’ll get the interface shown in
Figure 9-18. Click the Firmware Version button to get the
firmware version, just to make sure you’ve got good com-
munication with the reader. Then try reading a few tags

with the Select Tag button. When there’s no tag present,
you get a response from the reader saying that. When you
choose Seek Tag, however, you get an initial response that
the command’s in progress. Then, when you bring a tag in
range, it reads automatically without you having to send
another command.

In addition to their tag IDs, which can’t change, Mifare
tags have a small amount of RAM that you can read from
and write to. Mifare standard tags have 1 kilobyte, Mifare
classic tags have 4 kilobytes, and Mifare Ultralight tags
have 512 bits. The former two use encrypted communica-
tion for reading and writing, and you have to authenticate
a tag before you can read from or write to it. When you
authenticate, you gain access to one 16-byte block of
memory at a time.

The sequence for reading or writing to a block of memory
is always:

• Select Tag
• Authenticate
• Read Block (or write block)

The code for this sketch follows.

336 MAKING THINGS TALK

Changing the Firmware on the SonMicro Readers

SonMicro SM130 readers come with different firmware

versions, depending on which reader you buy. Different

vendors carry different models, so it’s good to check your

firmware right away. All firmware versions can commu-

nicate serially, so the sketch shown above is a good way

to check. Details of the firmware versions are available

on SonMicro’s site, www.sonmicro.com, under Products

→ 13.56 MHz RFID - MIFARE → OEM Modules & Readers. If

your firmware version is UM 1.3 or UM 1.3c, you’ll need to

change the firmware in order to control the module using

I2C. If your firmware version is I2C 2.8 or another I2C

version, you can do both I2C and asynchronous serial and

skip the rest of this sidebar.

If you have to upgrade your firmware, you’ll need a

Windows PC and the Firmware Upgrade tool called SM13X

FU from SonMicro’s site (it’s downloadable from the

13.56 MHz RFID Mifare Support page, on the Software

tab), and the SMRFID Mifare v1.2 diagnostic software.

Download them both, then unzip and install them. You’ll

also need the I2C firmware—to get that, you have to

email SonMicro. They are fast and friendly in response,

though, and there’s a technical inquiries link you can use

to contact them from the Support page.

Connect your reader to your Windows PC using a USB-to-

Serial adapter (the approach used for the Processing sketch

above will work fine). Launch the SM13X FU application, click

the “...” button, and browse to find the firmware file you want

to upload. The file will be called i2c_28_b1.rme or something

similar, depending on the version number. Then click Auto

Upgrade. You should see messages at the bottom of the

window ending with a successful upgrade.

But wait, you’re not done yet. Close the firmware upgrader

and open the SMRFID Mifare v1.2 application. Open the

ComPort and choose Read I2C Address from the Hardware

Commands menu. If the response is NOT 0x42, you should

change it. Choose Set I2C Address and enter 42, then click

OK. The reader’s I2C address will be changed to 0x42, which

is the default, and is what’s used in the Arduino examples

below.

You don’t need to do any more with these applications to

proceed with the project, but you may want to explore the

SMRFID Mifare application. It’s a useful tool for reading tags,

writing to tags, and performing other diagnostic functions

on the SM130 reader modules.

The SM Firmware Uploader (right) and a

closeup of the SMRFID diagnostic application

(below). When you’ve finished, you should see

results in the SMRFID application like those

shown here.

IDENTIFICATION 337

Figure 9-18

Screenshot of the Processing SonMicroWriter

sketch, showing the response to a successful

Read Block request.

This Processing
sketch lets you

read from and write to the memory
on a Mifare tag using the SM130 RFID
reader. It uses the SonMicroReader
library for Processing.

The global variables for this sketch are
mostly properties of the last tag read.
There is an ArrayList to keep track of
the buttons onscreen, as well as a list
of button names.

/*

 SonMicro RFID Writer example

 Context: Processing

 */

// import libraries:

import processing.serial.*;

import sonMicroReader.*;

String tagID = ""; // the string for the tag ID

Serial myPort; // serial port instance

SonMicroReader myReader; // SonMicroReader instance

int lastCommand = 0; // last command sent

int lastTagType = 0; // last tag type received

int lastPacketLength = 0; // last packet length received

String lastTag = null; // last tag ID received

int lastErrorCode = 0; // last error code received

int[] lastResponse = null; // last response from the reader (raw data)

int lastAntennaPower = 0; // last antenna power received

int lastChecksum = 0; // last checksum received

int fontHeight = 14; // font height for the text onscreen

String message = null; // message read from tag

String outputString = "Hello world!"; // string to write to tag

// Color theme: Ghostly Music

// by banshee prime, http://kuler.adobe.com

color currentcolor = #CBD0D4; // current button color

color highlight = #745370;

color buttoncolor = #968195;

color userText = #444929;

color buttonText = #ACB0B9;

 Write to It

»

338 MAKING THINGS TALK

setup() initializes the serial con-
nection and makes an instance of the
SonMicroReader library. Then it makes
fonts for drawing text on the screen,
and calls the makeButtons() function
to make the onscreen buttons. The
button creation and control functions
come later, at the end of the sketch.

draw() draws text and buttons to
the screen.

8

8

void setup() {

 // set window size:

 size(600, 400);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];

 // initialize the serial port. default data rate for

 // the SM130 reader is 19200:

 myPort = new Serial(this, portnum, 19200);

 // initialize the reader instance:

 myReader = new SonMicroReader(this, myPort);

 myReader.start();

 // create a font with the second font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontHeight);

 textFont(myFont);

 // create the command buttons:

 makeButtons();

}

»

Continued from previous page .

ArrayList buttons = new ArrayList(); // list of buttons

// the buttons themselves:

String[] buttonNames = {

 "antenna power", "select tag", "authenticate", "read block", "seek Tag",

 "write block", "firmware version"

};

void draw() {

 background(currentcolor);

 // draw the command buttons:

 drawButtons();

 // draw the output fields:

 textAlign(LEFT);

 text("Command: " + hex(lastCommand, 2), 10, 30);

 text("Packet length: " +lastPacketLength, 10, 50);

 text("Antenna power: " + lastAntennaPower, 10, 70);

 text("Tag type: " + lastTagType, 10, 90);

 text("Tag string: " + lastTag, 10, 110);

 text("Error code: " + hex(lastErrorCode, 2), 10, 130);

 // print the hex values for all the bytes in the response:

IDENTIFICATION 339

 String responseString = "";

 if (lastResponse != null) {

 for (int b = 0; b < lastResponse.length; b++) {

 responseString += hex(lastResponse[b], 2);

 responseString += " ";

 }

 // wrap the full text so it doesn't overflow the buttons

 // and make the screen all messy:

 text("Full response:\n" + responseString, 10, 150, 300, 200);

 }

 // print any error messages from the reader:

 text(myReader.getErrorMessage(), 10, 210);

 // print the last message read from the tag:

 text("last message read from tag:\n" + message, 10, 230);

 // print the output message:

 text("type your message to write to tag:\n", 10, 300);

 fill(userText);

 text(outputString, 10, 320);

 // show the library version:

 fill(0);

 text("SonMicroReader version: " + myReader.version(),

 width - 300, height - 30);

}

Continued from opposite page .

TheSonMicroReader library uses
the Serial library to communicate with
the reader—like the Serial library—it
generates an event when new data
is available. sonMicroEvent() occurs
whenever there’s a response from the
reader. In this sketch, you read all the
parts of the response in the sonMi-
croEvent() method, including the tag
number, tag type, any data returned
from reading a memory block, the
antenna status, and more.

8 /*

 This function is called automatically whenever there's

 a valid packet of data from the reader

 */

void sonMicroEvent(SonMicroReader myReader) {

 // get all the relevant data from the last data packet:

 lastCommand = myReader.getCommand();

 lastTagType = myReader.getTagType();

 lastPacketLength = myReader.getPacketLength();

 lastTag = myReader.getTagString();

 lastErrorCode = myReader.getErrorCode();

 lastAntennaPower = myReader.getAntennaPower();

 lastResponse = myReader.getSonMicroReading();

 lastChecksum = myReader.getCheckSum();

 // if the last command sent was a read block command:

 if (lastCommand == 0x86) {

 int[] inputString = myReader.getPayload();

 message = "";

 for (int c = 0; c < inputString.length; c++) {

 message += char(inputString[c]);

 }

 }

340 MAKING THINGS TALK

}

/*

 If a key is typed, either add it to the output string

 or delete the string if it's a backspace:

 */

void keyTyped() {

 switch (key) {

 case BACKSPACE: // delete

 outputString = "\0";

 break;

 default:

 if (outputString.length() < 16) {

 outputString += key;

 }

 else {

 outputString = "output string can't be more than 16 characters";

 }

 }

When you type something in
the sketch window, it’s added

to a string. It’s then sent to the RFID
tag when you command the SM130
to write to the tag. The keyTyped()
method attaches any keystrokes to the
output string.

The button functionality is handled
by a separate Java class in the sketch
called Button. There are also a few
methods for managing the list of
buttons, including makeButtons(),
which creates them initially, and draw-
Buttons(), which draws and updates
them.

8

8 }

/*

 initialize all the buttons

 */

void makeButtons() {

 // Define and create rectangle button

 for (int b = 0; b < buttonNames.length; b++) {

 // create a new button with the next name in the list:

 Button thisButton = new Button(400, 30 +b*30,

 150, 20,

 buttoncolor, highlight, buttonNames[b]);

 buttons.add(thisButton);

 }

}

/*

 draw all the buttons

 */

void drawButtons() {

 for (int b = 0; b < buttons.size(); b++) {

 // get this button from the Arraylist:

 Button thisButton = (Button)buttons.get(b);

 // update its pressed status:

 thisButton.update();

 // draw the button:

 thisButton.display();

 }

IDENTIFICATION 341

mousePressed() checks to see
whether one of the buttons is

pressed. If so, it calls doButtonAction(),
which sends the appropriate command
for each button to the SM130.

8 }

void mousePressed() {

 // iterate over the buttons, activate the one pressed

 for (int b = 0; b < buttons.size(); b++) {

 Button thisButton = (Button)buttons.get(b);

 if (thisButton.containsMouse()) {

 doButtonAction(thisButton);

 }

 }

}

/*

 if one of the command buttons is pressed, figure out which one

 and take the appropriate action.

 */

void doButtonAction(Button thisButton) {

 // figure out which button this is in the ArrayList:

 int buttonNumber = buttons.indexOf(thisButton);

 // do the right thing:

 switch (buttonNumber) {

 case 0: // set antenna power

 if (myReader.getAntennaPower() < 1) {

 myReader.setAntennaPower(0x01);

 }

 else {

 myReader.setAntennaPower(0x00);

 }

 break;

 case 1: // select tag

 myReader.selectTag();

 break;

 case 2: // authenticate

 myReader.authenticate(0x04, 0xFF);

 break;

 case 3: // read block

 myReader.readBlock(0x04);

 break;

 case 4: // seek tag

 myReader.seekTag();

 break;

 case 5: // write tag - must be 16 bytes or less

 myReader.writeBlock(0x04, outputString);

 outputString = "";

 break;

 case 6: // get reader firmware version

 myReader.getFirmwareVersion();

 break;

 }

342 MAKING THINGS TALK

Finally, the Button class defines
the properties and behaviors of the

buttons themselves.

This sketch doesn’t include all the
functionality of the SM130. For
example, it only writes to block 4 of a
Mifare tag’s memory, and it only uses
the default authentication scheme.
However, it does give you the ability to
read and write from tags, as well as the
structure to understand how to use the
SM130’s functions.

8 }

class Button {

 int x, y, w, h; // positions of the buttons

 color basecolor, highlightcolor; // color and highlight color

 color currentcolor; // current color of the button

 String name;

 // Constructor: sets all the initial values for

 // each instance of the Button class

 Button(int thisX, int thisY, int thisW, int thisH,

 color thisColor, color thisHighlight, String thisName) {

 x = thisX;

 y = thisY;

 h = thisH;

 w = thisW;

 basecolor = thisColor;

 highlightcolor = thisHighlight;

 currentcolor = basecolor;

 name = thisName;

 }

 // if the mouse is over the button, change the button's color:

 void update() {

 if (containsMouse()) {

 currentcolor = highlightcolor;

 }

 else {

 currentcolor = basecolor;

 }

 }

 // draw the button and its text:

 void display() {

 fill(currentcolor);

 rect(x, y, w, h);

 //put the name in the middle of the button:

 fill(0);

 textAlign(CENTER, CENTER);

 text(name, x+w/2, y+h/2);

 }

 // check to see if the mouse position is inside

 // the bounds of the rectangle:

 boolean containsMouse() {

 if (mouseX >= x && mouseX <= x+w &&

 mouseY >= y && mouseY <= y+h) {

 return true;

 }

 else {

 return false;

 }

 }

}

IDENTIFICATION 343

Reading from Mifare Tags
To prepare for the next part of this project, use the
previous Processing sketch to write Twitter handles to a
few tags in this format:

@moleitau

@Kurt_Vonnegut

@pomeranian99

To do so, use the sequence mentioned at the beginning of
this section:

• Put the tag in the reader’s field
• Click Select Tag
• Click Authenticate
• Click Write Block

Then, to verify it:

• Put the tag in the reader’s field
• Click Select Tag
• Click Authenticate
• Click Write Block

When you’re sure you’ve got a couple tags with Twitter
handles on them, you’re ready to build the next part of the
project: an Arduino tweet reader.

Circuit Additions
The circuit is the same as in Figures 9-14 and 9-15, but
with an Ethernet connection and a 2x16 LCD attached. If
you’re already using an Arduino Ethernet, you’re all set.
If not, add an Ethernet shield. Either way, add the LCD as
shown in Figure 9-19. To make sure your LCD works, test
it with any of the LiquidCrystal library examples included
in the Arduino software, just by changing the pin numbers
to match your own. The pin numbers for these examples
were chosen so as not to conflict with the pins that the
Ethernet controller and SD card use.

The potentiometer on Analog input 1 will be used to
control the speed of scrolling on the LCD. Pins A0 and
A2 will be used as digital outputs, to act as voltage and
ground for this pot. Below is a quick example to test the
LCD.

This sketch prints
the number of

seconds since the sketch started on
a 2x16-LCD screen attached to an
Arduino.

/*

 LCD Example

 Context: Arduino

 */

// include the library:

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(9,8, 7, 6,5, 3);

void setup() {

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 // Print a message to the LCD.

 lcd.print("I've been running for:");

}

void loop() {

 // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting begins with 0):

 lcd.setCursor(0, 1);

 // print the number of seconds since reset:

 lcd.print(millis()/1000);

}

 Display It

344 MAKING THINGS TALK

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L G
n

d
Vc

c
Vo R

S
R

/W
E

n

D
4

B
ac

kl
ig

h
t+

B
ac

kl
ig

h
t-

Backlight connections
are optional. Not all
compatible LCDs
have backlight connections

D4-D7 on the LCD refer to the
LCD’s pin numbers, not the Arduino’s

D
5

D
6

D
7

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module LCD

10kΩ

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

VSS

VCC

V0

RS

R/W

E

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

LED+

LED-

+5V

to +5V

10kΩ

Note:
Pin A0 is used as voltage
for the pot on A1.
Pin A2 is ground for the pot.

Figure 9-19

Connecting a 2x16 LCD to an Arduino.

Breadboard view and schematic. The

connection to the Ethernet shield and

SM130 are not shown. Stack them on

your Arduino and they will connect

appropriately, as their pins are not used

in the LCD circuit shown. The second

potentiometer on pin A1 will be used to

control scrolling speed.

If you’re using the Ethernet shield rather than the Ethernet board, you might

need to supply external power for this circuit. Together, the Ethernet shield,

RFID shield, LCD display, and Arduino draw enough current that in the moment the RFID

reader reads a tag, the circuit draws more current than USB can supply, causing the

voltage to drop. In some cases, a 220µF capacitor across power and ground of the RFID

shield will help, but if not, use an external power supply, a Power-over-Ethernet supply, or

an Ethernet board instead of the Ethernet shield/Uno combination.

!

IDENTIFICATION 345

So far, you’ve only used the Arduino board as a serial pass-
through, but for this phase of the project, you’ll control the
RFID reader using the I2C protocol. The Wire library that
comes with Arduino lets you control I2C devices. For the
main sketch, the Wire library commands will be wrapped
inside another library that’s specifically for the RFID
reader. But to make sure things are working, and to see

I2C in action, try the sketch below. It sends a command to
the reader to ask for the firmware revision, and prints the
results to the Serial Monitor. You’ll recognize some of the
SonMicro communications protocol in this sketch.

This sketch reads the firmware of the
SM130 module.

/*

 SM130 Firmware reader

 Context: Arduino

*/

#include <Wire.h>

void setup() {

 // initialize serial and I2C:

 Serial.begin(9600);

 Wire.begin();

 // give the reader time to reset:

 delay(2000);

 Serial.println("asking for firmware");

 // open the I2C connection,

 // the I2C address for the reader is 0x42:

 Wire.beginTransmission(0x42);

 Wire.write(0x01); // length

 Wire.write(0x81); // command

 Wire.write(0x82); // checksum

 Wire.endTransmission();

 // reader needs 50ms in between responses:

 delay(50);

 Serial.print("getting reply: ");

 // wait for 10 bytes back via I2C:

 Wire.requestFrom(0x42,10);

 // don't do anything until new bytes arrive:

 while(!Wire.available()) {

 delay(50);

 }

 // when new bytes arrive on the I2C bus, read them:

 while(Wire.available()) {

 Serial.write(Wire.read());

 }

 // add a newline:

 Serial.println();

}

void loop() {

}

 Read the Firmware

346 MAKING THINGS TALK

When you run the firmware reader sketch, you should get
a response like this in the Serial Monitor:

asking for firmware

getting reply: I2C 2.8ÿ

That last byte is the checksum of the string of bytes that
the reader sent in response. If you get a good response,
you’re ready to move on. If not, revisit the sidebar on page
344.

It would be convenient if, instead of having to remember
the numeric values for each command, you could just call
the commands by name, like you can with the Processing
library above. The Arduino SonMicro library lets you do just
that. In fact, most of its methods share the same names
as the Processing library’s methods. Download the latest
version from https://github.com/tigoe/SonMicroReader-
for-Arduino. Make a new directory called SonMicroReader
in the libraries directory of your Arduino sketch directory,
and copy the contents of the download package to it. Then
restart the Arduino application. The new library should
appear in the Examples submenu of the File menu as
usual. Once that’s done, move on to the sketch below.

This sketch looks for RFID tags and reads block 4 when
it finds a tag. If it finds a Twitter handle there, it makes an
HTTP call to Twitter’s XML API to get the latest tweet from
that Twitter user. Then it displays the result on an LCD
screen.

Saving Program Memory
The sketch for this project is complex, and it takes a large
chunk of the Arduino’s program memory. You’ll notice that
the Serial print statements have a new syntax, like this:

Serial.println(F("Hello"));

The F() notation tells the print and println statements to
store the text that follows in flash memory, not in program
memory. Because the print statements are for debugging
purposes only and are not going to change, this saves
memory for your program.
X

You’ll be
using a lot of libraries in this sketch.
There are a few global variables associ-
ated with each one, starting with the
current tag, the last tag read, and the
address block from which to read on
the tag.

The main loop() is a simple state
machine. It does different things
depending on what state it’s in, so
there’s a variable to keep track of the
state. There are four basic states:

• Looking for a tag
• Reading the tag you just got
• Making an HTTP request
• Waiting for the server’s response

Regardless of what state the sketch is
in, it should also update the LCD every
time through the loop().

There are also the usual IP and
Ethernet configuration variables.

/*

 Twitter RFID Web Client

 Context: Arduino

 */

#include <SPI.h>

#include <Ethernet.h>

#include <TextFinder.h>

#include <Wire.h>

#include <LiquidCrystal.h>

#include <SonMicroReader.h>

SonMicroReader Rfid; // instance of the reader library

unsigned long tag = 0; // address of the current tag

unsigned long lastTag = 0; // address of the previous tag

int addressBlock = 4; // memory block on the tag to read

int state = 0; // the state that the sketch is in

// Enter a MAC address and IP address for your controller below.

// The IP address will be dependent on your local network:

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress ip(192,168,1,20); // will only be used if DHCP fails

IPAddress server(199,59,149,200); // Twitter's API address

Client client; // the client connection

 Get the Tweet

»

 8 Change these to match your own device
and network.

IDENTIFICATION 347

There are also global variables
to keep track of the tweeter,

the tweet, when you last made an
HTTP request, and how long to delay
between requests.

Finally, there are global variables for
the various characteristics of the LCD
display and constants for the scroll-
delay potentiometer.

setup() initializes communications:
serial, Ethernet, communications

to the RFID reader via I2C, and the
LCD. It also sets A0 high as a digital
output, and A2 low, to supply voltage
and ground for the scroll-delay poten-
tiometer.

8

8

String twitterHandle = ""; // the tweeter

String tweet = ""; // the tweet

int tweetBufferLength; // the space to reserve for the tweet

int tweetLength = 0; // the actual length of the tweet

long lastRequestTime = 0; // last time you connected to the server

int requestDelay = 15 * 1000; // time between HTTP requests

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(9,8, 7, 6,5, 3);

const int screenWidth = 16; // width of the LCD in characters

long lastScrollTime = 0; // last time you scrolled the LCD

int scrollDelay = 130; // delay between LCD moves

int cursorPosition = 0; // cursor position on the LCD

const int potVoltage = A0; // voltage for the scroll delay pot

const int potGround = A2; // ground for the scroll delay pot

const int potInput = A1; // scroll delay pot

void setup() {

 // initialize serial communications and the reader:

 Serial.begin(9600);

 // start the Ethernet connection:

 if (Ethernet.begin(mac) == 0) {

 Serial.println(F("Failed to configure Ethernet using DHCP"));

 Ethernet.begin(mac, ip);

 }

 // set pins A0 and A2 to digital out, and use them as

 // power and ground for the scroll speed potentiometer:

 pinMode(potGround, OUTPUT);

 pinMode(potVoltage, OUTPUT);

 digitalWrite(potGround, LOW);

 digitalWrite(potVoltage, HIGH);

 // reserve 140 * 2 screenWidths + 3 bytes extra for tweet:

 tweetBufferLength = 140 + 2*screenWidth + 3;

 tweet.reserve(tweetBufferLength);

 Rfid.begin();

 // set up the LCD's number of columns and rows:

 lcd.begin(screenWidth,2);

 lcd.clear();

 lcd.print(F("Ready"));

}

Continued from opposite page .

348 MAKING THINGS TALK

loop() checks what state it’s in
using a switch statement. When it

has finished what it needs to do in each
state, it increments the state variable
and moves to the next state on the
next time through the loop(). If any
of the later states don’t succeed (for
example, if it can’t authenticate or read
from the last tag it saw), it drops back
to the first state, looking for a tag.

Once it has finished checking the
state, loop() updates the LCD display.
It prints the Twitter handle on the top
line, and it scrolls the latest tweet on
the bottom line, moving forward every
scrollDelay milliseconds.

8 void loop() {

 switch(state) {

 case 0: // get tag

 tag = Rfid.selectTag();

 if (tag != 0) {

 // you have a tag, so print it:

 Serial.println(tag, HEX);

 state++; // go to the next state

 }

 break;

 case 1: // read block

 if (Rfid.authenticate(addressBlock)) {

 Serial.print(F("authenticated "));

 // read the tag for the twitter handle:

 Rfid.readBlock(addressBlock);

 twitterHandle = Rfid.getString();

 // show the handle:

 lcd.clear(); // clear previous stuff

 lcd.setCursor(0,0); // move the cursor to the beginning

 lcd.print(twitterHandle); // tweet handle on the top line

 Serial.println(twitterHandle);

 state++; // go to the next state

 }

 else state = 0; // go back to first state

 break;

 case 2: //connect to server

 // if this is a new tag, or if the request delay

 // has passed since the last time you made an HTTP request:

 if (tag != lastTag ||

 millis() - lastRequestTime > requestDelay) {

 // attempt to connect:

 if (connectToServer()) {

 state++; // go to the next state

 }

 else state = 0; // go back to first state

 }

 else state = 0; // go back to first state

 lastTag = tag;

 break;

 case 3: // read response

 tweetLength = readResponse();

 state = 0; // go back to first state

 break;

 }

 // if you haven't moved the LCD recently:

 if (tweetLength > 0 && millis() - lastScrollTime > scrollDelay) {

 // advance the LCD:

 scrollLongString(cursorPosition);

 // increment the LCD cursor position:

 if (cursorPosition < tweetLength) {

 cursorPosition++; »

IDENTIFICATION 349

Finally, it updates scrollDelay by
mapping the input of the potentiom-
eter on pin A1.

The scrollLongString() method
takes a 16-character substring of

the long tweet and displays it on the
LCD display. It pads the beginning and
end of the tweet with enough charac-
ters so that it scrolls all the way on and
off the screen.

The connectToServer() method is
very similar to the connect method

in the air-quality client in Chapter 4. It
connects to the server and makes an
HTTP GET request. In this case, it’s not
asking for an HTML page, but for an
XML version of the tweet that you can
get from http://api.twitter.com. Twitter,
like many sites, makes it possible to
get both a human-readable form of
their site and a machine-readable one,
delivered in XML.

8

8

8

 }

 else {

 cursorPosition = 0;

 }

 // note the last time you moved the LCD:

 lastScrollTime = millis();

 }

 // update the speed of scrolling from the second potentiometer:

 int sensorReading = analogRead(potInput);

 // map to a scrolling delay of 100 - 300 ms:

 scrollDelay = map(sensorReading, 0, 1023, 100, 300);

}

// this method takes a substring of the long

// tweet string to display on the screen

void scrollLongString(int startPos) {

 String shortString = ""; // the string to display on the screen

 // make sure there's enough of the long string left:

 if (startPos < tweetLength - screenWidth) {

 // take a 16-character substring:

 shortString = tweet.substring(startPos, startPos + screenWidth);

 }

 // refresh the LCD:

 lcd.clear(); // clear previous stuff

 lcd.setCursor(0,0); // move the cursor to beginning of the top line

 lcd.print(twitterHandle); // tweet handle on the top line

 lcd.setCursor(0,1); // move cursor to beginning of the bottom line

 lcd.print(shortString); // tweet, scrolling, on the bottom

}

// this method connects to the server

// and makes an HTTP request:

boolean connectToServer() {

 // note the time of this connect attempt:

 lastRequestTime = millis();

 // attempt to connect:

 Serial.println(F("connecting to server"));

 if (client.connect(server, 80)) {

 Serial.println(F("making HTTP request"));

 // make HTTP GET request:

 client.print(F("GET /1/statuses/user_timeline.xml?screen_name="));

 client.print(twitterHandle);

 client.println(F(" HTTP/1.1"));

 client.println(F("Host:api.twitter.com"));

 client.println();

 return true;

 } »

Continued from opposite page .

350 MAKING THINGS TALK

The readResponse() method reads
incoming bytes from the server

after the HTTP request, and looks
for the beginning and end of a tweet.
The tweet is conveniently sandwiched
between two tags: <tweet> and </
tweet>. So, all you have to do is look for
those and return what’s between them.
You can ignore the rest of the stream.
If you want to see the whole XML feed,
open the URL the sketch is using in a
browser, and give it a Twitter handle at
the end, like this:

http://api.twitter.com/1/statuses/
user_timeline.xml?screen_
name=halfpintingalls

8

Troubleshooting
There are a lot of things that can go wrong in this sketch,
so make sure you’re clear on each of the parts, and have a
plan for troubleshooting. Below are a few things to look for:

Is it reaching each of the four major states? If not,
determine at which one it’s stopping. Have the sketch print
a message when it reaches each new state, as well as the
results of the previous state.

Is it reading a tag? Can it read the tag’s memory
blocks? If not, try one of the example sketches that
comes with the SonMicroReader library. In particular, the
ReadBlock example was written to do a basic read of tags.

Can it reach the server? If not, try the HTTP test client in
Chapter 4 with the URL that this sketch calls.

Can it read the user’s tweets? Are you sure you didn’t
pick a Twitter user who protects her tweets? Or who hasn’t
tweeted yet? Put the URL in a browser and search for the
<tweet> tags yourself. If they’re not there, the sketch can’t
see them.

Is the LCD working? Separate this out using the Serial
Monitor. This sketch contains a number of print state-
ments to let you know what’s happening. Use them when
troubleshooting.

 else {

 Serial.print(F("failed to connect"));

 return false;

 }

}

int readResponse() {

 char tweetBuffer[141]; // 140 chars + 1 extra

 int result = 0;

 // if there are bytes available from the server:

 while (client.connected()) {

 if (client.available()) {

 // make an instance of TextFinder to search the response:

 TextFinder response(client);

 // see if the response from the server contains <text>:

 response.getString("<text>", "</text>", tweetBuffer, 141);

 // print the tweet string:

 Serial.println(tweetBuffer);

 // make a String with padding on both ends:

 tweet = " " + String(tweetBuffer)

 + " ";

 result = tweet.length();

 // you only care about the tweet:

 client.stop();

 }

 }

 return result;

}

Continued from previous page .

IDENTIFICATION 351

Construction
This is a simple mat board box like the ones in Chapter 5,
but the structure is different. The RFID antenna and the
LCD screen are attached to the microcontroller by wires.
You can use ribbon wire, or you can use an old Ethernet
cable with the ends chopped off.

Make sure to test the circuit before you put it in the box!

Mount the LCD and the potentiometer that controls
contrast on a separate perfboard, as shown in Figure 9-19.
You can use a prototyping shield if you want, but it’s not
necessary; you can just attach headers to the wires and
plug them directly into the board. You’ll want to group the
wires to make them easier to plug in, like so:

• Solder the wires for Arduino pins D8 and D9 to two
headers.

• Solder the wires for pins D3 through D7 to a rwo of five
headers, with an extra space for pin D4.

• Solder the wires for +5V and ground to a pair of
headers.

Figure 9-20 shows the wires broken out of an Ethernet
cable and attached to headers using this sequence.

Connect the scroll-speed potentiometer to pins A0
through A2 as shown in Figure 9-18 using any type of wire
you have handy.

RX

RE
SE
T

ICSP

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V G
N
D

G
N
D

01

MADE IN ITALY

ON

RX

WWW.ARDUINO.CC

L - +ETHERNET
SHIELD

LINK

100M

1510152025

B
C

D
E

F
G

H
I

J
K

L
M

N

D
9

D
8

D
7

D
6

D
5

D
3

+
5

V

G
N

D

Figure 9-20

The LCD and potentiometer connections

to a perfboard. The wire colors show

which wires correspond to those in Figure

9-18.

Figure 9-21

The header pin connections for the

cable to the perfboard.

352 MAKING THINGS TALK

Figure 9-23

The final box.

Figure 9-22

The inside of the box with the LCD

perfboard in the foreground.

Attach the RFID antenna to the top of the box with Velcro.
A set of extra long female headers provides enough length
to hold it above the wires of the LCD circuit. You can see
the inside of the box in Figure 9-22.

Mount the potentiometers to the top of the box, held in
place by their mounting nuts. Mount the LCD screen to
the top of the box using Velcro or double-stick tape on the
side of the screen itself. A tab of Velcro on the bottom of
Arduino holds it nicely in place on the bottom of the box
as well.

Once you’re done, you’ve got a handy Twitter reader for
your desk, as shown in Figure 9-23. Write your favorite
Twitter users to a series of tags so you’ve got them handy
to check at a moment’s notice. You’ve made a connec-
tion between tangible identification using the tags, and
network identification using the Twitter feed.
X

IDENTIFICATION 353

Network Identification
So far, you’ve identified network devices computationally by their address. For devices

on the Internet, you’ve seen both IP and MAC addresses. Bluetooth and 802.15.4

devices have standard addresses as well. However, the address of a device doesn’t tell

you anything about what the device is or what it does.

Recall the networked air-quality project in Chapter 4.
The microcontroller made a request via HTTP and the
PHP script sent back a response. Because you already
knew the microcontroller’s capabilities, you could send
a response that was short enough for it to process effi-
ciently, and format it in a way that made it easy to read.
But what if that same PHP script had to respond to HTTP
requests from an Arduino Ethernet, a desktop browser
like Safari or Chrome, and a mobile phone browser? How
would it know how to format the information?

Most Internet communications protocols include a basic
exchange of information—as part of the initial header

messages—about the sender’s and receiver’s identity and
capabilities. You can use these to your advantage when
designing network systems like the ones you’ve seen
here. There’s not space to discuss this concept
comprehensively, but following are two examples that
use HTTP and mail.

HTTP Environment Variables
When a server-side program, such as a PHP script,
receives an HTTP request, it has access to a lot more
information about the server, the client, and more than
you’ve seen thus far.

To see some of it, save the
following PHP script to your web
server, then open it in a browser.
Name it env.php.

8 <?php

/*

 Environment Variable Printer

 Context: PHP

 Prints out the environment variables

*/

 foreach ($_REQUEST as $key => $value)

 {

 echo "$key: $value
\n";

 }

 foreach ($_SERVER as $key => $value)

 {

 echo "$key: $value
\n";

 }

?>

354 MAKING THINGS TALK

You should get something like this in your browser:

#CGI __utmz: 152494652.1295382826.13.2.utmccn=(referral)

|utmcsr=itp.nyu.edu|utmcct=/physcomp/studio/Spring2011/

TomIgoe|utmcmd=referral

__utma: 152494652.402968136.1288069605.1308754712.130876886

1.29

PATH: /usr/local/bin:/usr/bin:/bin

REDIRECT_HANDLER: php-cgi

REDIRECT_STATUS: 200

UNIQUE_ID: Thtgla3sqiUAAFdwW-UAAAAP

SCRIPT_URL: /php/09_env.php

SCRIPT_URI: http://www.example.com/php/09_env.php

HTTP_HOST: www.example.com

HTTP_CONNECTION: keep-alive

HTTP_USER_AGENT: Mozilla/5.0 (Macintosh; Intel Mac

OS X 10_6_8) AppleWebKit/534.30 (KHTML, like Gecko)

Chrome/12.0.742.112 Safari/534.30

HTTP_ACCEPT: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

HTTP_ACCEPT_ENCODING: gzip,deflate,sdch

HTTP_ACCEPT_LANGUAGE: en-US,en;q=0.8

HTTP_ACCEPT_CHARSET: ISO-8859-1,utf-8;q=0.7,*;q=0.3

HTTP_COOKIE: __utmz=152494652.1295382826.13.2.utmccn=(refer

ral)|utmcsr=itp.nyu.edu|utmcct=/physcomp/studio/Spring2011/

TomIgoe|utmcmd=referral; __utma=152494652.402968136.12880696

05.1308754712.1308768861.29

SERVER_SIGNATURE:

SERVER_SOFTWARE: Apache

SERVER_NAME: www.example.com

SERVER_ADDR: 77.248.128.3

SERVER_PORT: 80

REMOTE_ADDR: 66.168.47.40

DOCUMENT_ROOT: /home/username/example.com

SERVER_ADMIN: webmaster@example.com

SCRIPT_FILENAME: /home/username/example.com/php/09_env.php

REMOTE_PORT: 52138

REDIRECT_URL: /php/09_env.php

GATEWAY_INTERFACE: CGI/1.1

SERVER_PROTOCOL: HTTP/1.1

REQUEST_METHOD: GET

QUERY_STRING:

REQUEST_URI: /php/09_env.php

SCRIPT_NAME: /php/09_env.php

ORIG_SCRIPT_FILENAME: /dh/cgi-system/php5.cgi

ORIG_PATH_INFO: /php/09_env.php

ORIG_PATH_TRANSLATED: /home/username/example.com/php/09_env.

php

ORIG_SCRIPT_NAME: /cgi-system/php5.cgi

PHP_SELF: /php/09_env.php

REQUEST_TIME: 1310417045

As you can see, there's a lot of information: the
web server's IP address, the client's IP address, the
browser type, the directory path to the script, and more.
You probably never knew you were giving up so much
information by making a simple HTTP request, and this is
only a small part of it! This is very useful when you want
to write server-side scripts that can respond to different
clients in different ways.

For example, HTTP_USER_AGENT tells you the name of
the software browser with which the client connected.
From that, you can determine whether if it’s a mobile
phone, desktop, or something else, and serve appropriate
content for each. HTTP_ACCEPT_LANGUAGE tells you
the language in which the client would like the response.
When you combine REMOTE_ADDR with the IP geocoding
example to follow, you can even make a reasonable esti-
mation as to where the client is, assuming its request did
not come through a proxy.

IDENTIFICATION 355

The next example uses the client’s IP address to get its latitude and longitude. It gets

this information from www.hostip.info, a community-based IP geocoding project. The

data there is not always the most accurate, but it is free. This script also uses the HTTP

user agent to determine whether the client is a desktop browser or an Ethernet module.

It then formats its response appropriately for each device.

IP Geocoding

Save this to
your server as

ip_geocoder.php.

»

<?php

/* IP geocoder

 Context: PHP

 Uses a client's IP address to get latitude and longitude.

 Uses the client's user agent to format the response.

*/

 // initialize variables:

 $lat = 0;

 $long = 0;

 $country = "unknown";

 // check to see what type of client this is:

 $userAgent = getenv('HTTP_USER_AGENT');

 // get the client's IP address:

 $ipAddress = getenv('REMOTE_ADDR');

 Locate It

The website www.hostip.info will
return the latitude and longitude from
the IP address in a convenient XML
format. The latitude and longitude are
inside a tag called <gml:coordinates>.
That’s what you’re looking for. First,
format the HTTP request string and
make the request. Then wait for the
results in a while loop, and separate the
results into the constituent parts.

8
 // use http://www.hostIP.info to get the latitude and longitude

 // from the IP address. First, format the HTTP request string:

 $IpLocatorUrl = "http://api.hostip.info/?&position=true&ip=";

 // add the IP address:

 $IpLocatorUrl .= $ipAddress;

 // make the HTTP request:

 $filePath = fopen ($IpLocatorUrl, "r");

 // as long as you haven't reached the end of the incoming text:

 while (!feof($filePath)) {

 // read one line at a time

 $line = fgets($filePath, 4096);

 // if the line contains the coordinates, then you want it:

 if (preg_match('/<gml:coordinates>/', $line)) {

 $position = strip_tags($line); // strip the XML tags

 $position = trim($position); // trim the whitespace

 $coordinates = explode(",",$position); // split on the comma

 $lat = $coordinates[0];

 $long = $coordinates[1];

 }

 }

Project 28

356 MAKING THINGS TALK

Continued from previous page .

 // close the connection:

 fclose($filePath);

 // decide on the output based on the client type:

 switch ($userAgent) {

 case "arduino":

 // Arduino wants a nice short answer:

 echo "<$lat,$long,$country>\n";

 break;

 case "processing":

 // Processing does well with lines:

 echo "Latitude:$lat\nLongitude:$long\nCountry:$country\n\n";

 break;

 default:

 // other clients can take a long answer:

 echo <<<END

<html>

<head></head>

<body>

 <h2>Where You Are:</h2>

 Your country: $country

 Your IP: $ipAddress

 Latitude: $lat

 Longitude: $long

</body>

</html>

END;

 }

?>

Now that you’ve got the location,
it’s time to find out who you’re
sending the results to, and format
your response appropriately. The
information you want is in the HTTP
user agent.

8

IDENTIFICATION 357

If you call this script from a browser, you’ll
get the HTML version. If you want to get the
“processing” or “arduino” responses, you’ll

need to send a custom HTTP request. Try calling it from
your terminal program, as follows.

First, connect to the server as you did before:

telnet example.com 80

Then send the following (press Enter one extra time
after you type that last line):

GET /~yourAccount/ip_geocoder.php HTTP/1.1

HOST: example.com

USER-AGENT: arduino

You should get a response like this:

HTTP/1.1 200 OK

Date: Thu, 21 Jun 2007 14:44:11 GMT

Server: Apache/2.0.52 (Red Hat)

Content-Length: 38

Connection: close

Content-Type: text/html; charset=UTF-8

<40.6698,-73.9438,UNITED STATES (US)>

If you change the user agent from arduino to processing,
you’ll get:

HTTP/1.1 200 OK

Date: Thu, 21 Jun 2007 14:44:21 GMT

Server: Apache/2.0.52 (Red Hat)

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

Latitude:40.6698

Longitude:-73.9438

Country:UNITED STATES (US)

As you can see, this is a powerful feature. To use it, all you
need to do is add one line to your HTTP requests from Pro-
cessing or the microcontroller (see Chapter 3). Just add an
extra print statement to send the user agent, and you’re all
set. In Processing or Arduino, the HTTP request would now
look like this:

 // Send the HTTP GET request:

 String requestString = "/~yourAccount/ip_geocoder.php";

 client.write("GET " + requestString + " HTTP/1.0\r\n");

 client.write("HOST: example.com\r\n");

 client.write("USER-AGENT: processing\r\n\r\n");

Using the user agent variable like this can simplify your
development a great deal. This is because it means that
you can easily use a browser or the command line to
debug programs that you’re writing for any type of client.

Mail Environment Variables
Email affords a more flexible relationship between objects
than you get with IP addresses, because it gives you the
ability to structure complex conversations. An object can
communicate not only who it is (the from: address), but to
whom it would like you to reply (using the reply-to: field),
and whom you should include in the conversation (cc: and
bcc: fields). All of that information can be communicated
without even using the subject or body of the message.
PHP gives you simple tools to do the parsing. Because so
many devices communicate via email (mobile phone text
messaging can interface with email as well), it expands the
range of possible devices you can add to a system.

Like HTTP, email protocols have environment variables
that you can take advantage of as well. If you’ve ever
viewed the full headers of an email in your favorite mail
client, you’ve seen some of these. To look at mail in more
depth, you can use PHP’s IMAP mail functions. Internet
Message Access Protocol is a mail protocol that lets you
get mail from a server from multiple clients. The mail
stays on the server until a client tells the server to delete
a particular message. This allows you to use multiple mail
clients for the same account, and keep mail coordinated
across them.

358 MAKING THINGS TALK

Put the following PHP
script on your server.

<?php

/*

 mail reader

 Context: PHP

*/

// keep your personal info in a separate file:

@include_once('pwds.php');

// open a connection to your gmail inbox on port 993

// using SSL, but no certificate to validate the connection:

$mailServer = '{imap.gmail.com:993/imap/ssl/novalidate-cert}INBOX';

$mbox = imap_open($mailServer, $user, $pass);

// get the message headers in the inbox:

$headers = imap_headers($mbox);

// if there are no messages, there is no mail:

if ($headers == false) {

 echo "Failed to get mail
\n";

} else {

 // print the number of messages

 echo "number of messages: ".imap_num_msg($mbox);

 echo "\n\n";

 // print the header of the first message:

echo imap_fetchheader($mbox,1);

}

// close the inbox:

imap_close($mbox);

?>

 Send It

Next, make a separate file called
pwds.php on your server. This file
contains your username and password.
Keep it separate from the main PHP file
so that you can protect it. Format it as
shown at right:

As soon as you’ve saved the pwds.php
file, change its permissions so that only
the owner (you) can read and write
from it. From the command line, type:

chmod go-rwx pwds.php

8 <?php

$user='username'; // your mail login

$pass='password'; // exactly as you normally type it

?>

IDENTIFICATION 359

NOTE: If you’re using a graphic SFTP or FTP client, your

settings for this file will look like Figure 9-24. This protection

will deter anyone who doesn’t have access to your account

from getting your account info. It isn’t an ideal security

solution, but it serves for demonstration purposes and can

be made more secure by changing your password frequently.

Figure 9-24

Permissions for the pwds.php file. Make sure that no one

can read from and write to it—besides you.

You’ll need to make sure you have at least one
unread mail message on your server for that
code to work. When you do, you should get

something like this when you open the script in a browser:

 number of messages: 85

Delivered-To: tom.igoe@gmail.com

Received: by 10.52.188.138 with SMTP id ga10cs129118vdc;

Sat, 28 May 2011

 12:32:30 -0700 (PDT)

Received: by 10.42.176.136 with SMTP id

be8mr4324248icb.15.1306611150331; Sat,

 28 May 2011 12:32:30 -0700 (PDT)

Return-Path: <tigoe@algenib.myhost.com>

Received: from myhost.com (crusty.g.myhost.

com [67.225.8.42]) by mx.google.com with ESMTP id

f8si10612848icy.106.2011.05.28.12.32.29; Sat, 28 May 2011

12:32:29 -0700 (PDT)

Received-SPF: pass (google.com: domain of tigoe@algenib.

myhost.com designates 67.225.8.42 as permitted sender)

client-ip=67.225.8.42;

Authentication-Results: mx.google.com; spf=pass (google.com:

domain of tigoe@algenib.myhost.com designates 67.225.8.42 as

permitted sender) smtp.mail=tigoe@algenib.myhost.com

Received: from algenib.myhost.com (algenib.myhost.com

[173.236.170.37]) by crusty.g.myhost.com (Postfix) with

ESMTP id 6EAC3BE813 for <tom.igoe@gmail.com>; Sat, 28 May

2011 12:31:15 -0700 (PDT)

Received: by algenib.myhost.com (Postfix, from userid

1774740) id 00AD1156BB6; Sat, 28 May 2011 12:32:09 -0700

(PDT)

To: tom.igoe@gmail.com

Subject: Hello world!

From: cat@catmail.com

Message-Id: <20110528193210.00AD1156BB6@algenib.myhost.com>

Date: Sat, 28 May 2011 12:32:10 -0700 (PDT)

There’s a lot of useful information in this header. Though
the mail says it’s from cat@catmail.com, it’s actually
from a server that’s run by myhost.com. It’s common to
put an alias on the from: address, to assign a different
reply-to: address than the from: address, or both. It allows
sending from a script such as the cat script in Chapter 3,
yet the reply goes to a real person who can answer it. It’s
important to keep this in mind if you’re writing scripts that
reply to each other. If you’re using email to communicate
between networked devices, the program for each device
must be able to tell the from: address from the reply-to:
address—otherwise, they might not get each other’s
messages.

This particular message doesn’t have a field called
X-Mailer:, though many do. X-Mailer tells you which
program sent the mail. For example, Apple Mail messages
always show up with an X-mailer of Apple Mail, followed by
a version number such as (2.752.3). Like the HTTP User
Agent, the X-Mailer field can help you decide how to format
mail messages. You could use it in a similar fashion, to tell
something about the device that’s mailing you, so you can
format messages appropriately when mailing back.

360 MAKING THINGS TALK

Conclusion
The boundary between physical identity

and network identity always introduces

the possibility for confusion and miscom-

munication. No system for moving infor-

mation across that boundary is foolproof.

Establishing identity, capability, and

activity are all complex tasks, so the more

human input you can incorporate into the

situation, the better your results will be.

Security is essential when you’re transmitting identify-
ing characteristics because it maintains the trust of the
people using what you make and keeps them safe. Once
you’re connected to the Internet, nothing’s truly private
and nothing’s truly closed, so learning to work with the
openness makes your life easier. In the end, keep in mind
that clear, simple ways of marking identity are the most
effective, whether they’re universal or not. Both beginners
and experienced network professionals often get caught
on this point, because they feel that identity has to be
absolute and clear to the whole world. Don’t get caught up
in how comprehensively you can identify things at first. It
doesn’t matter if you can identify someone or something
to the whole world—it only matters that you can identify
them for your own purposes. Once that’s established,
you’ve got a foundation on which to build.

When you start to develop projects that use location
systems, you usually find that less is more. It’s not unusual
to start a project thinking you need to know position,
distance, and orientation, then pare away systems as you
develop the project. The physical limitations of the things
you build and the spaces you build them in will solve many
problems for you.
X

IDENTIFICATION 361

362 MAKING THINGS TALK

Mobile Phone Networks
and the Physical World
Ethernet and WiFi are handy ways to talk to people and things on the

Internet, but there’s a great big chunk missing: the mobile telephone

network. Nowadays, telephony and the Internet are so intertwined that it

doesn’t make sense to talk about them separately. It’s getting increasingly

easy to connect physical devices other than mobile phones through mobile

phone networks. In this chapter, you’ll learn how to connect these two

networks, and when it’s useful to do so.

10
MAKE: PROJECTS

ohai lion, how r u??? txt me l8r!!!

This lion can send you an SMS. Groundlab, in conjunction with Living with Lions and Lion Guardians, developed

this tracking collar that utilizes a GPS/GSM module to transmit lions’ locations via SMS to researchers and Maasai

herders. This open source system aims to help conservationists protect the last 2,000 lions living in the wild in

Southern Kenya, and safeguard the Maasai herders’ cattle, restoring Maasai land to a working ecosystem. Photo

courtesy of Groundlabs.

364 MAKING THINGS TALK

Supplies for Chapter 10

There’s not a lot that’s brand new in this

chapter. Many of the basic hardware parts

will seem familiar. You will get the chance

to work with 120V or 220V AC, though,

and to work with conductive fabrics and

threads. You’ll also learn about reading

and writing from an SD card.

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww/)
• AF Adafruit (http://adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)

• L Less EMF (www.lessemf.com)
• MS Maker SHED (www.makershed.com)
• RS RS (www.rs-online.com)
• SF Spark Fun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

PROJECT 29: CatCam Redux
 » 1 Arduino Ethernet board A A000050

Alternatively, an Uno-compatible board (see Chapter 2)
with an Ethernet shield will work.
SF DEV-09026, J 2124242 , A 139, AF 201, F 1848680

 » SD card reader that can read MicroSD Ethernet
shields and the Arduino Ethernet have one onboard.

 » MicroSD card Available at most any electronics store.
 » IP-based camera The examples use a D-Link DCS-930L.
 » Temperature sensor AF 165, D TMP36GT9Z-ND,
F 1438760, RS 427-351

Figure 10-1 . New parts for this chapter: 1 . IP-based camera 2 . Hoodie 3 . Conductive ribbon 4 . Conductive thread 5 . LilyPad

Arduino Simple 6 . Lithium Polymer battery charger 7 . Shieldex conductive fabric 8 . Embroidery thread 9 . Lithium Polymer battery

10 . Android device 11 . TMP36 temperature sensors 12 . MicroSD card 13 . MicroSD card reader 14 . Relay board 15 . AC junction box

and socket 16 . AC cord.

1
2

3
4

5

9

10

11
12

13

14

15

16

8

7

6

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 365

 » Relay Control PCb This is used to mount the rest of
the components below. Alternately, you can use the
Power Switch Tail below.
SF COM-09096

 » 1 Relay SF COM-00101, D T9AV1D12-12-ND, F 1629059
 » 2 1-kilohm resistors Any model will do.
D 1.0KQBK-ND, J 29663, F 1735061, RS 707-8669

 » 1 10-kilohm resistor D 10KQBK-ND, J 29911,
F 9337687, RS 707-8906

 » 1 1N4148 diode SF COM-08588, F 1081177,
D 1N4148TACT-ND, RS 544-3480

 » 1 2N3906 PNP-type transistor J 178618,
D 2N3906D26ZCT-ND, SF COM-00522, F 1459017, RS
294-328

 » 1 LED D 160-1144-ND or 160-1665-ND, J 34761 or 94511,
F 1015878, RS 247-1662 or 826-830, SF COM-09592 or
COM-09590

 » 1 2-pin Screw Terminal SF PRT-08432, D 732-2030-
ND, F 1792766, RS 189-5893

 » 1 3-pin Screw Terminal SF PRT-08235, D 732-2031-
ND, F 1792767, RS 710-0166

 » 1 Power Switch Tail This is an alternative device to
the relay board, relay, and support parts above. A 240V
version is available from www.powerswitchtail.com.
SF COM-09842, AF 268, MS MKPS01

 » Cat
 » Air conditioner
 » Country estate (optional)

PROJECT 30: Phoning the Thermostat
 » Completed Project 27
 » Twilio account

PROJECT 31: Personal Mobile Datalogger
 » Android device You’ll need a device running version 2.1

or later. See http://wiki.processing.org/w/Android for
details.

 » LilyPad Arduino SF DEV-09266, A A000011,
 » 1 bluetooth Mate module SF WRL-09358 or WRL-

10393
 » Lithium Polymer Ion battery SF PRT-00341, AF 258,
RS 615-2472, F 1848660

 » 1 270-kilohm resistor J 691446, D P270KBACT-ND,
RS 163-921, F 1565367

 » Conductive ribbon SF DEV-10172
 » Thick conductive thread SF DEV-10120, L A304
 » Shieldit Super Conductive Fabric L A1220-14
 » Velcro
 » Hoodie MS MKSWT
 » Embroidery thread Available at most fabric or yarn

shops.

366 MAKING THINGS TALK

One Big Network
Before the Internet, there was the telephone network. All connections were analog

electrical circuits, and all phone calls were circuit-switched, meaning that there had

to be a dedicated circuit between callers. Then modems came along, which allowed

computers to send bits over those same analog circuits. Gradually, switchboards were

replaced with routers, and now telephone networks are mostly digital as well. Circuits are

virtual, and what takes place behind the scenes of your phone calls is not that different

from what occurs behind the scenes of your email or chat conversation: a session is

established, bits are exchanged, and communication happens. The difference between a

phone call and an email is now a matter of network protocols, not electrical circuits.

There are plenty of IP-based telephony tools that blur the
line between phone call and Internet connection, including
the open source telephony server Asterisk (www.asterisk.
org), as well as telephony services from companies like
Twilio (www.twilio.com), Google Voice (www.voice.google.
com), and Skype (www.skype.com). These voice services
are compatible with those offered by your phone company.
What the phone company is giving you on top of the
software service is a network of wires and routers that
prioritizes voice services, so you are guaranteed a quality
of service that you don’t always get on IP-only telephony
services.

Telephony services and Internet services meet on gateway
servers and routers that run software to translate between
protocols. For example, mobile phone carriers all offer
SMS gateway services that allow you to send an email
that becomes an SMS, or to send an SMS that emails the
person you want to reach. Google Voice and many of the
other online telephony services offer voicemail-to-text,
in which an incoming call is recorded as a digital audio
file, then run through voice-recognition software and
turned into text, and finally emailed to you. The major task
when building projects that use the telephony network is
learning how to convert from one protocol to another.

A Computer in Your Pocket
Mobile phones are far more than just phones now. The
typical smartphone—such as an Android phone, iPhone,
Blackberry, or Windows Phone—is a computer capable of
running a full operating system. The processing power is
well beyond that of older desktop machines, and smart-
phones run operating systems that are slightly stripped

 Figure 10-2

Possible ways of linking microcontrollers and

mobile phones.

down versions of what you find on a laptop, desktop, or
tablet computer. Most smartphones also incorporate
some basic sensors, such as a camera, accelerometer,
light sensor, and sometimes GPS. And, of course, they
are networked all the time. What they lack, however, is
the capability for adding sensors, motors, and other
actuators—t he stuff for which microcontrollers are made.
When you treat the phone as a multimedia computer and
mobile network gateway, you open up a whole host of pos-
sibilities for interesting projects.

Interfacing phones and microcontrollers can be done
in a number of ways, depending on the phone’s capa-
bilities. For the purposes of this chapter, I’ll be talking
about smartphones, so you can assume most or all of
the following capabilities, many of which you’ll use in the
projects to come:

• Programmability
• Touchscreen or keyboard
• Mobile network access
• Bluetooth serial port
• USB connection
• Microphone, speaker
• Onboard accelerometer
• Onboard GPS

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 367

Internet

SMS, email, or
TCP/HTTP

SMS, email, or
TCP/HTTP

Ethernet
or WiFi shield

Bluetooth
Mate

USB Host
Controller

SPI

SPI

Mobile network

GSM shield

Serial

Serial

Possible distance:
global

Possible distance:
local (less than 10m)

Microcontroller

Microcontroller

Microcontroller

PhoneMicrocontroller

WiFi or mobile
network

Phone

Bluetooth
Serial

Serial over Bluetooth

Phone

USB
Phone

368 MAKING THINGS TALK

There are a few possible system arrangements afforded
by these capabilities and the kinds of things you might
want to make. Figure 10-2 shows the four most common
arrangements.

Three of the four options shown use wireless links. Current
mobile phones don’t make it easy to make a wired serial
link to external devices, though that is beginning to
change. So, for most applications, a wireless link is the
better option. It’s not often that you’d prefer your phone
be tethered to your project.

Start with What Happens
By now this should be a common theme to you: start with
what you want people to do with the thing you’re building,
and design whatever makes that easiest to do. Are you
making a system where your users have real-time interac-
tive control over a nearby model helicopter or boat? Are
they controlling a remote device like their home thermo-
stat while on vacation? Consider how tight an interactive
coupling you need. Do you need real-time interaction like
you saw in Chapter 5, or will updates every few seconds or
minutes be enough? And what about the distance between
the devices—do you need to be able to communicate at
long range, or will a local connection like Bluetooth or USB
suffice? If it’s a remote connection, how will your users
know what happened on the other side? Can they see the
result? Do they get an email or SMS message telling them
about it? Evaluate whether you need a wired or wireless
connection, based on how the people need to move and
manipulate the devices involved. Consider what networks
are available where you plan to use your system. Got WiFi?
Got mobile networks? Got Ethernet? Can you create a
local network between the two devices using Bluetooth or
WiFi?

Browser Interfaces
If you want to control an existing networked device from a
mobile phone, the easiest thing to do is to give the device
an Internet connection and control it from your phone’s
browser. You don’t have to learn anything specific to a par-
ticular phone operating system to do this—you just need
to be able to make an HTTP connection between them.
Make the microcontroller a simple server like you saw in
Project 6, Hello Internet!, and you’re done.

Native Application Interfaces
If you don’t want to use the browser, you can build your
own application on the phone to interact with the micro-
controller via Bluetooth, network, SMS, or USB. You’ll see
an example of this using Processing for Android later in the
chapter. The advantage of building a dedicated app is that
you have complete control over what happens. The disad-
vantage is the challenge of learning a new programming
environment, as well as the limitation of not being able to
use your program on a phone with a different operating
system. Because most phone operating systems don’t
allow the browser to access the communications hardware
of the phone directly, you have to build an app if you plan
to use local connections like Bluetooth or USB.

SMS and Email Interfaces
Not every project requires real-time interaction between
your phone and the thing you’re building. If you just want
to get occasional updates from remote sensors, or you
want to start a remote process that can then run by itself—
like turning on a sprinkler or controlling your house lights
via a remote timer—SMS or email might be useful. You
can make a microcontroller application that can receive
SMS messages using a GPRS modem, or you can write a
networked server that checks email and sends messages
to an Internet-connected microcontroller when it gets a
particular email message. The advantage of this method is
that you can control remote things using applications that
are already on your phone, email, and SMS.

Voice Interfaces
Don’t forget the phone’s original purpose: two-way com-
munication of sound over distance. Voice interfaces for
networked devices can be simple and fun. Telephony
gateways like Asterisk and Twilio allow you to use voice
calls to generate networked actions.

Phone As Gateway
Not all applications in this area involve control of a remote
device from the phone. Sometimes you just want to use
the mobile phone as a network connection for sensors
on your body or near you. In these cases, you’ll make a
local connection from the microcontroller to the phone,
most likely over Bluetooth or USB, and then send the data
from those sensors to a remote server. In these cases,
you probably don’t need to build a complex application—
you just need to make the connection between the two
devices, and between the phone and the network.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 369

If the phone has a web browser, you don’t

need to know how to program it to make

a mobile application. In this project, you’ll

make a variation on the cat cam from

Project 5. But this time, you’ll use a micro-

controller that serves files from an SD

card and an IP-based camera that needs

no computer to connect to the Internet.

MATERIALS

 » Arduino Ethernet or Arduino uno and Ethernet
shield

 » SD card reader that can read MicroSD
 » MicroSD card
 » IP-based camera
 » Temperature sensor
 » Relay Control PCb
 » Relay
 » 2 1-kilohm resistors
 » 1 10-kilohm resistor
 » 1 diode
 » 1 transistor
 » 1 LED
 » 1 2-pin Screw Terminal
 » 1 3-pin Screw Terminal
 » Cat
 » Air conditioner
 » Country estate (optional)

My neighbor, let’s call her Luba, has a cat named
Gospodin Fuzzipantsovich. Luba has a country estate
with cherry trees. She likes to summer there, at least
on summer weekends, but she can’t take Fuzzipantso-
vich with her. Because the country estate has huge
expenses (samovars and the like), Luba can’t afford
an air conditioner with a thermostat for her city place.
So, I made her a web-based temperature monitor. It
works as follows.

Luba opens a browser on her phone or laptop and
logs into the thermostat’s web interface. She sees
the current temperature in her city apartment and
the air conditioner’s state, along with a camera view
of Fuzzipantsovich. If it’s too hot, she sets the trigger
temperature lower. If it’s too cool, she sets it higher.
The interface updates the thermostat, and shows her
the new trigger point.

Before you build this project, you should diagram the
devices and protocols involved, and break the action
into steps to understand what needs to happen.
Figure 10-3 shows the system, and Figure 10-4 details
the interaction.

There are several pieces of hardware involved and
protocols to communicate between them. Many of
them are familiar to you by now. The Ethernet control-
ler on the Ethernet shield (or Arduino Ethernet)

CatCam Redux

Project 29

Microcontroller

SPI

Ethernet

DSL or cable

GSM
Network

Ethernet

WiFi Ethernet

Analog 0-5V

Camera

Mobile
Client

Desktop
Client

Ethernet
Shield

Home
Router

SD
Card

Temperature
Sensor

Internet

Digital 0-5V
Relay

 Figure 10-3

The system diagram for the CatCam 2 and air

conditioner controller.

370 MAKING THINGS TALK

communicates with the microcontroller via SPI, as does
the SD card on the shield or board. The temperature
sensor is an analog input, and the 120V relay to control
the air conditioner is a digital output. The IP camera in this
project is a consumer item that has a built-in server, so all
you have to do is configure it to speak to your router. The
clients are just web browsers on your smartphone, tablet,
or personal computer.

Even though it seems simple enough, there are actually 10
steps to the interaction, which are listed below:

1. The client makes an HTTP GET request for the main
interface page (index.htm).

2. The microcontroller server reads the page from the SD
card.

3. The server reads the temperature...

Camera

Mobile
Client

GET
index.htm

200 OK
index.htm

200 OK
result.htm

GET
image.jpgPOST

form

200 OK
image.jpg

Update
thermostat

Get sensor

Get
thermostat

Get
index page

Microcontroller

Ethernet
Shield

SD
Card

Temperature
Sensor

Relay

1

2

3

4

5

6

7

8

9

10

4. ... and the current thermostat trigger point.
5. The server sends the resulting page to the client.
6. Because the cat cam image is embedded in the page,

the client requests it from the IP camera.
7. The IP camera sends the image to the client.
8. The client changes the trigger point via a form on the

page, and submits it using HTTP POST.
9. The server reads the POST request and updates the

thermostat.
10. The server sends back a response page.

Some of this, like getting the camera image and the
resulting page, can be solved using HTML. You won’t need
to do any extra programming, because it will be taken care
of by the browser when it interprets the HTML. The main
programming challenge is to build a basic web server on
the Arduino that serves files from the SD card.

Figure 10-4

The interaction diagram for the CatCam 2

and air conditioner controller.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 371

1 5 10 15 20

1 5 10 15 20

A
B
C
D
E

F
G
H
I
J

C
ntl.

LO
A
D

5V
G
nd

A
R
E
F

G
N
D

R
E
S
E
T

3V
3

P
W
M

P
W
M

P
W
M

L

TX
RX

USB

EXT

P
W
R
S
E
L

PWR

ICSP

P
W
M

P
W
M

P
W
M TX R
X

3
1

2
1

1
1

0
1

9 8
DIGITAL

7 6 5 4 3 2 1 0

1

5V Gnd
POWER

www.arduino.cc

ANALOG IN
Vin 0 1 2 3 4 5

Arduino

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

TMP
36

Figure 10-7

The CatCam 2 and air conditioner circuit.

Figure 10-6

An AC junction box with the relay inside, and

the control lines from the relay connecting to an

Arduino. This is the safer way to build this project.

Figure 10-5

The relay board is connected to an AC cord, which

has been cut on one side to attach it to the relay.

372 MAKING THINGS TALK

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

TMP36
Temperature

sensor

Vin

Out

0.1µF

Gnd

AC power

Relay

To Ethernet shield SD card. SS

To Ethernet shield Eth. SS

To Ethernet shield MISO

To Ethernet shield MOSI

To Ethernet shield Clock

AC cord outlet
for air conditioner

Figure 10-8

The CatCam 2 and air conditioner schematic.

The Circuit
Once you’ve got a grasp on the plan and the system,
you’re ready to build it. The circuit is shown in Figure 10-7.
Because the SD card is on the Ethernet module (Ethernet
shield or Arduino Ethernet), you only need to add the tem-
perature sensor and the relay.

The relay contains a coil wrapped around a thin switch.
When the coil gets voltage, it forms a magnetic field
through induction, pulling the two sides of the switch
together. To use it, take an alternating current circuit
(AC) and break one of the wires, as shown in Figures 10-5
through 10-7.

Working with AC can be dangerous, so make sure every-
thing is connected properly before plugging it in. If you’re
uncomfortable building an AC circuit, the Power Switch
Tail will allow you to control 120V AC. A 240V version was
recently announced at www.powerswitchtail.com. It’s
available from Adafruit, Spark Fun, and the Maker SHED.

Spark Fun’s AC relay board is a safe and less expensive
option if you want to build your own circuit. Solder the
relay to the relay board. Then take an AC cord, cut one of
the two wires, and attach it to the relay board’s LOAD con-
nections. Figure 10-5 shows a close-up of a household AC
cord attached to the relay. The relay’s ground, control, and
5V connections connect to your microcontroller. To build
a more robust version—such as the one shown in Figure
10-6—with a household electrical outlet junction box, see
Nathan Seidle’s excellent tutorial at www.sparkfun.com/
tutorials/119.

To test the circuit safely before you plug it in, set your mul-
timeter to measure continuity, and to measure between
one of the plug’s pins and the corresponding socket hole
on the other end of the cord. One pin/hole pair should
have continuity all the time. The other should not, unless
you power the 5V and ground contacts of the relay and
connect the control line to 5V. Then you’ll get continuity.
When you connect the control line to ground, you won’t
get continuity. When you’re sure the circuit’s working, test
it by attaching the control line to a pin of your microcon-
troller and use the Blink sketch to turn the relay on and off.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 373

Make sure to install your circuit in an insulated box and
add plenty of strain relief to the AC lines. If they acci-
dentally disconnect, they can cause a short circuit—and
AC shorts are not pleasant. An electronic project case is
safest. You can add strain relief to the wires by using hot
glue or rubber caulking, though some cases come with
wire strain relief glands to hold the wire in place. Once
you’ve done that, give the wires a tug to make sure they
won’t move. Take your time and get this part very secure
before you proceed.

The Code
Since the sketch is complex, it’s built up piece-by-piece
below, as follows:

1. Read the temperature sensor (for more on this sensor,
see Adafruit’s tutorial at www.ladyada.net/learn/
sensors/tmp36.html).

2. Control the relay.
3. Read from the SD card.
4. Write a web server. This one will be more full-featured

than the one you wrote in Chapter 4.

Reading the temperature
sensor is pretty simple.

It outputs an analog voltage that’s
proportional to the temperature. The
formula is:

Temp(°C) = (Vout (in mV) - 500) / 10

Since you’ll need to do other things in
the main loop, read the temperature
and convert it to Celsius in a separate
function. Return the result as a float.

Your reading will look like this:

Temperature: 26.17

The reading is in Celsius, but if you
want to convert it to Fahrenheit, the
formula is:

F = 9/5*C + 32

When you run the sketch at this point,
you’ll get a continual printout of the
temperature in the Serial Monitor.

Next, it’s time to add the relay control.

/*

 TMP36 Temperature reader and relay control

 Context: Arduino

 Reads a TMP36 temperature sensor

 */

void setup() {

 // initialize serial communication:

 Serial.begin(9600);

}

void loop() {

 Serial.print("Temperature: ");

 Serial.println(readSensor());

}

// read the temperature sensor:

float readSensor() {

 // read the value from the sensor:

 int sensorValue = analogRead(A0);

 // convert the reading to volts:

 float voltage = (sensorValue * 5.0) / 1024.0;

 // convert the voltage to temperature in Celsius

 // (100mv per degree - 500mV offset):

 float temperature = (voltage - 0.5) * 100;

 // return the temperature:

 return temperature;

}

Try It

374 MAKING THINGS TALK

The relay should
be switched only

every few seconds at most, so when
you add code to control it, wrap the
check in an if statement that checks
to see whether an appropriate delay
has passed. There are some global
variables and constants to add, as well
as changes to setup() and loop(). New
lines are shown in blue.

It would be useful to be able to store
the thermostat value, even when the
Arduino is not powered. Adding the
EEPROM library will allow that. At the
top of the sketch, you’ll read from
EEPROM to get the thermostat value.
Later on, you’ll store new values back
to EEPROM.

Add a new method, checkThermo-
stat(), at the end of your sketch. It
checks the temperature and compares
it to a set thermostat point. If the tem-
perature is greater, it turns the relay
on. If the temperature is less, the relay
is turned off.

When you run the sketch at this point,
you’ll see the relay turn on or off
depending on the thermostat value.
The value read from the EEPROM will
probably be 255, so the relay won’t
turn on. Try changing the thermostat
value to something less than the
temperature sensor’s reading and
uploading your code again to see what
happens.

Control It #include <EEPROM.h>

const int relayPin = 2; // pin that the relay is attached to

const long tempCheckInterval = 10000; // time between checks (in ms)

const int thermostatAddress = 10; // EEPROM address for thermostat

long now; // last temperature check time

// trigger point for the thermostat:

int thermostat = EEPROM.read(thermostatAddress);

void setup() {

 // initialize serial communication:

 Serial.begin(9600);

 // initialize the relay output:

 pinMode(relayPin, OUTPUT);

}

void loop() {

 // periodically check the temperature to see if you should

 // turn on the thermostat:

 if (millis() - now > tempCheckInterval) {

 Serial.print("Temperature: ");

 Serial.println(readSensor());

 if (checkThermostat()) {

 Serial.println("Thermostat is on");

 }

 else {

 Serial.println("Thermostat is off");

 }

 now = millis();

 }

}

// NOTE: the readSensor() method shown earlier goes here.

// Check the temperature and control the relay accordingly:

boolean checkThermostat() {

 // assume the relay should be off:

 boolean relayState = LOW;

 // if the temperature's greater than the thermostat point,

 // the relay should be on:

 if(readSensor() > thermostat) {

 relayState = HIGH;

 }

 // set the relay on or off:

 digitalWrite(relayPin, relayState);

 return relayState;

}

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 375

Next, it’s time to read
from the SD card. To do

this, you’ll need to add the SD library.
On the Arduino shields that have an SD
card, the SD Chip Select pin is pin 4. It
varies for other manufacturers’ shields,
though, so make sure to check if you’re
using a different company’s SD shield.

First, check whether the card is present
using SD.begin(). If it’s not, there’s not
much point in continuing. If it is, you
can read from it. Add a new method,
sendFile(), which will take an array of
characters as a filename. New lines are
shown in blue.

This new code won’t work until you
have a properly formatted MicroSD
card inserted in the shield with a file on
it called index.htm. Put the bare bones
of an HTML document in the file, like
so:

<html>

 <head>

 <title>Hello!</title>

 </head>

 <body>

 Hello!

 </body>

</html>

When you run the sketch at this point,
it will print out the index.htm file in the
Serial Monitor at the beginning, then go
into the temperature reading and relay
control behavior from the previous
page.

Read It #include <EEPROM.h>

#include <SD.h>

const int sdChipSelect = 4; // SD card chipSelect

// NOTE: the constants and global variables shown earlier must go here

void setup() {

 // initialize serial communication:

 Serial.begin(9600);

 // initialize the relay output:

 pinMode(relayPin, OUTPUT);

 if (!SD.begin(sdChipSelect)) {

 // if you can't read the SD card, don't go on:

 Serial.println(F("initialization failed!"));

 }

 else {

 Serial.println(F("initialization done."));

 sendFile("index.htm");

 }

}

// NOTE: the loop(), readSensor(), and checkThermostat() methods shown

// earlier go here.

// send the file that was requested:

void sendFile(char thisFile[]) {

 String outputString = ""; // a String to get each line of the file

 // open the file for reading:

 File myFile = SD.open(thisFile);

 if (myFile) {

 // read from the file until there's nothing else in it:

 while (myFile.available()) {

 // add the current char to the output string:

 char thisChar = myFile.read();

 outputString += thisChar;

 // when you get a newline, send out and clear outputString:

 if (thisChar == '\n') {

 Serial.print(outputString);

 outputString = "";

 }

 }

 // close the file:

 myFile.close();

 }

 else {

 // if the file didn't open:

 Serial.print("I couldn't open the file.");

 }

}

376 MAKING THINGS TALK

Writing to an SD Card
Arduino's SD library makes it easy to write to an SD card,
and there are several SD card-mount options available. All
of them use the SPI synchronous serial protocol that the
Arduino Ethernet shield and Ethernet board use to com-
municate with the Ethernet chip. As you saw in Chapter
4, this protocol can be used with a number of different
devices, all attached to the same serial clock and data
pins, but each device will need its own Chip Select pin. The
Arduino communicates with all SPI devices through pin 11
for MOSI (Master Out, Slave In), Pin 12 for MISO (Master
In, Slave Out), and pin 13 for Clock. The Arduino Ethernet
shield and board use pin 10 for the Ethernet module's Chip
Select, and pin 4 for the SD card's Chip Select. SD boards
from other companies use other pins for chip select.
Spark Fun's SD card shield uses pin 8, and Adafruit's SD
card breakout board (shown in Figure 10-9) uses pin 10.
Whenever you're using multiple SPI devices in a project,
like the Ethernet and the SD card together, you need to
check to see that they all have individual Chip Select pins.

SD cards operate on 3.3V only! So if you're using a socket
that attaches your SD card directly to the pins of any
microcontroller operating 5 volts, you need to make sure
the input pins receive only 3.3V.

Good SD Card Practice
To get the most reliable results out of an SD card shield
or an adapter with an Arduino, there are some habits you
should develop.

Never insert or eject the card while the sketch is
running . You’d never pull a card out of your computer
while it’s in use, and the same goes for the Arduino. Make
sure the microcontroller’s not using the card when you
insert or remove it. The simplest way to do this is to hold
the reset button of the Arduino whenever you’re inserting
or removing the card.

Format cards as FAT16 or FAT32 . The SD card library
works only with these two file formats. Fortunately, every
operating system can format disks this way. Check your
operating system’s disk-utility application for how to
format your card as FAT16 or FAT32.

Filenames have to be in 8 .3 format . The SD library uses
the old DOS file-naming convention that all filenames are a
maximum of eight-characters long with a three-character
exension. All file names are case-insensitive and spaces

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

5V 3V G
N
D

CL
K

D
O

D
I

CS CD

Figure 10-9

The Adafruit SD card shield connected to the

Arduino using the SPI pins 11 (MOSI), 12 (MISO), and

13 (Clock). Different SPI card boards use different

pins for the Chip Select pin, however. This one uses

pin 10.

are not allowed. So, datalog1.txt and mypage.htm are OK, but
really long file name or someArbitraryWebPage.html are not.

Writing to the card takes time . Normally, the file write(),
print(), and println() operations saves data in a volatile
buffer on the card, which is lost when the card is removed.
Only the flush() or close() operations save to the card per-
manently, but they take time. To keep up with user inter-
action, use flush() and close() the way you would to save
a file on a regular computer: do it frequently, but not too
frequently, and preferably when the user or other devices
aren’t doing anything else.

Practice safe file management . The SD library gives
you some helpful tools for managing your files. filename.
exists() lets you check whether a file already exists.
if (filename) lets you check whether the file can be
accessed. filename.remove() lets you remove a file. size(),
position(), seek(), and peek() let you see how big a file
is, where you’re at in the file, and to move around in the
file. mkdir() and rmdir() let you make and remove whole
directories. Use these methods, especially those that let

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 377

you look without changing, like exists(), size(), and peek(),
which keep track of what you’re doing when you write
more complex file-handling sketches.

Indicate when you’re accessing the card, and when
you can’t . Using LEDs to indicate when the Arduino is
accessing the card and when there’s an error is a handy
way to know what’s going on when you can’t see the
output on a screen.

For this project, you’ll only read from the card from
the microcontroller. To write to the card, you’ll need an
SD card reader/writer that can handle MicroSD cards.
Readers are cheap, and they are becoming more and
more ubiqitous. If your computer is a recent model, it may

even have one built in. Most microSD cards come with an
adapter to allow you to fit them into a regular SD card slot.
Some cards even come with their own readers.

Once you’ve formatted your card, make a text file called
index.htm and save it to the card. Then insert it into your
shield. When the sketch runs, it should print the file out
once at the end of setup(), then proceed to read the
temperature sensor and control the relay as it did before.
When that’s working, you’re ready to write the server. This
code can be added to the sketch you’ve already got in
progress.

At the beginning of
the sketch, add the Ethernet library
and the necessary constants and
global variables to use it and to set up
a server. New lines, as usual, shown in
blue.

Serve It /*

 GET/POST Web server with SD card read

 Context: Arduino

*/

#include <EEPROM.h>

#include <SD.h>

#include <SPI.h>

#include <Ethernet.h>

#include <TextFinder.h>

// configuration for the Ethernet connection:

byte mac[] = {

 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };

IPAddress gateway(192,168,1,1);

IPAddress subnet(255,255,255,0);

IPAddress ip(192,168,1,20);

// Initialize the Ethernet server library:

Server server(80);

const int inputLength = 16; // length of the file requested

const int typeLength = 6; // length of GET or POST

const int sdChipSelect = 4; // SD card chipSelect

const long tempCheckInterval = 10000; // time between checks (in ms)

const int thermostatAddress = 10; // EEPROM address for thermostat

char inputString[inputLength]; // for input from the browser

char requestTypeString[typeLength]; // what type of request: GET or POST

int nextChar = 0; // index counter for requestTypeString

const int fileStringLength = 16; // length of the file requested

char fileString[fileStringLength]; // for input from the browser

long now; // last temperature check time

 8 Change these to
match your own device
and router.

 8 These will be used
to manage the incoming
HTTP requests.

378 MAKING THINGS TALK

 void setup() {

 // initialize serial communication:

 Serial.begin(9600);

 // initialize the relay output:

 pinMode(relayPin, OUTPUT);

 //see if the SD card is there:

 Serial.print(F("Initializing SD card..."));

 if (!SD.begin(sdChipSelect)) {

 // if you can't read the SD card, print the error and go on:

 Serial.println(F("initialization failed!"));

 }

 else {

 Serial.println(F("initialization done."));

 }

 // give the Ethernet controller time to start:

 delay(1000);

 Serial.println(F("attempting to get address"));

 // Attempt to start via DHCP. If not, do it manually:

 if (!Ethernet.begin(mac)) {

 Ethernet.begin(mac, ip, gateway, subnet);

 }

 // print IP address and start the server:

 Serial.println(Ethernet.localIP());

 server.begin();

}

void loop() {

 String fileName = ""; // filename the client requests

 char inChar = 0; // incoming character from client

 int requestType = 0; // what type of request (GET or POST);

 int requestedFileLength = 0; // length of the filename they asked for

 // listen for incoming clients:

 Client client = server.available();

 if (client) {

 // make an instance of TextFinder to look for stuff from the client:

 TextFinder finder(client);

In setup(), replace the call to
sendFile() with this code to get an

IP address and start the server. New
lines are shown in blue.

The loop() will change quite a bit.
Starting at the beginning, add the

following local variables. The final one
listens for new clients to connect. If you
get a client, make an instance of the
TextFinder library to look for text in the
incoming stream from the client.

8

8

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 379

 while (client.connected()) {

 if (client.available()) {

 // look for whatever comes before the /. It should be GET or POST:

 if(finder.getString("","/", requestTypeString,typeLength)){

 // Do something different for GET or POST:

 if(String(requestTypeString) == "GET ") {

 requestType = 1;

 }

 else if(String(requestTypeString) == "POST ") {

 requestType = 2;

 }

 // gather what comes after the / into an array,

 // it's the filename the client wants:

 requestedFileLength = finder.getString("", " ",

 fileString, fileStringLength);

 // now you're done with the GET/POST line, process what you got:

 switch (requestType) {

 case 1: // GET

 // do nothing with GET except send the file, below

 break;

 case 2: //POST

 // skip the rest of the header,

 // which ends with newline and carriage return:

 finder.find("\n\r");

 // if the client sends a value for thermostat, take it:

 if (finder.find("thermostat")) {

 int newThermostat = finder.getValue('=');

 // if it's changed, save it:

 if (thermostat != newThermostat) {

 thermostat = newThermostat;

 // constrain it to a range from 20 to 40 degrees:

 thermostat = constrain(thermostat, 20, 40);

 // save it to EEPROM:

 EEPROM.write(thermostatAddress, thermostat);

 }

 }

 break;

 }

 // whether it's GET or POST, give them the string they asked for.

 // if there's nothing after the /,

 // then the client wants the index:

 if (requestedFileLength < 2) {

 sendFile(client, "index.htm");

 }

 // otherwise send whatever file they asked for:

 else {

 sendFile(client, fileString);

 }

 }

Remember what a client GET or
POST request looks like. Here’s the

GET request:

GET /index.htm HTTP/1.0

And here’s a POST request that
provides a variable:

POST /response.htm HTTP/1.0

thermostat=23

Put this while() block inside the if
statement that checks to see whether
the client exists. It checks to see
whether the client is connected, and
whether it has sent any bytes. If so, it
looks for the GET or POST requests,
and gets the file requested as well. If it
gets a POST, it extracts the thermostat
variable. Then it calls sendFile() to send
the file to the client.

8

 8 Wait, this sendFile()
call looks different from
the one on page page 375!
The change is coming up.

»

380 MAKING THINGS TALK

Continued from previous page .

 // give the client time to receive the data:

 delay(1);

 // close the connection:

 Serial.println(F("Closing the connection"));

 client.stop();

 } // close of the if (client.available() block

 } // close of the while (client.connected() block

 } // close of the if (client) block

 // NOTE: the thermostat check (the body of the loop() method on

 // page 374) goes here,

}

// send the file that was requested:

void sendFile(Client thisClient, char thisFile[]) {

 String outputString = ""; // a String to get each line of the file

 // open the file for reading:

 File myFile = SD.open(thisFile);

 if (myFile) {

 // send an OK header:

 sendHttpHeader(thisClient, 200);

 // read from the file until there's nothing else in it:

 while (myFile.available()) {

 // add the current char to the output string:

 char thisChar = myFile.read();

 outputString += thisChar;

 // when you get a newline, send out and clear outputString:

 if (thisChar == '\n') {

 thisClient.print(outputString);

 outputString = "";

 }

 }

 // if the file does not end with a newline, send the last line:

 if (outputString != "") {

 thisClient.print(outputString);

 }

 // close the file:

 myFile.close();

 }

 else {

 // if the file didn't open:

 sendHttpHeader(thisClient, 404);

 }

}

The sendFile() method needs to
change so you can send to the client
instead of printing it out. It also needs
to send the HTTP headers that come
before the file. If the file isn’t available,
you should tell the client that, too. And
you might as well use the standard
HTTP error codes to do it. So now
sendFile() sends an HTTP 200 OK
header if it can read the file, and an
HTTP 404 File Not Found header if it
can’t. Changes are shown in blue.

After the while() block, the ther-
mostat check block from the

original sketch closes out the loop()
method.

8

8

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 381

// send an HTTP header to the client:

void sendHttpHeader(Client thisClient, int errorCode) {

 thisClient.print(F("HTTP/1.1 "));

 switch(errorCode) {

 case 200: // OK

 thisClient.println(F("200 OK"));

 thisClient.println(F("Content-Type: text/html"));

 break;

 case 404: // file not found

 thisClient.println(F("404 Not Found"));

 break;

 }

 // response header ends with an extra linefeed:

 thisClient.println();

}

The sendHttpHeader() method
looks like this.

8

If you run the code you’ve got so far, you should
have a working web server. Whatever text files
you put on the SD card should be accessible via

the browser. You’re not set up to serve anything other than
HTML text documents (note that the sendHttpHeader()
method only returns Content-Type: text/html), but you can
do a lot with that. Try making a few pages that link to each
other and put them on the SD card, then navigate through
them with a browser. Try it on a mobile phone browser, too,
since that’s your original goal here. Resist the temptation
to send the URL to all your friends just yet—there is more
work to do.

Next, it’s time to write the actual HTML interface pages.
You need a page that can show the temperature and
provide a form to enter a new thermostat setting. When
the user submits the form, she should get feedback that
her new setting has been received and stored, and the
interface should reset itself. You also need a camera to get
a picture of the room. Finally, it should look good on the
small screen of a tablet or smartphone. All of this can be
done in HTML.

The main interface
page will be called

index.htm. You’re using the three-letter
extension rather than .html because
the SD library only takes eight-letter,
three-letter extension names.

The head of the document needs a
little meta info. There’s a link to a .css
stylesheet—so you can set fonts and
colors and such—and two meta tags
allowing mobile browsers to format the
page to suit their screens.

Finally, there’s JavaScript that allows
the image to refresh without changing
the rest of the page.

Mark It up <html>

 <head>

 <link rel="stylesheet" type="text/css" href="mystyle.css" />

 <meta name="HandheldFriendly" content="true" />

 <meta name="viewport"

 content="width=device-width, height=device-height" />

 <script type="text/javascript">

 function refresh() {

 var today=new Date();

 document.images["pic"].src=

 "http://visitor:password!@yourname.dyndns.com/image/jpeg.cgi"+"?"+today;

 if(document.images) window.onload=refresh;

 t=setTimeout('refresh()',500);

 }

 </script>

 </head> »

382 MAKING THINGS TALK

Continued from previous page .The body of the document has an
image tag that links to an image on
another server; more details on that
below.

The form in the body is for setting the
thermostat level. It calls a separate
document, response.htm, using a POST
request, to which the server has to
respond. You already wrote the initial
response in your sketch above, when
the server looks for the “thermo-
stat” value at the end of the POST
request. Check out case 2 in the switch
statement in the sketch above. You
can see that the temperature is con-
strained to a range from 20 degrees
to 40 degrees, which is reasonable in
Celsius.

Save this as index.htm, and then start a
new document called response.htm.

8

 <body onload="refresh()">

 <div class="header"><h1>Thermostat Control</h1></div>

 <div class="main">

 <img src="http://visitor:password!@yourname.dyndns.com/image/jpeg.

cgi" width="300" id="pic">

 <form name="tempSetting" action="response.htm" method="POST">

 <p>Current temperature:

 $temperature

 </p>

 Thermostat setting (°C):

 <input name="thermostat" type="number"

 min="20"

 max="40"

 step="1"

 value=$thermostat>

 <input type="submit" value="submit">

 </form>

 Air conditioner is $status

 </div>

 </body>

</html>

The response
page,

response.htm, is a lot simpler than the
index page. All it does is report the
temperature, the thermostat setting,
and the status of the air conditioner
attached to the relay. It uses the same
CSS, and the same mobile phone meta
tags, as well as a meta http-equiv tag
that sends the browser back to the
index after three seconds. You may
recognize this technique from the cat
cam page in Chapter 3.

Did you notice the variables in the
HTTP documents that look like PHP
variables, starting with dollar signs?
These need to be replaced with data
from the server before the page is
served. You don’t have PHP on the
Arduino, but you can write code into
your sketch to look for these strings
and replace them.

Before that, though, you need to finish
by writing a CSS document for the site.

Give a Response <html>

 <head>

 <meta http-equiv="refresh" content="3; URL=index.htm" />

 <link rel="stylesheet" type="text/css" href="mystyle.css" />

 <meta name="HandheldFriendly" content="true" />

 <meta name="viewport" content="width=device-width, height=device-

height" />

 </head>

 <body>

 <div class="header"><h1>Thermostat Control</h1></div>

 <div class="main">

 <p>Current temperature:

 $temperature

 °C

 </p>

 <p>

 Thermostat setting changed to $thermostat°C

 </p>

 <p>Air conditioner is $status

 </p>

 Return to controls

 </div>

 </body>

</html>

 8 The server will need
to replace these variables
before serving the file.
You’ll see how to do this
later in this chapter.

 8 The server will need
to replace these variables
before serving the file.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 383

The final document is the
stylesheet. Save this as

mystyle.css, then copy this and the two
preceding files to the SD card. Don’t
put them in a folder, but in the main
directory (the root) of the SD card.

Feel free to change the colors and
fonts for this document—they’re
purely cosmetic.

Once you have these files on the SD
card, reinsert it into the Ethernet
module, and then try to view them in
a browser. You should get something
like Figure 10-10. Your current version
won’t have values for the temperature,
thermostat setting, and status, but
read on.

Style It .main {

 background-color: #fefefe;

 color: #0a1840;

 font-family: "Lucida Grande", Verdana, Arial, sans-serif;

}

.header {

 background-color: #0a173E;

 color: #f1fffe;

 font-family: sans-serif, "Lucida Grande", Verdana, Arial;

}

Making Your Server Public
Since your Ethernet module is running as a server, you
need it to be publicly visible on the Internet if you plan
to access it from outside your own network. If you can
assign the module to a fixed address on your network, that
helps, but if you’re setting it up at home, that address is
not likely to be visible outside your home network. You’ll
need to set up port forwarding on your router, as explained
in the sidebar, “Making a Private IP Device Visible to the
Internet,” in Chapter 4. Using port forwarding, you can
give devices that are attached to your home router a face
on the public Internet. They will only appear as numeric
addresses, because they don’t have names assigned to
them. However, that may be enough.

There are two solutions to giving your devices names you
can remember through port forwarding. The simplest
way is to embed the address of the module in a page on
your public web page—you’ll never need to remember
the numeric address. For example, if your router’s public
address is 63.118.45.189, set up port forwarding so that
port 80 of the router points to port 80 of the Ethernet
module. Then restart your router. When you have a
connection again, open a browser and go to http://
63.118.45.189, and you should have access to the module.
Put this link in a web page on a hosted web server with a
real hostname, and you’re all set.

The second solution is Dynamic DNS.

Dynamic DNS
If you definitely need a named URL for your module, you
can use a Dynamic DNS (DDNS) host, such as www.
dyndns.com. A DDNS host is simply a DNS host that
continually updates the DNS record of your domain. Your
router or device becomes a client, and when it connects
to the DDNS host, it requests that the domain name you
choose, such as yourserver.com, should point to the
number from which the client is connecting. For example,
your Ethernet module (local IP address 192.168.1.20)
makes a DDNS request to dyndns.com. Because it goes
through your router, which has IP address 63.118.45.189,
dyndns.com links yourserver.com to 63.118.45.189.
The numeric address is referred to as the CNAME, or
Canonical Name record, of the name address. So when
someone browses to yourserver.com, he’s pointed to
63.118.45.189. And if you set up your router to have
port forwarding turned on, pointing its public port 80 at
192.168.1.20 port 80, your Ethernet module appears to the
public Internet as yourserver.com.

Dynamic DNS hosting does not have to be expensive. For
a single domain that ends with a name the DDNS host
owns, like fuzzipantsovich.dyndns.tv, it can be free. For
custom names, or multiple names, it’s usually a reason-
able monthly fee that gives you a way to provide named
hostnames for devices on your home network.
X

384 MAKING THINGS TALK

Figure 10-10

Screenshot of the final CatCam Thermostat control,

taken on an Android phone.

Network Cameras
Cameras that connect to the Internet have been available
for several years now, and the prices on them, predictably,
get cheaper and cheaper. For about $60, you can get a
small camera that has a WiFi module onboard and that
runs as its own server. The one used for this project, the
D-Link DCS-930L, was purchased at an office-supply store
for $70.

Setting up these cameras is very straightforward, and is
explained in the documentation that comes with them.
First, you need to connect to the camera through a wired
Ethernet connection, and open its administrator page in
a browser (just like you’re building for the air condition-
er—hey, how about that!). There, you configure the WiFi
network you want to connect to, save it to the camera’s
memory, and restart the camera.

Since the camera is running a server, you need to know
its address. You can use the same methods to make your
camera public as you did for your Ethernet module. You
may have to change the port that your camera serves
images on, because you probably want port 80—the
default HTTP port—to point to the Ethernet module. Port
8080 is usually a good second bet.

Once you’ve set up port forwarding for your camera, you
can embed the address in a link in the Ethernet module’s
HTML. For example, if you’re using the DCS-930L, the
path to the image as a .jpg file is /image/jpeg.cgi. Let’s
imagine the public address of your home router is
63.118.45.189 (it isn’t, so go look it up), and you set port
forwarding on port 8080 to point to your camera’s port
80. The link for the public page would then be . However,
the D-Link cameras, and many other brands, expect you
to supply a password to access the camera. So, add a
visitor user account that has view-only access to the
image, and change the URL to <a href =”http://username
:password@63.118.45.189:8080/image/jpeg.cgi”> (fill in
the username and password that you set). This is highly

insecure because anyone who views source on the page
can see the password, so make sure the account has no
privileges whatsoever to change or view settings!

Once you think you know the public URL of your camera’s
image, test it in a browser. It’s a good idea to test away
from your home network. When you’re satisfied it works,
embed the link in the index.htm page that you wrote previ-
ously, and try it out. You’ll also need to make the change
to the image’s URL in the JavaScript in the document’s
head. Now your server is on the Internet for real!

There’s one last stage of this project. You have to replace
those placeholder variables for the temperature, thermo-
stat setting, and air conditioner status. To do that, you
need to add some more code to your sketch.
 X

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 385

Once you’ve made this change and uploaded
it, you’re done. When you go to the Arduino’s
address in your browser, you’ll get the tem-

perature, the current thermostat setting, and the status of
the air conditioner. If you change any of the settings, you’ll
change the temperature in your home as a result. With
the change you made to the image tag and the JavaScript
in the index.htm document to accommodate your camera,
you’ll have an image from home as well. In a browser, your
final application should look like Figure 10-10.

The great thing about using the browser as your appli-
cation interface for mobile applications is that you only
have to write the app once for all platforms. Many of the

popular mobile applications are developed by making
a basic browser shell without any user interface, then
developing the user interface in HTML5. When you click
through the app’s interfaces, you’re just browsing pages
on their site. Because so many mobile phone applica-
tions are mainly network applications, it makes sense to
use this as your primary approach. By doing so, you avail
yourself of all the protocols the Web has to offer.

The web approach to mobile apps means you get to take
advantage of protocols that don’t run in a browser, but still
rely on HTTP. You’ll see this in practice in the next project.
X

To change the
variables in the HTML

documents, the server needs to read
those documents as it serves them. It
does this inside the while() block in the
sendFile() method. Add the following
to that method. New lines are shown
in blue.

When you run this, the server will read
the file. Whenever it hits one of the
named strings, $temperature, $ther-
mostat, or $status, it will replace that
string with the corresoponding vari-
able’s value.

Notice that the if() statement to
change the temperature is different
than the other two. There is no function
to convert a float variable to a String,
so you have to use print() or println()
to do the job. That means you need to
print the temperature variable directly
to the client rather than just swapping
out that part of the string before you
print it.

 Report It while (myFile.available()) {

 // add the current char to the output string:

 char thisChar = myFile.read();

 outputString += thisChar;

 // check for temperature variable and replace

 // (floats can't be converted to Strings, so send it directly):

 if (outputString.endsWith("$temperature")) {

 outputString = "";

 // limit the result to 2 decimal places:

 thisClient.print(readSensor(),2);

 }

 // check for thermostat variable and replace:

 if (outputString.endsWith("$thermostat")) {

 outputString.replace("$thermostat", String(thermostat));

 }

 // check for relay status variable and replace:

 if (outputString.endsWith("$status")) {

 String relayStatus = "off";

 if (checkThermostat()) {

 relayStatus = "on";

 }

 outputString.replace("$status", relayStatus);

 }

 // when you get a newline, send out and clear outputString:

 if (thisChar == '\n') {

 thisClient.print(outputString);

 outputString = "";

 }

 }

386 MAKING THINGS TALK

You put a lot of work into the last

project. Fortunately, you get to reuse it

in this project. You’re going to keep the

hardware exactly the same, but change

the software in order to build an interface

that lets you call the thermostat on the

phone, hear the temperature and status

by voice, and set the thermostat with your

phone keypad.

MATERIALS

 » Completed Project 27
 » Twilio account

Luba is a bit of a luddite when it comes to new tech-
nologies, and she’s not really fond of the mobile web
interface for the thermostat. “But it’s a phone!”, she
complains. “Couldn’t I just call someone and have
them stop by to change the temperature?” It’s a fair
point: if you’ve got a phone, you should be able to
make things happen with a phone call.

IP-based telephony has taken leaps and bounds in the
last several years, to the point where the line between
a phone call and a web page is very blurry. Server
applications such as Google Voice and Asterisk are
like virtual switchboards—they connect the public
switched telephone network (PSTN), and the Internet.
These servers use a protocol called Session Initiation
Protocol, or SIP, to establish a connection between
two clients and determine what services they are
capable of sending and receiving. For example, a SIP
client might be able to handle voice communications,
text messages, route messages to other clients, and
so forth. Sometimes a SIP server sets up the con-
nection between the clients, then gets out of the way
and lets them communicate directly. Other times it
manages the traffic between them, translating the
protocols of one into something that the other can
understand. It’s the 21st-century version of the old
switchboard operators. When application designers
have done their job right, you never need to know
anything about SIP, because your phone or software
just tells you what it can do, and provides you a way
to address other people. The phone does this by pre-
senting you with a dial tone and a keypad.

Phoning the Thermostat

Project 30

If you’ve called an automated help service in the last few
years, chances are you were talking to a SIP server. When
you spoke, it tried to recognize your words using speech-
to-text software, or it directed you to touch numbers on
your keypad using text-to-speech software. When you
entered numbers or words, it translated your input into
HTTP GET or POST requests to query a remote server or
local database. When it got results, it read those back to
you using text-to-speech again. If it couldn’t understand
what you were saying (perhaps you were screaming
“Operator! Operator! Give me a human being!” as I often
do), it rerouted your call to a number where a human
would answer.

For this project, you’re going to use a commercial SIP
service from Twilio to make a voice interface to the ther-
mostat you just built. Twilio provides a variety of Voice
over IP (VoIP) services like voicemail, conference calling,
and more. With their commercial accounts, you can buy
phone numbers to which you attach these services, so
your customers can call your service directly. They also
have a free trial service. With the free service, you must
use the phone number they assign to you, and you have
to use a passcode to access your application once you’ve
called in. For readers outside the U.S. and Canada, Twilio
offers only U.S./Canada-based numbers at the time of this
writing. Read on to get the general idea, then find an equiv-
alent service that works in your country. Phone number
exchange is unfortunately one place the PSTN lags con-
siderably behind the Internet, mostly for commercial and
political reasons. If you really want to get deep into VoIP
and SIP, check out Asterisk: The Future of Telephony by
Jim Van Meggelen, Jared Smith, and Leif Madsen (O’Reilly).
X

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 387

What’s the Standard?
Here’s the bad news about SIP and VoIP applications:
there’s not a standard approach to them yet. They all offer
slightly different services, though the basics of making
calls, sending SMS messages, recording calls, and reading
touchtones are available most everywhere. Each server
and each commercial provider has a different approach
to providing an application programming interface (API)
for its service. The markup you learn here for Twilio won’t
apply when you’re building an application using another
service like Tropo, Google Voice, or any of the dozens of
other providers out there.

There are four questions that can help you choose which
tool to use for any project:

• Does it offer the features I need?
• Is it available in my area?
• Is it simple to use?
• Will it work with my existing tools?

For this application, I chose Twilio because its markup
language, TwiML, is very simple. Also, Twilio’s examples
make it clear how to separate the markup language from
another server-based language, like PHP or Ruby. Every-
thing happens through GET or POST. Twilio has excellent
PHP examples, but you don’t need them to get started.
Its debugger is useful, and its technical support is good
as well. It lacks features that other services have—like the
ability to get the audio level while recording, or speech-
to-text conversion—but, on the whole, the benefits of its
simplicity outweigh any of the missing features.

To complete this project, you’ll need an account on www.
twilio.com. You can build and run this project with a free
account, or you can use a paid account. If you use the free
account, you will have to enter a passcode in addition to
the phone number every time you call, and you’ll only be
able to support one application at a time. For this intro-
duction, that’s enough.

You’ll also need the URL of your Arduino server from
the previous project. For example, if your server is
at 63.118.45.189, the address for this project will be
http://63.118.45.189/voice.xml. Log in to your Twilio
account and go to the dashboard. There, you’ll be given
a sandbox phone number and passcode. The phone
number will connect you to Twilio’s gateway. The gateway
will connect you to an HTTP server whose address you
provide (give it the one above). Once you’ve done that, it’s
time to write an XML file for the server, and to modify the
sketch so it will respond as needed. Figure 10-11 shows the
dashboard panel.

A Brief Introduction to XML
XML, or eXtensible Markup Language, is a general markup
language used by many web and database services.
XML allows you to describe nearly anything in machine-
readable form. XML is made up of tags that begin and
end with < and >. Tags describe elements, which can be
any concept you want to label. Elements can have subele-
ments; for example, a <body> might have <paragraph>
subelements, marked up like so:

<body>

 <p>This is the content of the paragraph</p>

</body>

 Figure 10-11

The Twilio dashboard. Enter the URL for your

Arduino server in the Voice URL box.

388 MAKING THINGS TALK

There’s only one TwiML
document you need for

this project. When a caller dials in, this
document will be the initial response;
when she enters keypresses, the
document will call itself again to update
the settings. Save it as voice.xml to the
SD card from your previous project.

You can see the same variables from
your previous project: $temperature,
$thermostat, and $status. The server
will replace them just like it does with
the HTML documents. That part of
your sketch won’t need to change.

The changes that need to be made to
the server sketch follow on the next
page.

Mark It up <?xml version="1.0" encoding="UTF-8"?>

<Response>

 <Gather action="voice.xml" method="POST">

 <Say>

 The current temperature is

 $temperature

 degrees Celsius.

 The thermostat is set to $thermostat degrees Celsius.

 The air conditioner is $status.

 If you would like to change the thermostat, please enter

 a new setting.

 If you are satisfied, please hang up.

 </Say>

 </Gather>

 <Say>

 You didn't give a new setting,

 so the thermostat will remain at $thermostat degrees. Goodbye!

 </Say>

</Response>

The stuff between the tags is the content of an element.
It’s usually the stuff that humans want to read, but that the
machines don’t care about.

Every element should have an opening and closing tag,
though sometimes a tag can close itself, like this:

<Pause length="10" />

What’s inside a tag other than the tag’s name are its attri-
butes. The length above is an attribute of a Pause, and this
specific pause’s length is 10 seconds. Attributes allow you
to describe elements in great detail.

If you’re thinking all of this looks like HTML, you’re right.
XML and HTML are related markup languages, but XML’s
syntax is much stricter. Because it’s such a general
language, though, it’s possible to write XML-parsing
programs that work from one schema to another.

TwiML
Twilio’s markup schema, TwiML, is a description of the
functions Twilio offers written in XML. It describes what
you can do with Twilio. There are elements for handling a
voice call, and elements for handling an SMS message.
The list of elements is pretty short:

Voice elements:

<Say>

<Play>

<Gather>

<Record>

<Sms>

<Dial>

<Number>

<Conference>

<Hangup>

<Redirect>

<Reject>

<Pause>

SMS elements:

<Sms>

<Redirect>

They’re all explained in depth on Twilio’s documentation
pages, but you can probably guess what most of them do.

For this project, you’re going to describe a <Response>.
Within that, you’ll use <Gather> to collect keypresses
from the caller. The <Gather> element is TwiML’s version
of an HTML form, so it has an action attribute and a
method attibute that you’ll use to tell it where and how
to send its results. You’ll also use the <Say> element to
speak to the caller using text-to-speech.
X

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 389

There are
only a

few changes you need to make to the
server to get it to be a voice server.
The first is in the loop(). When Twilio
makes a POST request, it sends back
the digits that the caller pressed on the
phone keypad using a variable called
Digits. So where you were looking for a
variable called thermostat in the POST
request, you’ll now look for Digits. The
new line is shown in blue.

 Modify the Server case 2: //POST

 // skip the rest of the header,

 // which ends with newline and carriage return:

 finder.find("\n\r");

 // if the client sends a value for thermostat, take it:

 if (finder.find("Digits")) {

 int newThermostat = finder.getValue('=');

// send the file that was requested:

void sendFile(Client thisClient, char thisFile[]) {

 String outputString = ""; // a String to get each line of the file

 // open the file for reading:

 File myFile = SD.open(thisFile);

 if (myFile) {

 // get the file size:

 int mySize = myFile.size();

 // determine whether the file is XML or HTML

 // based on the extension (but assume it's HTML):

 int fileType = 1; // 1 = html, 2 = xml

 if (String(thisFile).endsWith("xml")) {

 fileType = 2;

 }

 // send an OK header:

 sendHttpHeader(thisClient, 200, mySize, fileType);

 // read from the file until there's nothing else in it:

 while (myFile.available()) {

 else {

 // if the file didn't open:

 sendHttpHeader(thisClient, 404, 0, 1);

 }

The Twilio gateway that acts as
a client to your server is a bit more
picky about what it expects than most
browsers. It works best when you tell
it in advance the length of the content
you’re going to send it. That means
you need to make some changes to
sendFile() and sendHttpHeader().
First, in sendFile(), you’re going to get
the size of the file you’re sending, and
identify whether the file you’re sending
is HTML or XML. Then you’ll send the
file size and type to the sendHttp-
Header() method. The beginning of the
sendFile() changes, as follows, are in
blue.

You also need to change the call
to sendHttpHeader() for a 404 error,
which occurs later in sendFile(), as
follows.

8

8

NOTE: When developing this project, I benefited greatly by

writing a test server—like the one described in Chapter 4—to

simply read the whole request from Twilio before I wrote my

final code. Twilio’s online debugger also helped me find the

problems.

390 MAKING THINGS TALK

// send an HTTP header to the client:

void sendHttpHeader(Client thisClient, int errorCode,

 int fileSize, int fileType) {

 thisClient.print(F("HTTP/1.1 "));

 switch(errorCode) {

 case 200: // OK

 thisClient.println(F("200 OK"));

 break;

 case 404: // file not found

 thisClient.println(F("404 Not Found"));

 break;

 }

 thisClient.println(F("Server: Arduino"));

 thisClient.print(F("Content-Type: text/"));

 if (fileType == 1) {

 thisClient.println(F("html"));

 }

 if (fileType == 2) {

 thisClient.println(F("xml"));

 }

 thisClient.print(F("Content-Length: "));

 thisClient.println(fileSize);

 // response header ends with an extra linefeed:

 thisClient.println();

}

The sendHttpHeader() method
will now send a lot more informa-

tion. Previously, you were sending
the minimum amount needed to
respond to most browsers, but the
Twilio gateway client expects more.
You’ve seen more detailed responses
from the server—for example, in the
air-quality project in Chapter 4. What
you’re sending here is similar. You’re
sending the name of the server appli-
cation (Arduino), and then determin-
ing the content type based on what
you learned in sendFile(). Then you’re
sending the content length, based on
the file size. This tells the client how
many bytes to expect before it closes
the connection.

8

When you’ve made these changes and put the
voice.xml file on your SD card, restart the server
and call your Twilio sandbox number. Enter the

PIN, and the phone will ring. If you did everything right,
you’ll hear the text of the document read out to you, and
you’ll be able to enter a new thermostat setting using your
phone keypad. You can keep changing the thermostat
setting for as long as you like; when you’re done, hang up.

Getting the Content Length Right
The server can theoretically serve both the XML and
HTML documents now, so you should be able to see the
pages in a browser as well. However, your browser may
have problems with the content length. If you paid close
attention, you may have realized that the size of the file
is not actually the number of bytes you’re sending as
content.

The file size is determined before you replaced the $tem-
perature, $thermostat, and $status variables with their
actual values. For example, when the temperature is
27.28 degrees Celsius, you’re replacing “$temperature”
with “27.28”—that’s 5 characters instead of 12. The same

is true with $thermostat, which you’re replacing with a
two-digit number, and $status, which you’re replacing
with a two- or three-character string. To calculate the
content length correctly, you have to account for this.
There are two possible solutions.

The hack solution: Since most browsers don’t care about
the content length, don’t print it if you’re serving HTML.
Put an if statement around the two lines that print the
content length, like so:

if (fileType == 1) {

 thisClient.print(F("Content-Length: "));

 thisClient.println(fileSize);

}

The thorough solution: You know that the thermostat
is a two-digit number because you constrained it. That’s
nine fewer characters than “$thermostat”. You also know
that the temperature is a five-character string because
you limited it to two decimal places (and over 100°C is
deadly). That’s seven fewer than “$temperature”. You
know that the status string is two or three characters,

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 391

which is five or four fewer than “$status”. So, calculate
the difference before you send the HTTP header. The
total is 20 or 21 characters shorter than the original file,
depending on the relay status, which you can determine
by calling checkThermostat(). You can change the
sendFile() to adjust for this right before it sends the OK
header, like this:

 if (checkThermostat()) {

 mySize = mySize - 21;

 }

 else {

 mySize = mySize - 20;

 }

 // send an OK header:

 sendHttpHeader(thisClient, 200, mySize, fileType);

When you’re changing the contents of a file dynamically
before you serve it, you have to make adjustments like this
all the time. So, it’s good to know a few methods for doing
it. On a server with plenty of memory, you might simply
put the whole file in an array and get the size of the array.
One of the valuable things you learn when working on
microcontrollers with limited memory is how to do work-
arounds like this.

I’ll admit it: I went for the hack solution first.
X

HTML5 and Other Mobile
Web Approaches

There’s currently a lot of excitement among mobile appli-
cation developers around HTML5, the next version of the
HyperText Markup Language standard. HTML5 aims to
make HTML able to support a greater amount of interac-
tion and control over how web pages look and behave.
In fact, what makes HTML5 interesting is not just the
markup language itself, but the possibilities it offers when
combined with JavaScript and CSS3, the Cascading Style
Sheets standard.

So, how do HTML5, JavaScript, and CSS3 work together?
Roughly, you could say that HTML gives you nouns, CSS
gives you adjectives and adverbs, and JavaScript gives
you the verbs to put them into action. HTML describes the
basic page structure and the elements within it: forms,
input elements, blocks of text, and so forth. CSS primarily
describes the characteristics of the visual elements:
the colors, fonts, spacing, etc. The scripting language
JavaScript allows you to make connections between the
elements of a page, between pages in a browser, and
between the browser and remote servers. The grammar
analogy isn’t perfect, but the point is that the three tools
give you a wide range of means to present information,
listen to user input, generate interactive responses,

and send and retrieve data to locations other than the
browser—whether the data is on the user’s hard drive or a
remote server.

Previously, applications running within a web browser
had very limited access to the hardware of the computer
on which they were running. Operating system manufac-
turers felt that it was unsafe to allow an application that
you downloaded from the Internet to access your hard
drive, camera, microphone, or other computer hardware.
Hackers might do evil things! Of course, now that nearly
every application is downloaded from the Internet, that
thinking seems dated. You could still download a program
that does malicious things—but, by now, most people
have a sense of what makes an online source more or less
trustworthy, whether that source is delivering a web page
or an application that’s native to your operating system.
At the same time, more of the data we need to access
lives online today, whether on a social media site or a web
data storage service like Google Docs or Dropbox. There’s
no need for a browser to access your hard drive if your
files are online.

The blurring of the distinction between browser security
and general security is good news if you like to build
physical interfaces. HTML5 and JavaScript include
methods to access some of the hardware of your

392 MAKING THINGS TALK

computer or phone. For example, there are methods now
that let you determine the device’s orientation by reading
an accelerometer, if you have one built in (and most
smartphones do); reading the compass and GPS receiver,
if they’re available; and more.

The bad news is that not all of these new methods are
universally agreed upon among the companies who make
browsers. Not every browser gives you access to all of
these features, and not every browser implements them
the same way. For example, the Safari browser on Apple’s
iPhone and iPad gives you access to the accelerometer as
of this writing, but the standard browser on Android does
not. So, while it’s easy to access devices external to your
phone through the browser, getting access to the ones on
your phone may take a bit more work.

PhoneGap
If you’re interested in getting access to the sensors on
your phone, and you’re comfortable working in JavaScript,
PhoneGap (www.phonegap.com) is a very promising
option. PhoneGap is a platform that gives you access to all
the phone’s hardware sensors through HTML5 and JavaS-
cript. Basically, PhoneGap embedded the phone’s built-in
browser engine (which implements all of HTML5’s new
standards), added a bunch of hooks into useful function-
ality (such as built-in sensors) and released it as a basic
frame for you to develop in. You download the application
framework, which is written in your phone’s preferred
programming language (Java on Android, Objective-C on

iOS). You don’t need to do anything to that code—it’s
just there to act as a shell for your app. You write your
own HTML5 and JavaScript documents, which form the
core of your app. Then you compile it all and upload it to
your phone. PhoneGap also offers an online compilation
service: upload your HTML files and it compiles an appli-
cation for you to download to your phone.

There are things you don’t get with PhoneGap. For
example, you can’t open a connection to your phone’s
Bluetooth serial port, if it has one, nor can you access the
phone’s USB connection. Despite that, it’s a promising
start.

PhoneGap is not the only platform for developing mobile
phone apps for multiple operating systems. MoSync
(www.mosync.com) also offers application frameworks
for multiple platforms, but you develop your own appli-
cation in C++, not in HTML. You get access to more of
the hardware with MoSync, but it definitely requires
a greater familiarity with programming than anything
you’ve seen in this book so far. Several other companies
are offering cross-platform tools like this now, and more
will certainly come along. If you’re interested in develop-
ing applications for the phone that use built-in sensors,
and you don’t want to write an application native to each
different phone operating system, PhoneGap is your best
option until the browsers catch up.
X

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 393

Text-Messaging Interfaces
Text messaging is fast becoming the most common use for mobile phones. Many

people regard texts as less intrusive than voice calls in the flow of daily life. With a text

message, you can get information across quickly and with no introduction. In addition,

it’s easy to send email to SMS, and vice versa; they’re not platform-dependent—as

long as you have a mobile phone or email account. For situations where you need an

immediate, unobtrusive notification, or to give a single instruction, they work wonderfully.

SMS, or Short Messaging Service, began as a way of
sending information over the mobile phone networks’
signaling channel. The idea was to send bytes as part of
the data sent to signal incoming calls, but to do so when
there was no incoming call. These short messages could
be used for diagnostic purposes, to notify the receiver of
voicemail, or for other quick notifications. When SMS was
rolled out as a commercial service option for customers,
however, it became much more than that. SMS may be
limited to 140 characters per message, but people have
found many creative ways to pack a lot of info into those
140 characters.

Almost all mobile carriers provide an SMS-to-email
gateway as part of their service, which means you can
send an SMS from an email client and receive SMS
messages in your inbox. To test this out, send a text
message from your phone, but instead of sending it to a
phone number, enter your email address as the destina-
tion. Depending on your carrier, it may be sent via MMS,
or Multimedia Message Service, or it may simply go as an
SMS. Check your inbox, and you’ll see a message from
yourself. Now you’ll know the email address to use if you
want to send yourself a text message via email as well.
Most of the time it’s simply your phone number @ your
carrier’s email address. Here are some common SMS-
to-email servers for a few U.S., Canada, and European
carriers:

AT&T: phonenumber@txt.att.net
T-Mobile: phonenumber@tmomail.net
Virgin Mobile: phonenumber@vmobl.com
Sprint: phonenumber@messaging.sprintpcs.com

Verizon: phonenumber@vtext.com
Bell Canada: phonenumber@txt.bellmobility.ca
Telenor Norway: phonenumber@mobilpost.no
Telia Denmark: phonenumber@gsm1800.telia.dk
Swisscom: phonenumber@bluewin.ch
T-Mobile Austria: phonenumber@sms.t-mobile.at
T-Mobile Germany: phonenumber@t-d1-sms.de
T-Mobile UK: phonenumber@t-mobile.uk.net

A longer list can be found at www.emailtextmessages.com
(warning: I have not verified every one of these). With U.S.
carriers, many expect a simple 10-digit phone number
without the leading country code (which is +1 for the
U.S.), but carriers in the U.S. and around the world tend
to be idiosyncratic about this. Check with your carrier’s
customer support to find out how they handle it.

The PHP script on the next page creates a simple form
that lets you send a text message to any of the carriers
listed above, and a few others. Modified, it can be used as
an SMS gateway script for a networked device.

394 MAKING THINGS TALK

<?php

/*

 SMS messenger

 Context: PHP

*/

 $phoneNumber = $_REQUEST["phoneNumber"]; // get the phone number

 $carrier = $_REQUEST["carrier"]; // get the carrier

 $message = $_REQUEST["message"]; // get the message

 $recipient = $phoneNumber."@".$carrier; // compose the recipient

 $subject = "Message for you";

 // if all the fields are filled in, send a message:

 if (isset($phoneNumber)&& isset($carrier) && isset($message)) {

 mail($recipient, $subject, $message);

 }

?>

<html>

<head></head>

<body>

 <h2>SMS Messenger</h2>

 <form name="txter" action="sms.php" method="post">

 Phone number: <input type="text" name="phoneNumber"

 size="15" maxlength="15">

 Message:

 <textarea name="message" rows="5" cols="30" maxlength="140">

Put your sms message here (140 characters max.)

 </textarea>

 </br>

 Carrier:

 <select name="carrier">

 <option value="txt.att.net">AT&T US</option>

 <option value="txt.bellmobility.ca">Bell Canada</option>

 <option value="messaging.nextel.com">Nextel US</option>

 <option value="messaging.sprintpcs.com US">Sprint</option>

 <option value="bluewin.ch">Swisscom</option>

 <option value="sms.t-mobile.at">T-Mobile Austria</option>

 <option value="t-d1-sms.de">T-Mobile Germany</option>

 <option value="t-mobile.uk.net">T-Mobile UK</option>

 <option value="tmomail.net">T-Mobile US</option>

 <option value="gsm1800.telia.dk">Telia Denmark</option>

 <option value="mobilpost.no">Telenor Norway</option>

 <option value="vtext.com">Verizon</option>

 <option value="vmobl.com">Virgin Mobile US</option>

 </select>

 <input type="submit" value="send message">

 </form>

</body>

</html>

To send an SMS, just send
mail to the 10-digit phone

number at the recipient's carrier.
Here’s a PHP script to send yourself an
SMS. Save this as sms.php.

Consider password-protecting

this script, or removing it after you’re

done testing. It could become the

target of abuse if it’s found by a roving

spambot with a pocket full of phone

numbers.

!

Try It

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 395

GPRS for Microcontrollers

There are a handful of devices on the market that

allow you to connect a microcontroller to mobile phone

networks directly. Using one of these, your microcon-

troller connects to the Internet the same way that your

mobile phone does. It has a phone number, and it can

send and receive SMS messages, make HTTP calls, and

do anything else you can do on the Internet. The trade-

offs to using them are that they can get expensive—in

terms of both power usage and connectivity costs.

Telit’s modules are the high end of the GPRS module

market, and there are a few evaluation boards and

shields for Arduino based on these. They feature a TTL

serial interface, an AT-style command set (meaning

they operate as a modem, like the Bluetooth Mates, but

with different commands). They have their own TCP/

IP libraries on board, so you can make network connec-

tions, and some models feature GPS as well. One model

even has a Python interpreter so you can run programs

written in the Python programming language on it.

Spark Fun sells breakout boards for the Telit GE865

and GM862, as well as one for ADH Tech’s ADH8066

module, These breakout boards give you all the pins of

the module on 0.1-inch spacings, and usually a USB-

to-Serial connection. They’re not designed to be used

with any particular microcontroller, so you’ll have to

start from the command set and the manufacturer’s

datasheet if you want to use these.

They also sell a GPRS shield for Arduino based on

Spreadtrum Technologies’ SM5100B module. This

module isn’t as feature-laden as the Telit modules, but

it has an AT command set, and it can send and receive

SMS messages and make network connections. John

Boxall has a nice set of tutorials for using this shield

at tronixstuff.wordpress.com/2011/01/19/tutorial-

arduino-and-gsm-cellular-part-one.

Libelium (www.libelium.com) sells a number of different

GPRS shields for Arduino through their Cooking Hacks

site (www.cooking-hacks.com). They have dual-band

and quad-band modules, meaning that some of their

modules can operate in the U.S., Europe, Africa, and

much of Asia, depending on the country and carrier.

Seeed Studio carries a quad-band GPRS shield as well,

with built-in audio jacks for voice communications in

case you want to build your own phone.

The two challenges to using any of these GPRS shields

are power and price. The SM5100B shield, for example,

can draw up to 2 amps when it’s making a call. That’s

more than the Arduino’s regulator can feed it, so the

shield connects to the board’s Vin pin. That means you

need to supply the board with at least 2 amps just for

the GPRS module. The board won’t draw all that current

the whole time, but if it can’t get it when it needs it, you

won’t make the connection.

For any of these modules, you’ll need a mobile subscrip-

tion and working SIM card from your favorite mobile

carrier. Unless you have a flat-rate data and text plan,

you can spend a lot of money testing and debugging

GPRS projects. A second alternative is a pay-as-you-go

plan for your SIM card. Neither is an ideal choice, unfor-

tunately, so do as much troubleshooting as you can

offline to save money where possible.

Two ways to get GPRS to a microcontroller: the Telit

GM862 evaluation board breaks out all the pins of the

module to 0.1” spacing; the SM5100B shield breaks out the

serial pins of its module to the Arduino’s serial pins.

http://tronixstuff.wordpress.com/2011/01/19/tutorial-arduino-and-gsm-cellular-part-one/
http://tronixstuff.wordpress.com/2011/01/19/tutorial-arduino-and-gsm-cellular-part-one/

396 MAKING THINGS TALK

Native Applications for Mobile Phones
Even though web and SMS interfaces offer many possibilities, there are projects for

which you really need access to a mobile phone’s operating system. Web applications

make it difficult—if not impossible—to access the phone’s hardware or file system, for

example. In these cases, you need to get to know your phone’s operating system and

the programming tools available for it. If you’re aiming to make an application for all

mobile phones, you need to become familiar with several operating systems.

The mobile phone industry is fast changing, as are its
smartphone operating systems, and keeping up with it
all can be exhausting. Google’s Android OS, Blackberry,
Palm’s webOS, Windows Mobile, Symbian, and Apple’s
iOS (for iPad, iPhone, and iPod touch) are currently the
largest players. Of those, Android, iOS, and Blackberry
are the three largest at the moment, covering most of
the market. Nokia’s Symbian was one of the largest, but
Nokia is no longer supporting it as its primary operating
system. As of the last quarter of 2010, Android was the
most popular of smartphone operating systems, taking
35% of the world market.

There’s a lot of interest in programming for iOS because
it’s such an attractive environment, but Apple is notori-
ously controlling about iOS development. You have to
register as a developer, and they’ve limited the available
toolkits severely. In addition, you can’t just distribute
your app independently—you have to do it through the
App Store. That’s fine for commercial developers, but for
hobbyists and home hackers, it can be quite forbidding.
For more on iPhone programming, see Alasdair Allan’s
books, Learning iPhone Programming (O’Reilly) and iOS
Sensor Programming (O’Reilly). Alasdair has done a great
deal to make iPhone programming accessible.

Android, on the other hand, is somewhat more accessible
to programmers. Applications can be installed on Android
phones using the Android Market, or they can be installed
over USB. Based on Linux and programmed in Java, it

offers an environment familiar to many experienced devel-
opers. For those less comfortable with code, Google offers
a graphic programming environment called App Inventor
(http://appinventor.googlelabs.com) that allows you to
create applications by combining graphic objects. For
the rest of this chapter, you’ll learn to make Android apps
using a familiar environment: Processing. As of version 1.5,
Processing can compile and install sketches as Android
apps.

Processing for Android
Processing for Android is a very exciting update to Pro-
cessing, but as it is very new, it is still under development.
The examples that follow were developed at the same
time as the tools to make them possible—in some cases,
they are the first real tests of the libraries they use. So be
warned, you’re sailing in uncharted waters now. As the
Processing for Android wiki (http://wiki.processing.org/w/
Android) explains: “Do not use this code while operating
heavy equipment. Do not rely on this code for thesis or
diploma work, as you will not graduate. Do not use this
code if you’re prone to whining about incomplete software
that you download for free.” The libraries used here are
likely to change after the publication of this book, and they
will hopefully become more stable and easier to use. So
make sure to check the online documentation of anything
mentioned here for updates.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 397

Setting Up Processing for
Android

Processing for Android has a slightly different workflow
than standard Processing, so you’ll need to install some
new components and get used to some new tools. The
first thing you’ll need is Processing version 1.5.1 or later,
which can be downloaded from the Processing site (www.
processing.org/download). You’ll also need the Android
Software Developers’ Kit (SDK), available at http://
developer.android.com/sdk. Download and install both.
Then open Processing. You’ll see a new button in the main
toolbar labeled Standard, as shown in Figure 10-12. Click
it and choose Android. You’ll get a dialog box asking you if

Figure 10-12

Processing’s Mode button set to Standard mode.

Figure 10-13

The “About phone” menu, showing your Android version.

the Android SDK is installed. Click Yes. Another dialog box
will pop up asking you where it is. Navigate to the Android
ADK folder that you just installed. The Processing editor
color scheme will turn green, and you’ll be in Android
mode.

You now need to install some components of the Android
SDK, so go to the new Android menu and choose Android
SDK & AVD Manager. This will open the Android SDK
Manager, where you can install new Android packages as
new versions become available. Click Available Packages
to install new packages. At minimum, you need to install
three things.

Underneath Android Repository, check the boxes for
“Android SDK Platform-tools” and “SDK Platform Android
2.1, API 7”.

Beneath “Third party Add-ons”, expand the Google Inc.
entry, and select “Google APIs by Google Inc., Android API
7”.

You can install more recent packages if you want,
depending on what version of Android your device is
running, and what features you want to access (but you
need at least these for Processing for Android to work).

To check your device’s operating system version, go to the
home sceeen, and from the menu, choose Settings. Scroll
to the bottom and choose “About phone”. In that menu,
you’ll see a listing of the Android version. Figure 10-13
shows the menu. If you have a later version than 2.1, you
might want to install the latest that your phone can run.
For example, I installed the SDK Platform Android 2.3.3,
API 10, revision 1 to work with a Nexus S phone that was
running version 2.3.4, and the Google APIs Android API 10,
revision 2, as well.

FPO replace

398 MAKING THINGS TALK

Where Does the App Run?
You have two choices as to where your app will run when
you click the Run button: it can run in an emulator on your
desktop, or it can run on your actual phone. The emulator
is useful if you don’t have an Android phone handy. The
SDK Manager should install an emulator for you auto-
matically, but if not, you can install one by clicking Virtual
Devices in the SDK Manager. Emulators tend to be slow,
though, and they’re nowhere near as exciting as running
the app on your actual phone.

To enable your Processing sketches to run directly on
your Android device, first go to the device’s Settings
menu and choose Applications. From there, choose
Development. Finally, click USB Debugging. This enables
your device to install applications over USB, and to send
debugging information back to Processing or any other
development environment over USB as well.

Once you’ve enabled USB debugging, plug your phone
into your computer with a USB cable, and open one of the
Processing for Android example sketches (remember,
examples are in the File menu, under Examples). The
Accelerometer example in the Sensors folder is fun. While
holding down the Shift key, click Run. This should change
the title in the toolbar from “Run in Emulator” to “Run on
Device” (see Figure 10-14). The sketch will compile, then
install on your device and start running. Ta Dah! You’re
now an Android developer!

The handy thing about “Run on Device” is that you can
get messages back from the sketch while it’s running on
your device. This is because you enabled USB debugging.
Any print() or println() commands in your sketch will print
to the debugger pane of Processing on your desktop just
like always. This makes debugging your sketch so much
easier. Make sure to remove your print() and println()
statements when your sketch is done, though. When
the device is not connected to your computer, those
commands write to a log file on the device, and they will
start to fill up its available storage space.

Differences to Watch Out For
There are a few big differences between Standard-mode
Processing and Processing for Android.

Many libraries for Standard mode do not work in Android
mode. This will likely change as library developers adapt
the useful ones to Android mode, but for the moment, it’s
best not to assume.

Figure 10-14

To run a sketch directly on your phone, hold down Shift

while clicking the Run button.

An Android mode sketch is an activity in Android Java
terms. Activities have a few core methods: onCreate(),
which is equivalent to Processing for Android’s setup()
method; and onPause() and onResume(), which are called
by Processing’s pause() and resume() methods. Activities
(and therefore sketches) pause and resume frequently:
whenever your device goes into idle mode, and every time
you rotate the orientation, and every time you switch to
another application. So, you should put in pause() and
resume() methods to manage those transitions smoothly.

Interaction is different with a touchscreen. There’s no
mouse button, so the mouse button events don’t work.
mouseX and mouseY still work, and you’ve also got new
variables—motionX, motionY, pMotionY, and motionPres-
sure—that you can use to tell something about touch as
well. mousePressed also still works.

Since an Android sketch takes over the whole screen,
there’s no point in setting size(), so it doesn’t work in
Android mode. You can get the screenWidth and screen-
Height if you want them, though. You can also lock the
orientation, like so:

orientation(PORTRAIT);

orientation(LANDSCAPE);

Fonts still work as before. To get a list of the system fonts,
use this line of code:

println(PFont.list());

You need to enable different permissions to get at different
functions of the device. In the Android menu, you’ll see a
list of Sketch Permissions. You can set most of them from
this menu. This menu writes to the AndroidManifest.xml file
in the sketch directory.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 399

Whenever possible, use the permissions menu rather than
editing the manifest. For everything you need in this book,
you can use the permissions menu and be safe. It’s easy
to mess things up by editing it wrong—remember, XML is
not forgiving.

Since your sketch restarts every time you change ori-
entation, you might want to use saveStrings() and load-
Strings() to save and load variables that need to persist.

For more tips on the differences, see http://wiki.process-
ing.org/w/Android for the latest information.

Now here’s a quick sketch to get you started. It reads
the mouse position and saves data when you pause and
resume. You’ll need to set the Sketch Permissions to
enable WRITE_EXTERNAL_STORAGE.
X

This sketch will
show you how mouseX, mouseY, and
motionPressure work on Android. It will
reorient itself, and save and reload data
when you rotate the device.

Touch It /*

 Processing for Android test

 Context: Processing

 */

float ballX, ballY; // position of the ball

// file to save data for pause and resume:

String datafile = "sketchFile.dat";

void setup() {

 // create a font for the screen:

 String[]fontList = PFont.list();

 PFont androidFont = createFont(fontList[0], 24, true);

 textFont(androidFont, 24);

}

void draw() {

 // color theme: Sandy stone beach ocean diver by ps

 // http://kuler.adobe.com:

 background(#002F2F);

 fill(#EFECCA);

 // show the mouse X and Y and finger pressure:

 text("mouseX:" + mouseX, 10, 50);

 text("mouseY:" + mouseY, 10, 80);

 text("motionPressure:" + motionPressure, 10, 170);

 // move the ball if the person is pressing:

 if (mousePressed) {

 ballX = mouseX;

 ballY = mouseY;

 }

 // draw a nice blue ball where you touch:

 fill(#046380);

 ellipse(ballX, ballY, 50, 50);

}

400 MAKING THINGS TALK

The pause() and resume()
methods use an external file saved

to your device to save variables that
persist when the sketch restarts. Each
variable is a separate string, saved
on its own line. A newline character
(\n) separates each line. Figure 10-14
shows the results.

8 void pause() {

 // make a string of the ball position:

 String ballPos = ballX+ "\n" + ballY;

 /// put the string in an array and save to a file:

 String[] data = {

 ballPos

 };

 saveStrings(datafile, data);

}

void resume() {

 //load the data file:

 String[] data = loadStrings(datafile);

 // if there's a file there:

 if (data != null) {

 // and there are two strings, get them for X and Y:

 if (data.length > 1) {

 ballX = float(data[0]);

 ballY = float(data[1]);

 }

 }

}

Play around with some of the Android examples
that come with Processing as well. The Accel-
erometer and Compass sketches are good fun,

and they show you how to get at those useful components
on your phone. Once you’re familiar with Processing for
Android, you’re ready to make your own datalogger on the
phone.

 Figure 10-15

The Processing for Android sketch that you just wrote.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 401

One popular reason to develop native

applications on a mobile phone is to use

the phone’s Bluetooth radio as a serial

connection to other devices. In this way,

your phone can become a mobile data-

logger, or a conduit to send the data to a

database on the Internet. In this project,

you’ll sense your Galvanic skin response

using an Arduino, send the data via

Bluetooth to your Android phone, and log

the result to a file on the Internet.

MATERIALS

 » Android device
 » LilyPad Arduino Simple
 » bluetooth Mate
 » Lithium Polymer Ion battery
 » 1 resistor, 270-kilohm
 » Conductive ribbon
 » Conductive thread
 » Shieldit Super 14” fabric
 » Velcro
 » Hoodie
 » Embroidery thread

A growing number of personal data enthusiasts are
gathering personal biometric data for many different
purposes, from visualizing their activity patterns in
order to improve exercise habits, to tracking sleep
patterns in order to find solutions to insomnia. Quan-
tified Self meetups (http://quantifiedself.com) are
popping up around the world for people to share tips
and tricks on how to do this, and devices like the
FitBit (www.fitbit.com) and the Zeo (www.myzeo.
com) have come on the market to make biometric
tracking easier.

This project is based on the work of ITP alumnus
Mustafa Bağdatlı, shown in Figure 10-15. Mustafa
wanted to track his Galvanic skin response (GSR) and
heart rate against his calendar, so he could see when
his mood—as reflected in his heart rate and GSR—
were affected by the events of the day. His project,
Poker Face, tracked the two biometric characteristics
on a LilyPad Arduino, transmitted them via Bluetooth
to a mobile phone, and logged the result on the Web.
You can find more on Poker Face at http://musta-
fabagdatli.com In this project, you’ll build the same,
but without the heart rate sensor to keep it simple.

Personal Mobile Datalogger

Project 31

Feel free to change the sensor for whatever you want to
track yourself.

Figure 10-17 shows the system for this project. A micro-
controller reads the analog voltage from the sensor and
sends it serially to a Bluetooth Mate. The data is then
transmitted over Bluetooth to a mobile phone using the
Serial Port Profile, or SPP, that you used in other Bluetooth
projects in this book. The phone then makes an HTTP GET
request to a PHP script on a web server. The script saves
the incoming data to a file. What you do with the data from
there is up to you.

 Figure 10-16

Mustafa Bağdatlı wearing Poker Face, a biometric

datalogger linked to a mobile phone. Photo

courtesy of Mustafa Bağdatlı.

402 MAKING THINGS TALK

Figure 10-17

The system diagram for the mobile datalogger project.

Figure 10-18

Detail photo of the Poker Face GSR wristband. Here, the wristband is

inside-out to show the conductive fabric contacts. Photo courtesy of

Mustafa Bağdatlı.

The Circuit
The circuit for this project is quite simple. To measure
Galvanic skin response, all you need is a high-value
resistor and your skin. As a test, take a multimeter and
measure the resistance across your wrist. You’ll find that
the resistance is high, probably in the megohm range if
your skin is cool and dry. Work up a sweat and measure
it again. You’ll see that the resistance has gone down.
When you exercise, or when you’re faced with stressful
or arousing situations (good or bad), you perspire more,
changing the conductance of your skin. That’s what this
project will measure.

The sensor is basically a voltage divider, with your skin
as the variable resistor and a fixed resistor completing
the circuit. A 270-kilohm resistor is used here (see Figure
10-19 and Figure 10-20), but feel free to change it to suit
your skin. Generally, below 10 kilohm won’t work.

Conductive fabric and conductive thread were used to
make the sensor for this circuit, and to attach the LilyPad
Arduino to the garment. Different conductive fabrics and
threads have different material and electrical proper-
ties, so you might want to experiment with a few to find
what works for you. Mustafa used stretchable conduc-
tive fabric sewn into wristbands for his cuffs, as you can
see in Figure 10-18. For this project, I used Shieldit Super
fabric with adhesive backing. For more information about
conductive fabrics, see Leah Buechley’s excellent intro-
duction at http://web.media.mit.edu/~leah/grad_work/
diy/diy.html; Syuzi Pakhchyan’s book Fashioning Technol-
ogy: A DIY Intro to Smart Crafting (O’Reilly); or Hannah
Perner-Wilson’s excellent online resource at web.media.
mit.edu/~plusea.

The Construction
For this project, you’ll use iron-on conductive fabric
attached inside the pocket of a hoodie as your sensor
contacts. When you reach in your pocket, you can touch
the fabric contacts with the palm of your hand, and take
a reading on your phone with the other hand. Or, you can
let the mobile app run continually to take a reading every
two minutes.

Microcontroller
TTL Serial

Bluetooth

HTTP
over
GPRS

Analog 0-5V

PHP script

Web Server

Data
file

Bluetooth
Mate

Mobile
Phone

Temperature
Sensor

Internet

Test the whole circuit with the code below before

sewing it into the garment. Hardware debugging after you

sew it is difficult.

!

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 403

RTS

RX

TX

Vcc

CTS

Gnd

Bluetooth Mate
Module

+5V

To Battery Ground

To Battery +3.7V

Conductive fabric
contact points

Pin 11 is
acting as voltage

for sensor

Pin A1 is
acting as ground

for sensor

270KΩ

+5V

Gnd

Gnd

Vin

Reset

+3.3V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

AREF

GND

D13

D12

D11/PWM

D10/PWM

D9/PWM

D8

D7

D6/PWM

D5/PWM

D4

D3/PWM

D2

Digital1/TX

Digital0/RX

Figure 10-20

The mobile datalogger circuit schematic.

a0/

11

10

96

+

-

3

5

B G
14

a1/
15

a2/
16

O
n

O
ff

LiPo 3.7V
S
tat

C
onnect

R
N
-42

G
N
D

C
TS

VC
C

TX RX RT
S

 Figure 10-19

The mobile datalogger circuit. The contacts for the

sensor are conductive fabric.

NOTE: When you’re using Lithium Polymer batteries

in your project, get a USB charger for them.

Adafruit’s USB LiIon/LiPoly charger (ID: 259) or

Spark Fun’s LiPo Charger Basic - Micro-USB (sku:

PRT-10217) work well.

404 MAKING THINGS TALK

Conductive thread connects the fabric contacts on one
side of the garment to a three-wire conductive ribbon
on the other side of the garment. The microcontroller
and battery will be sewn into the bottom band of the
hoodie just below the pocket, and the conductive ribbon
will connect them, sewn onto the inside lining of the
hoodie. Figure 10-21 shows the layout on the inside of the
garment.

Iron the conductive fabric contacts into the pocket. Space
them so they cover about the width of the heel of your
palm, and contact it comfortably when you put your hand
in the pocket. Figure 10-22 shows you the inside of the
pocket.

Split the ends of the three-wire conductive ribbon about
an inch on either end with a pair of scissors. You need
enough distance between the wires to span the space
between the conductive fabric contacts on one end, and
between two contacts of the LilyPad Arduino Simple on
the other. Tin the tips of the outside wire ends to keep
them from fraying. You’re not using the middle wire, so
cut it out, down to the end of each split. You can also
embroider the two outside conductors with yarn that
matches the hoodie to keep them from fraying, if you
wish. Solder one pair of the conductive ribbon’s leads to
pins 11 and A0 of the LilyPad Arduino.

Figure 10-21 . The layout of the hoodie components on the inner lining: 1.

The LilyPad Arduino and the battery are actually inside the bottom band of the

garment, inserted through 2. the large cut on the right. The conductive ribbon

comes out of the bottom band through 3. the small cut, and goes to 4. the

pocket contacts at the top (opposite side of the garment).
Figure 10-22 . The conductive fabric

contacts inside the hoodie pocket.

2

3

1

4

Cut a hole in one side of the bottom band just below the
pocket to insert the microcontroller with the Bluetooth
Mate and battery attached. You’ll need to be able to get
the battery in and out for charging, so finish the edges
of the hole so they won’t fray with repeated use. Iron-on
fabric, or embroidery thread will do the job. Then add
Velcro to the inside edges to provide a closure.

Cut another small slit in the band about six inches (10cm)
away from the large hole so you can insert the ribbon
through the bottom band. Figure 10-21 shows the two cuts.

Make sure the LilyPad Arduino Simple is programmed and
the circuit is fully assembled before you sew it into the
garment. The sketch is below.

Position the ends of the ribbon on the inner lining of
the garment opposite the fabric contacts in the pocket.
Sew the conductive ribbon to the contacts through the
material with conductive thread. Use tight stitches for
a good connection. Use a meter to check connectivity
between the contacts and the opposite end of the ribbon
when you’ve finished your sewing. This way, you know the
signal makes it from the contacts through the garment to
the end of the ribbon that will attach to the LilyPad.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 405

Tack the ribbon down to the garment’s inner lining about
every inch, so it’s secure and won’t fold over itself when
worn. Don’t sew the battery in—you’ll need to remove it
for recharging. You shouldn’t need to sew the other com-
ponents in either, but Velcro on the back of the LilyPad
Arduino and in the lining of the band will secure it nicely.

At this point, the circuit should be fully functional. Test it
with a wired connection before going Bluetooth. To test it,
attach a USB-to-Serial connector to the LilyPad Arduino
(which will take some creative cabling) and open the serial
connection in the Serial Monitor or another serial terminal
program at 115200bps. Put your hand on the contacts in
the pocket. Then send any byte, and you should get back
a sensor value. To see a change in the value, either work
up a sweat or lick your hand and put it on the contacts
again. When you know it works, remove the USB-to-Serial
line, and connect the Bluetooth Mate and the battery and
turn it on. Now connect from the Serial Monitor or a serial
terminal program via the Mate’s serial port. This will work
like it did in Chapter 2 when you added the Bluetooth Mate
to Monski Pong.

The Code
There are three pieces of code for this project: the PHP
script, the Arduino sketch, and the Processing sketch. The
first two are relatively simple, and having them done and
tested makes the Processing sketch easier to understand.

The Arduino sketch listens for serial input and when a byte
arrives, it takes a reading, maps it to a voltage range, and
sends it out.

The PHP script accepts a request string and looks for
one variable, called data. It appends everything from that
variable into an existing text file called datalog.txt. It returns
a basic HTML page with the data that the client sent.

The Processing sketch checks if it’s connected to the
Arduino’s Bluetooth Mate. If it’s connected, it asks for a
reading once every 10 seconds. Once every two minutes, it
sends the accumulated readings to the PHP script. There
are also two buttons: one to get a reading and another to
send the reading to the server.
X

The Arduino sketch’s
global constants include

the two pins to be used as voltage and
ground for the sensor.

setup() initializes serial at 115200bps
(the default rate for the Bluetooth
Mate) and sets the voltage and ground
pins for the sensor appropriately.

loop() checks to see whether there’s
been any serial input. When there is, it
reads the byte just to clear the serial
buffer, then takes a sensor reading,
maps it, and returns it.

Notice that the mapping is to a range
from 0 to 3.7V. That’s because the
Lithium Polymer battery supplies the
microcontroller at 3.7V when fully
charged.

/*

 Galvanic Skin Response reader

 Context: Arduino

 */

const int voltagePin = 11; // use pin 11 as voltage

const int groundPin = A1; // use pin A1 as ground

void setup() {

 // initialize serial:

 Serial.begin(115200);

 // set powerPin and groundPin as digital outputs:

 pinMode(voltagePin, OUTPUT);

 pinMode(groundPin, OUTPUT);

 // set them high and low respectively:

 digitalWrite(voltagePin, HIGH);

 digitalWrite(groundPin, LOW);

}

void loop() {

 // if serial available, send average

 if (Serial.available() > 0) {

 int inByte = Serial.read();

 int sensorReading = analogRead(A0);

 float voltage = map(sensorReading, 0, 1023, 0,3.7);

 Serial.println(voltage);

 }

}

Read It

406 MAKING THINGS TALK

The PHP script uses the
$_REQUEST array variable

to get the results of the HTTP request.
Even though the Processing sketch
is making a GET request, this script
doesn’t care—it will read GET or POST.

First, it checks to see whether the $_
REQUEST array has a value set. If so, it
looks for a variable within it called data.

Next, it checks to see whether the
datalog file exists. If so, it opens it and
puts its contents in a variable called
$currentData. Then it appends the new
data from the client to the end of that
variable, and overwrites the file with
the result.

The HTML following the script echoes
back to the client what it sent. Putting
it in HTML format is handy for checking
it in a browser.

<?php

/*

 Data logger

 Context: PHP

*/

// name of the file on the server

// where you want to save stuff:

$dataFile = 'datalog.txt';

// see if the client uploaded a file:

if (isset($_REQUEST)) {

 $newData = $_REQUEST['data'];

 if (file_exists($dataFile)) {

 // Open the existing file to get existing content

 $currentData = file_get_contents($dataFile);

 // Add what you got from the client:

 $currentData .= $newData;

 // Write everything back to the existing file

 file_put_contents($dataFile, $currentData);

 }

}

?>

<html>

 <body>

 Here's what you sent:

 <?php echo $newData; ?>

 </body>

</html>

Log It

Figure 10-23

What the logger script returns in a browser.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 407

To enable the PHP script to write to the datalog
file, you’ll first need to create the file on your
server. Make a blank text file called datalog.

txt in the same directory as the PHP script (in the Linux
or Mac OS X Terminal, you can use the command touch
datalog.txt). Change its permissions so that it’s readable
and writable by others. From the command line of a Linux
or Mac OS X system, type:

chmod o+rw datalog.txt

If you’re creating the file using a GUI-based program, get
info on the file and set the permissions that way. Figure
10-24 shows the Get Info window from BBEdit, which is
similar to many other programs. Once you’ve made this
file, call it from the browser with a query string like this:

http://www.yourserver.com/logger.php?data=blahblahblah

You should get a page that looks like Figure 10-23. Open
the datalog.txt file. You’ll see something like this:

blahblahblah

blahblahblah

blahblahblah

If you do, you know everything is working and you’re ready
to write the Processing sketch.
X

Figure 10-24

Setting the read-write permissions for a file

from a GUI-based program.

Bluetooth Serial Library
In order to use the Processing for Android sketch, you’ll
need the Bluetooth Serial (BtSerial) library. This library
allows you to make serial connections over Bluetooth
using similar commands to those you used with the serial
library in Processing’s Standard mode. You can download
it from https://github.com/arduino/BtSerial. Click the
Downloads link and pick the latest download package
(0.1.6 as of this writing). Make sure to download the
download package not the source. Unzip the file. You’ll
get a directory called btserial-0.1.6. Inside it is a directory
called btserial. Place that in the libraries folder of your
Processing sketch directory, as you’ve done with other
libraries.

In Android mode in Processing version 1.5.1, libraries are
not always imported into your sketch automatically. This
will be fixed in future versions so that it works like the
Standard mode. If when you try to run your sketch you get
an error that says package cc.arduino.btserial does not
exist, make a subdirectory, code, in the sketch’s directory
and copy the file btserial.jar from the library subdirectory of
the btserial directory that you just installed into code. Then
try running your sketch again.

This is not ideal, but it should be addressed by the time
this book is in publication—the Processing team is very
good with bug fixes.
X

408 MAKING THINGS TALK

The global variables for
this sketch include: values

for the sensor reading interval, in
seconds, and the interval for updating
the server, in minutes; the times of
the last read and send; the address of
your server PHP script; the state of the
connection; two buttons for reading
and sending on demand; and the color
scheme for the app.

/*

 Datalogger

 Receives data via Bluetooth every ten seconds

 Uploads data via HTTP every two minutes

 Context: Processing, Android mode

 */

import cc.arduino.btserial.*;

// instance of the library:

BtSerial bt;

int readInterval = 10; // in seconds

int sendInterval = 2; // in minutes

int lastRead = second(); // the seconds last time you read

int lastSend = minute(); // the minutes last time you read

String lastSendTime; // String timestamp of last server update

// URL of your PHP Script:

String url = "http://www.yourserver.com/logger.php?data=";

String currentReadings = ""; // group of readings, with datestamps

String thisReading; // most recent reading

String connectionState = ""; // connected to Bluetooth or not?

Button readButton; // Button for prompting immediate read

Button sendButton; // Button for prompting immediate send

boolean updateNow = false; // flag to force an update

boolean sendNow = false; // flag to force a send

// color scheme from http://kuler.adobe.com

// deep optimism by nicanore:

color bgColor = #2B0D15;

color textColor = #FFEB97;

color buttonColor = #565F63;

color buttonHighlightColor = #ACBD9B;

Send It

The setup() method sets the back-
ground and fill colors, and initializ-

es the text parameters. Then, it makes
a new instance of the BtSerial library
and tries to connect to the Bluetooth
Mate using the connect() method.
Finally, it initializes the two onscreen
buttons.

8 void setup() {

 // set color scheme:

 background(bgColor);

 fill(textColor);

 // Setup Fonts:

 String[] fontList = PFont.list();

 PFont androidFont = createFont(fontList[0], 24, true);

 textFont(androidFont, 24);

 // instantiate the library:

 bt = new BtSerial(this);

»

 8 Change this to match
your PHP script’s URL.

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 409

Note that the button and text
positions are all relative to the

screenWidth and screenHeight
variables. This is so that they stay in
the same relation to each other and
the screen if the device is rotated.

The draw() method starts by
drawing the text strings and buttons.
Then it checks to see whether the
sensor reading interval has passed, or
whether the updateNow variable has
been set (when you click the Read Now
button, this variable is set to true).
If either of these is true, the sketch
takes a reading via Bluetooth using
the getData() method, and adds it to a
string of readings taken since the last
time it updated the server.

Next, it checks whether the send
interval or sendNow has been set by a
click of the Send Now button. If either
of these is true, it sends the current
string of readings to the server using
the sendData() method.

8

8

 // try to connect to Bluetooth:

 connectionState = connect();

 readButton = new Button(screenWidth/2 - 100, 2*screenHeight/3,

 200, 60, buttonColor, buttonHighlightColor, "Get Reading");

 sendButton = new Button(screenWidth/2 - 100, 2*screenHeight/3 + 80,

 200, 60, buttonColor, buttonHighlightColor, "Send Reading");

}

Continued from opposite page .

»

void draw() {

 // display data onscreen:

 background(bgColor);

 fill(textColor);

 textAlign(LEFT);

 text(connectionState, 10, screenHeight/4);

 text(getTime(), 10, screenHeight/4 + 60);

 text("latest reading (volts): " + thisReading, 10, screenHeight/4 + 90);

 text("Server updated at:\n" + lastSendTime, 10, screenHeight/4 + 120);

 // draw the buttons:

 readButton.display();

 sendButton.display();

 if (sendNow) {

 textAlign(LEFT);

 text("sending to server, please wait...", 10, screenHeight/4 - 60);

 }

 // if the update interval has passed,

 // or updateNow is true, update automatically:

 if (abs(second() - lastRead) >= readInterval || updateNow) {

 thisReading = getData();

 // if you got a valid reading, add a timestamp:

 if (thisReading != null) {

 currentReadings += getTime() +"," + thisReading;

 // take note of when you last updated:

 lastRead = second();

 // you've updated, no need to do it again until prompted:

 updateNow = false;

 }

 }

 // if the send interval has passed,

 // or sendNow is true, update automatically:

 if (abs(minute() - lastSend) >= sendInterval || sendNow) {

 sendData(currentReadings);

 // get the time two ways:

410 MAKING THINGS TALK

Last, the draw() method reads the
buttons, then sets their previous

states once it’s read them. This sketch
uses a modified version of the Button
class from the Processing RFID writer
sketch in Chapter 9. Because the
cursor on a touchscreen (namely,
your finger) can disappear, there’s
no equivalent to the mousePressed
and mouseReleased events, so you
have to make one up. You’re doing
that in this case by having a method
in the Button class called isPressed(),
a variable called pressedLastTime,
and two methods that let you get and
set this variable. With these, you can
check the current state of the button
(isPressed()), save it when you’re done
(setLastState()), and get the state last
time you checked it (getLastState()).

When the sketch pauses, the
pause() method is called. This

method sends any current readings
to the server, then disconnects the
Bluetooth serial connection so you
can open it again on resume. There is
no resume() method, since setup()
gets called by default every time an
Android activity resumes (remember,
a Processing sketch for Android is an
activity).

The connect() method tries to
make a Bluetooth connection.

First, it makes sure there’s a valid
instance of the BtSerial library and
that it’s not already connected to the
remote device (the Bluetooth Mate
in this case). Then it gets a list of all
paired devices on your phone and tries
to connect to the first one.

Before you run the sketch, go to the
Bluetooth Settings on your phone
(under Settings→Wireless Settings),
and pair with your Bluetooth Mate. If

8

8

8

Continued from previous page .

 lastSendTime = getTime(); // a String to print on the screen

 lastSend = minute(); // an int for further comparison

 }

 // if the read button changed from not pressed to pressed,

 // set updateNow, to force an update next time through the

 // loop. Do the same for the send button and sendNow, right below:

 if (readButton.isPressed() && !readButton.getLastState()) {

 updateNow = true;

 }

 //save the state of the button for next check:

 readButton.setLastState(readButton.isPressed());

 if (sendButton.isPressed() && !sendButton.getLastState()) {

 sendNow = true;

 }

 //save the state of the button for next check:

 sendButton.setLastState(sendButton.isPressed());

}

void pause() {

 // if you have any readings, send them:

 if (!currentReadings.equals("")) {

 sendData(currentReadings);

 }

 // stop the Bluetooth connection so you can start it again:

 if (bt != null && bt.isConnected()) {

 bt.disconnect();

 }

}

String connect() {

 String result = "Bluetooth not initialized yet...";

 if (bt !=null) {

 // if you are connnected, get data:

 if (!bt.isConnected()) {

 // get the list of paired devices:

 String[] pairedDevices = bt.list();

 if (pairedDevices.length > 0) {

 println(pairedDevices);

 // open a connection to the first one:

 bt.connect(pairedDevices[0]);

 result = "Connected to \n" + bt.getName();

 } »

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 411

you don’t, the app can’t see the
Bluetooth Mate. If your Bluetooth

Mate isn’t the first item in the list of
devices, be sure to change the call to:

bt.connect(pairedDevices[0]);

to match the number of your Bluetooth
Mate in the list.

The getData() method checks
to see that there’s a valid Bluetooth
connection. Then, it sends a byte
prompting the Arduino to send a
reading in return. It adds all the bytes it
gets in response to a result string.

Since the Bluetooth connection might
get broken, the method checks to see
that what it got ended with a newline,
which is the last byte that the Arduino
will send. If the method has a valid
reading string, it returns it. Otherwise,
it returns null.

If there isn’t a valid connection,
getData() attempts to make one.

8

8

Continued from opposite page .

 }

 else {

 result = "Couldn't get any paired devices";

 }

 }

 return result;

}

String getData() {

 String result = "";

 if (bt != null) {

 // if you are connnected, get data:

 if (bt.isConnected()) {

 // send data to get new data:

 bt.write("A");

 // wait for incoming data:

 while (bt.available () == 0);

 // if there are incoming bytes available, read them:

 while (bt.available () > 0) {

 // add the incoming bytes to the result string:

 result += char(bt.read());

 }

 // get the last character of the result string:

 char lastChar = result.charAt(result.length() - 1);

 // make sure it's a newline, or you don't have valid data:

 if (lastChar != '\n') {

 result = null;

 }

 } // if you're not connected, try to pair:

 else {

 connectionState = connect();

 }

 }

 return result;

}

412 MAKING THINGS TALK

The sendData() method sends
the current readings to the server

using Processing’s loadStrings()
method. loadStrings() does a basic
HTTP GET request, and returns
whatever the server sends it.

URL strings need to be formatted
cleanly (no spaces, no newlines or
carriage returns, and so forth), so
sendData() calls formatData(), which
converts spaces, newlines, and returns
into their HTTP-safe equivalents.

The final method in the main
sketch is getTime(), which just

returns a formatted date/time string.

The Button class for this sketch
differs from the one for the RFID

Writer sketch in Chapter 9, in that it
has a variable and methods to track
its pressed state the last time you
checked it.

8

8

8

8

void sendData(String thisData) {

 // if there's data to send

 if (thisData != null) {

 // URL-encode the data and URL:

 String sendString = formatData(url + thisData);

 //send the data via HTTP GET:

 String[] result = loadStrings(sendString);

 // clear currentReadings to get more:

 String currentReadings = "";

 }

}

String formatData(String thisString) {

 // convert newlines, carriage returns, and

 // spaces to HTML-safe equivalent:

 String result = thisString.replaceAll(" ", "%20");

 result = result.replaceAll("\n", "%0A");

 result = result.replaceAll("\r", "%0D");

 return result;

}

// get the date and time as a String:

String getTime() {

 Date currentDate = new Date();

 return currentDate.toString();

}

// The Button class defines the behavior and look

// of the onscreen buttons. Their behavior is slightly

// different on a touchscreen than on a mouse-based

// screen, because there is no mouseClick handler.

class Button {

 int x, y, w, h; // positions of the buttons

 color basecolor, highlightcolor; // color and highlight color

 color currentcolor; // current color of the button

 String name; // name on the button

 boolean pressedLastTime; // if it was pressed last time

 // Constructor: sets all the initial values for

 // each instance of the Button class

 Button(int thisX, int thisY, int thisW, int thisH,

 color thisColor, color thisHighlight, String thisName) {

 x = thisX;

 y = thisY;

 h = thisH; »

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 413

The constructor for this Button
class is almost the same, except

for the new variable, pressedLastTime.

The display() method combines the
functions of update() and display()
from Chapter 9’s RFID Writer example,
both changing the color as needed and
drawing the actual button.

isPressed() checks not only whether
the mouseX and mouseY are within
the button’s bounds, but it also uses
mousePressed to indicate whether the
user is touching the screen at all.

setLastState() and getLastState()
give you access to the last state of the
button from outside the class.

That’s the end of the whole sketch; see
Figure 10-24 for an illustration.

8 Continued from opposite page .

 w = thisW;

 basecolor = thisColor;

 highlightcolor = thisHighlight;

 currentcolor = basecolor;

 name = thisName;

 pressedLastTime = false;

 }

 // draw the button and its text:

 void display() {

 // if pressed, change the color:

 if (isPressed()) {

 currentcolor = highlightcolor;

 }

 else {

 currentcolor = basecolor;

 }

 fill(currentcolor);

 rect(x, y, w, h);

 //put the name in the middle of the button:

 fill(textColor);

 textAlign(CENTER);

 text(name, x+w/2, y+h/2);

 }

 // check to see if the mouse position is inside

 // the bounds of the rectangle and sets its current state:

 boolean isPressed() {

 if (mouseX >= x && mouseX <= x+w &&

 mouseY >= y && mouseY <= y+h && mousePressed) {

 return true;

 }

 else {

 return false;

 }

 }

 //this method is for setting the state of the button

 // last time it was checked, as opposed to its

 // current state:

 void setLastState(boolean state) {

 pressedLastTime = state;

 }

 boolean getLastState() {

 return pressedLastTime;

 }

}

414 MAKING THINGS TALK

When you run this sketch on an Android device,
it will try to connect. When it succeeds in doing
so, it will check for new readings every 10

seconds. It will then attempt to send those to the server
every two minutes. It doesn’t check that it got a valid
response, however; that is left as an exercise for you.

Armed with this much, there’s a lot you can do with Pro-
cessing for Android. You’ve got the ability to contact the
Internet and to contact local devices wirelessly. You can
also contact the built-in sensors, of course. The phone is
now your hub to connect a whole lot of things.

What About USB?
Android devices are normally USB end devices, not USB
hosts. So, you can’t plug an end device like a mouse, a
keyboard, or an Arduino into them and have them work

Figure 10-25

The datalogger sketch.

Figure 10-26

The datalogger hoodie in action. How excited is he to be

wearing it? Check his GSR readings online to find out!

like they do on your computer. However, Google decided
that you might want to develop USB accessories, so they
recently announced the Google Accessory Development
Kit, an open hardware platform for developing USB acces-
sories for Android. The Accessory Development Kit is
based on an Arduino Mega 2650 with a USB Host shield
(originally designed by Oleg Mazurov of www.circuitsath-
ome.com) built into it. Circuits@Home sells a few good
variants on the USB Host shield: for the standard Arduino
shield form and for the Mini Pro. The Arduino Store carries
the Arduino Mega ADK, and a Processing for Android
library is in development. Several others are in the works
from different companies, so by the time you read this,
you’ll have lots of options.
X

MOBILE PHONE NETWORKS AND THE PHYSICAL WORLD 415

These days, mobile phone networks cover almost the
entire planet, more than any other form of network con-
nection. The technology of mobile networks changes
quickly, and many of the tools disappear almost as fast
as they appeared. If you’re making projects using mobile
network technologies, it’s best to take a broad view. Look

Conclusion
The connection between the Internet and mobile networks widens your options by

offering a ubiquitous connection and a variety of communication methods. Taking

advantage of it requires some creative thinking about how to hop across different inter-

faces, systems, and protocols.

SIMbaLink, by Meredith Hasson, Ariel Nevarez, and Nahana Schelling . The SIMbaLink team developed a device that remotely

monitors the health of a solar home system and reports it back to the SIMbaLink client website via a GPRS modem . Working in

conjunction with a solar company in Ethiopia, SIMbaLink remotely monitored solar home systems outside Awassa, Ethiopia . The

systems consisted of a 10W solar panel, a battery, and four 1-watt LED lamps . This simple setup brings light to an otherwise dark

and unpowered rural home . Photos courtesy of Meredith Hasson.

for the things that seem simpler and stabler—like SMS
and HTTP—and be prepared to shift your approach when
the tools change. In Chapter 11, you’ll review some of the
protocols you’ve seen throughout the book in order to get
a wide view of what’s possible.
X

Protocols Revisited
One of the most valuable skills you can develop is the ability to create

graceful transitions between seemingly incompatible systems. An

understanding of different protocols is central to that skill. You've used

a number of communications protocols in this book, but by the time

you read this, the protocols you learned may have changed or become

obsolete. However, if you understand how to learn new ones, you'll do

fine. This final chapter is a view from the high ground, looking over the

landscape of protocols you've seen in this book to consider their simi-

larities and differences, how they all fit together, and how to go about

learning new ones in the future.

Chapter 11
MAKE: PROJECTS

418 MAKING THINGS TALK

DISTRIbuTOR KEy
• A Arduino Store (http://store.arduino.cc/ww)
• AF Adafruit (www.adafruit.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• MS Maker SHED (www.makershed.com)
• RS RS (www.rs-online.com)
• SF Spark Fun (www.sparkfun.com)
• SS Seeed Studio (www.seeedstudio.com)

Supplies for Chapter 11

Figure 11-1 . New parts for this chapter: Spark Fun Musical Instrument shield.

3

PROJECT 32: Fun with MIDI
 » 1 Arduino module An Arduino Uno or something based

on the Arduino Uno, but the project should work on
other Arduino and Arduino-compatible boards.
D 1050-1019-ND, J 2121105, SF DEV-09950,
A A000046, AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » 1 Spark Fun Musical Instrument shield SF DEV-10587
 » 1 Maxbotix LV-EZ1 sensor SF SEN-00639
 » 100µF capacitors J 158394, D P10269-ND, F 1144642,
RS 715-1657

Protocols Revisited 419

Make the Connections
Protocols are much easier to learn when you can relate them to ones you know already.

Fortunately, you now know several. You can compare them at any of the levels discussed

in Chapter 2. The three that will affect your project the most are the physical, the data,

and the application. You can also consider the structures of the networks on which they

communicate: direct one-to-one connections, networks with a central hub or control-

ler, multitiered networks, rings, and buses. Once you know the structure of the system,

you can consider the grammar and syntax of the communications protocols being used.

Each of these things will help you translate from one device or system to another, and

each aspect of the communication will tell you something about the other aspects.

For example, if you're dealing with a protocol that uses
addresses, you can be sure that it's designed for com-
munication between more than two things. If the address
is broken into several pieces, like IP addresses, you can
assume it's probably used on a multitiered network.

Know Your Options at the Physical
Level
When you start to work with a new electronic device,
get familiar with what protocols it speaks. By now you're

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

SPI

S
S

SS can be any free
I/O pin

Microcontroller’s Tx is
USB-to-UART controller’s Rx

and vice versaM
IS

O
S

C
K

R
x

Tx
S

D
A

S
C

L

M
O

S
I

I2C

UART

SoftwareSerial
can be any two free pins

USB

USB-to-
UART

controller

Microcontroller

Figure 11-2

The Arduino's communica-

tions options. Asynchronous

serial ports are referred to as

Universal Asynchronous Receiver-

Transmitters (UARTs) in technical

documentation, so get familiar

with the term.

420 MAKING THINGS TALK

BW

PW

AN

RX

TX

+5V

GND

Analog Voltage out
(~9.8mV per inch)

RS-232 serial
(9600bps, 8-N-1, outputs

“Rxxx\r”,
where xxx is 0-255)

Rx

Pulse width out
(147µs per inch)

Tx

Figure 11-3

MaxBotix LV-EZ-1 communica-

tions options.

familiar with the various protocols that the Arduino
speaks. Figure 11-2 gives you an overview of them.

This figure tells you something about the physical layer
(which pins are used for which modes of communication)
and the data layer (which data protocols the device can
speak). You know by now that if you're using a particular
set of pins for its communications functions, you can't use
it for other functions.

Most of the single-purpose devices you used in the book
spoke only one protocol, but that's not always the case.
For example, the ultrasonic ranger you used in Chapter 8
offers three different interfaces. It has an analog voltage
output (0-5V, the one you used); an asynchronous RS-232
serial port (Tx and Rx) that sends data at 9600 bits per
second; and a pulse-width output (PW), which outputs a
pulse that goes from low to high to low again, changing the
width of the pulse with the distance of the detected object.
All of this is described in the ranger's datasheet, which
you can find online at www.maxbotix.com. These multiple
protocols are useful when you're interfacing the sensor to
a microcontroller with no analog inputs; when you want
to talk directly to a computer that has an RS-232 serial
port; or when you're not using a computer at all, and want
to control a simple circuit with a changing pulse width or
voltage.

The SonMicro RFID reader you used in Chapter 9 also
offered two different communications options: TTL serial

and I2C. The serial port was useful for communicating
directly with your personal computer; the I2C option was
useful when working with the microcontroller, because it
left the microcontroller's serial port open for programming
and debugging.

When you're planning a project, consider which of your
devices' ports are used for configuring, programming, and
debugging, and try to leave them free when possible. On
the other hand, if the programming interface offers the
fastest and most reliable means of communication, it may
be worthwhile to deal with having to use it for both pro-
gramming and its final application.

Picking a Serial Protocol
When planning a project, picking a serial protocol may
seem confusing: synchronous or asynchronous? TTL serial
or RS-232? I2C or SPI? USB? Most of the time, the choices
are made for you because there's some component that
you have to use—and it only speaks one protocol. But
when you have a choice, here are a few things to consider.

What protocols are common to all the devices in your
system? If all of your devices speak the same protocol, it's
probably the obvious choice.

Do your devices need to be able to decide indepen-
dently when they'll send information? If so, then any
system that combines them in a master-slave relationship,
like any of the synchronous serial protocols, won't work.

Do you need multiple devices to communicate over
the same wires? If so, consider protocols that use a bus
system. Synchronous serial protocols and some asynchro-
nous ones, like USB and RS-485, use such a system. All of
these require some form of addressing.

Is distance or speed a factor? Many protocols that need
to be able to transmit over long distances use differential
signaling, in which there's both a data+ and data- line. The
same data is sent over both lines, always adding up to zero
volts. This minimizes electrical noise. USB, RS-485, and
Ethernet all use differential signaling. Differential signaling
generally allows for faster data rates as well.

Protocols Revisited 421

Plan the Physical System and
Information Flow Early
When you know your physical communications protocol
options, you can plan how things communicate before you
begin to program or configure anything. Doing so will save
you a lot of time.

Consider the CatCam web server in Chapter 10. It involved
several devices:

• Microcontroller
• Ethernet controller
• SD card
• Temperature sensor
• Relay control
• IP-based camera

This table shows a summary, and lists the characteristics, of a few serial protocols mentioned in the book.

Synchronous Serial Protocols Asynchronous Serial Protocols Asynchronous Serial bus Protocols

• Master-slave relationship between
devices

• Several devices share the same
data lines

• Needs a clock line from the master
to slaves

• Distance: 1m or less
• Various voltage ranges, commonly

5V or 3.3V

• No common clock, but agreement
on data rate

• Typically used for one-to-one
communication, not networks

• No common clock, but agreement
on data rate

• Often used for longer distances or
networks

• Typically differential signaling
• 3 to 4 wires: Data+, Data-, Ground,

Voltage (optional)

I2C/TWI

• 3 wires: Data, Clock, Ground
• Each slave gets a unique address,

sent first

TTL Serial

• Various voltage ranges, commonly
5V or 3.3V

• 3 wires: Transmit, Receive, Ground
• Logic: +V = logic 1, 0V = logic 0
• Distance: typically 1m or less

uSb

• Voltage range: 0 to 5V
• Distance: 10m or less

SPI

• 4 + n wires: Master In Slave Out
(MISO), Master Out Slave In
(MOSI), Clock, Ground, 1 Chip
Select for each slave device

• Addressing is done using chip
select lines

RS-232

• Voltage range: ±3 to ±15V
• Logic: -V = logic 1, +V = logic 0
• 0V has no logical meaning
• Distance: 300m or less

RS-485 (DMX-512)

• Voltage range: –7 to +12V
• Distance: 1200m or less

To plan a project like that, you can (and should) diagram
the flow of information between all the elements, as you
saw in Figures 10-3 and 10-4, so you know what each one
needs from the others. Consider what pins of your micro-
controller are available for the various functions you need.
Decide where images and web pages are best served from,
and what links and permissions are required to make it all
happen. Consider which way data flows, and who needs to
know whose address. Decide where you'll place the server
and the camera physically, and how you will house them.
That way, you can reduce your actual production workload,
and concentrate on building only what you need in code, in
circuits, and in materials.

422 MAKING THINGS TALK

Text or Binary?
One of the most confusing aspects of data communications is understanding the differ-

ence between a binary protocol and a text-encoded protocol. As you learned in Chapter

2, there is a common scheme for translating the data you send into alphanumeric char-

acters. ASCII—and its more modern cousin, Unicode—allow you to convert any stream

of text into binary information that a computer can read, and vice versa. Understanding

the difference between a protocol that is text-based and one that's not, and why you'd

make that choice, is essential to understanding how electronic things communicate.

Isn't All Data Binary?
Well, yes. After all, computers only operate on binary logic.
So, even text-based protocols are, at their core, binary.
However, it's often easier to write your messages in text
and insist that the computers translate that text into bits
themselves. For example, take the phrase "1-2-3, go". You
can see it laid out in characters below, with the ASCII code
for each character, and the bits that make up that code. It
may seem like a lot of ones and zeroes for the computer to

process, but when it's reading them at millions or billions
of bits a second, it's no big deal. But what about when it's
sending it to another computer? There are 80 bits there.
Imagine you're sending it using TTL serial at 9600bps.
If you add a stop bit and a start bit between each one—
as TTL and RS-232 serial protocols do—that's 96 bits,
meaning you could send this message in 1/100th of a
second. That's still pretty fast.

Character 1 - 2 - 3 , g o !

ASCII code 49 45 50 45 51 44 32 103 111 33

binary 00110001 00101101 00110010 00101101 00110011 00101100 01000000 01100111 01101111 01000001

What about when the messages you have to send are not
text-based? Imagine you're sending a string of RGB pixel
values, each ranging from 0 to 255 like this:

102,198,255,127,127,212,255,155,127,

You know that each reading is eight bits, so in their most
basic form, they take up three bytes per pixel. But if you're
sending them in text form it's one byte per character, so
the string above would be 36 bytes to send nine values. If
you hadn't encoded it in text form, but just sent each value
as a byte, you'd have only sent nine bytes. When you start
to send millions of pixels, that's a big difference! In cases
like this, where all the data you want to send is purely
numeric (you don't need any text to describe the pixels
because you know the first byte is always red, the second
green, the third blue, and so on), sending data without
encoding it as text makes sense. When you need to send

text (for example, email or hypertext), encoding it as
ASCII/Unicode makes sense. When the number of bytes
you'd send is minimal, as with most of the sensor strings
you've sent in this book, encoding it as ASCII/Unicode
can help with debugging, because most serial or network
terminal programs interpret all bytes that they receive as
text, as you've seen. So:

• If there's a lot of data and it's all numeric, send as raw
binary.

• If there's text, send as Unicode/ASCII.
• If it's a short data string, send as whichever makes you

happy.

Protocols Revisited 423

Interpreting a Binary Protocol
Since most of the protocols you've dealt with in this
book have been text-based, you haven't had to do a lot of
interpreting of the bits of a byte. Binary protocols often
demand that you know which bit represents what, so it's
useful to know a little about the architecture of a byte and
how to manipulate it. Let's now talk for a bit about bits.

Binary protocols often show up in communications
between chips in a complex device, particularly in syn-
chronous serial protocols. Many SPI and I2C devices have
small command sets. Their single-byte operational codes,
or opcodes, are often combined with the parameters for
the commands in the same byte. You saw this in action in
Chapter 9 when you sent the opcode to read the firmware
of the SM130 RFID reader.

These protocols are usually written out in hexadecimal
notation, binary notation, or both. You've seen hexa-
decimal or base-16 notation already in this book. Just as
hexadecimal numbers begin with 0x, binary numbers in
Arduino—and by extension in C—begin with 0b, like so
0b10101010.

Which digit matters most in the number below?

$2,508

The 2, because it represents the largest amount, two
thousands, or two groups of 103. It is the most significant
digit. That number was in decimal, or base-10 notation.
The same principle applies when you're writing in binary,
or base-2. Which is the most significant bit:

0b10010110

The leftmost 1 is most significant because it represents 1
group of 128, or 27. Usually when you see bits written out,
though, you care less about their decimal numeric values
than their position in the byte. For example, in the project
that follows, you're going to make music using MIDI, the
Musical Instrument Digital Interface protocol. MIDI is a
binary protocol in which all bytes with a 1 in the most sig-
nificant bit are commands (verbs), and all bytes with a 0 in
the most significant bit are data bytes (nouns, adjectives,
or adverbs). A MIDI interpreter could look at the most sig-
nificant bit (which happens to be the first to arrive serially)
and know whether it's getting a command or not.

Bit Reading and Writing
Arduino offers you some commands for reading and
writing the bits of a byte:

// to read the value of a bit:

myBit = bitRead(someByte, bitNumber);

// to write the value of a bit:

bitWrite(someByte, bitNumber, bitValue);

Giving a bit the value 1 is called setting the bit in general
programming terms, and giving it the value 0 is known as
clearing the bit. So you also have commands for these:

// to make a bit equal to 1:

bitSet(someByte, bitNumber);

// to make a bit equal to 0:

bitClear(someByte, bitNumber);

Bit Shifting
Sometimes it's easier to manipulate several bits at once.
The shift left and shift right operators in Arduino, C, and
Java allow you to just that. The shift left operator (<<)
moves bits to the left in a byte, and the shift right operator
(>>) moves them to the right:

0b00001111 << 2; // gives 0b00111100
0b10000000 >> 7; // gives 0b0000001

Bit shifting is useful when you need a particular value to be
in a specific part of a byte, as you'll see shortly.

Bit Masking
The logical operators AND, OR, and XOR allow you to
combine bits in some interesting ways.

AND (&): if the two bits are equal, the result is 1.
Otherwise, it's 0:

1 & 1 = 1

0 & 0 = 1

1 & 0 = 0

0 & 1 = 0

OR (|): if either bit is 1, the result is 1. Otherwise, it's 0:

1 | 1 = 1

0 | 0 = 0

1 | 0 = 1

0 | 1 = 1

424 MAKING THINGS TALK

XOR (^): if the bits are not equal, the result is 1. Otherwise,
it's 0:

1 ̂ 1 = 0

0 ̂ 0 = 0

1 ̂ 0 = 1

0 ̂ 1 = 1

Using the logical, or bitwise, operators, you can isolate one
bit of a byte, like so:

// Check if bit 7 of someByte is 1:

if (someByte & 0b10000000) {}

In MIDI command bytes, for example, the command is the
leftmost four bits, and the MIDI channel is the rightmost
four bits. So, you could isolate the MIDI channel by using
the AND operator:

channel = commandByte & 0b00001111;

Or, you could use bit shifting to get the command and lose
the channel:

command = commandByte >> 4;

Combined, these bit-manipulation commands give you all
the power you need to work with binary protocols.

Hex: What Is It Good For?
Since you can manipulate binary protocols bit by bit,
you're probably wondering what hexadecimal notation
is good for. Hex is useful when you're working in groups
of 16, of course. For example, MIDI is grouped into banks
of instruments, with 128 instruments per bank, and each
instrument can play on up to 16 channels. So, those
command bytes you were manipulating earlier could also
be manipulated in hex. For example. 0x9n is a Note On
command, where n is the channel number, from 0 to A in
hex. 0x9A means note on, channel A (or 10 in decimal).
Similarly, 0x8A means note off, channel A. Once you
know that MIDI is organized in groups of 16, it makes a
lot of sense to read and manipulate it in hexadecimal. In
fact, many binary protocols can be grouped similarly, so
knowing how to manipulate them in binary or hexadecimal
is handy.

The next project puts these principles in action to control a
MIDI synthesizer.
X

Protocols Revisited 425

MIDI
The Musical Instrument Digital Interface (MIDI) protocol enables real-time communica-

tion between digital musical instruments. It’s the granddaddy of digital

synthesizer protocols.

Most music synthesizers, sequencers, samplers,
keyboards, and workstations on the market today speak
MIDI. If you plan to make music using hardware,
you’re going to run across it. MIDI is a comprehensive
specification covering serial communication, hardware,
and even the arrangement of banks of sounds in a syn-
thesizer's memory. Because it's so comprehensive, it's
enabled composers and musicians to work across a wide
range of MIDI synthesizers, samplers, and controllers for
decades. The full protocol is detailed on the MIDI Manufac-
turers' Association page at www.midi.org.

MIDI is a music description protocol. MIDI messages don't
actually play notes—they describe what notes to play to a
synthesizer. In that sense, MIDI is to music as HTML is to
web pages. MIDI relies on a synthesizer to render music,
just as HTML relies on a browser to render your page.

MIDI devices are loosely grouped into controllers, or things
that generate MIDI messages, and playback devices, which
receive messages and do something with them. Keyboards
and other input devices fall into the first category. Syn-
thesizers, samplers, and many other devices fall into the
latter.

The MIDI serial protocol runs at 31,250 bps. There’s a
standard MIDI connector, a DIN5, that you’ll find on all
MIDI gear. All the connectors on the gear are female plugs,
and the cables all have male connectors on both ends. All
MIDI inputs to a device are supposed to be opto-isolated,
so there is no direct electrical connection from one device
to the next. An opto-isolator is a component containing
an LED and a phototransistor. The input turns on the LED,
and the LED triggers the phototransistor, which turns on
the output. Figure 11-4 shows how to build a MIDI input
and output circuit if you plan to build your own. This circuit
would allow you to connect your microcontroller to any
MIDI synthesizer or controller. There are several MIDI
shields on the market if you don't want to build your own.

Microcontrollers are more frequently used as MIDI control-
lers than as MIDI input devices. There are so many good
synthesizers and samplers on the market that just need
a controller to make music, and controllers are fun and
easy to build. For the project that follows, you'll build a very
basic controller and use Spark Fun's Musical Instrument
shield as your MIDI input device, which is a general MIDI
synthesizer on a shield. The same code will work if you
want to connect the microcontroller to any general MIDI
synth, because the general MIDI specification covers not
only the messages, but how synthesizers organize their
banks of sounds.

MIDI messages are divided into three or more bytes. The
first byte, a command byte, is always 128 (0x80) or greater
in value. Its value depends on the command. The bytes
that follow it are called status bytes. All status bytes have
values of 127 (0x7F) or less.

There are a number of different MIDI commands. The most
basic, note on and note off messages, control the playing
of notes on 16 different channels of a synthesizer. Each
note on or note off command contains two status bytes,
specifying the pitch in a range from 0–127 (a seven-bit
range) and the velocity (how hard the note should be
struck), which is also seven bits. Pitch value 0x45 is
defined as A above middle C (A-440) by the general MIDI
specification. This specification also covers the instru-
ments that you’re likely to find on each channel. For a full
listing of the General MIDI instrument specification, see
www.midi.org/techspecs/gm1sound.php.

For more information on MIDI, see Paul D. Lehrman and
Tim Tully’s book MIDI for the Professional (Amsco).

426 MAKING THINGS TALK

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L 1 5 10 15 20 25 30

1 5 10 15 20 25 30

A
B
C
D
E

F
G
H
I
J

IC

AREF

GND

D13

D12

D11/PWM2

D10/PWM1

D9/PWM0

D8

D7

D6

D5

D4

D3

D2

Digital1/TX

Digital0/RX

+5V

Gnd

Gnd

+9V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

6N138
Opto-

isolator
1N914

220Ω

270Ω

220Ω

+5V

+5V

45
2

13

MIDI out
(facing solder lugs

of socket)

45
2

13

MIDI in
(facing solder lugs

of socket)

Figure 11-4

MIDI input and output from a micro-

controller. When you have to build

your own MIDI input or output, this is

how you do it.

Protocols Revisited 427

In this project, you'll see how a binary

protocol is handled by running some basic

MIDI exercises. Because of the wide range

of MIDI controllers and input devices on

the market, MIDI offers a very broad range

of sonic possibilities. So, MIDI is a good

protocol to be familiar with if you like

sound projects.

The best way to get started with MIDI is to build a very
simple controller, connect it to a synthesizer, and see what
it can do. If you have your own synthesizer, you can use the
circuit in Figure 11-4; if not, you can use the Musical Instru-
ment shield as shown in Figure 11-5. It just stacks on top
of an Arduino like other shields. The synth receives MIDI in
from the Arduino's pin 3. To communicate with it, you'll use
the SoftwareSerial library.

MATERIALS

 » 1 Arduino
 » MIDI Musical Instrument shield
 » 1 Sharp IR ranger
 » 1 100µF capacitor
 » 1 pair headphones or speakers

Fun with MIDI

Project 32

The first sketch below is a test of the available instru-
ments and channels. You'll notice that for each instrument,
channel 10 is percussion—that's also part of the general
MIDI instrument specification. This specification makes it
possible for you to use a controller on the same channel
and instrument with any MIDI synthesizer, and know more
or less what kind of sound you'll get.

Start by setting up your
pins, as usual. MIDI out

will be on pin 3, and the Music Instru-
ment shield reset pin is on pin 4. If you're
using an external synth and the circuit
in Figure 11-4, you won't need the reset
connection.

setup() starts the serial and MIDI con-
nection, and resets the shield. Then it
sends a MIDI Control Change command
on channel 0 (0xB0) to perform a Bank
Selection. This sets the bank of instru-
ments you'll play.

This example is based on Nathan
Seidle's example sketches for the
Musical Instrument Shield, available at
www.sparkfun.com/products/10587.

 Play It /*

 MIDI general instrument demo

 Context: Arduino

 Plays all the instruments in a General MIDI instrument bank

 */

#include <SoftwareSerial.h>

// set up a software serial port to send MIDI:

SoftwareSerial midi(2,3);

const byte resetMIDI = 4; // Midi synth chip reset line

void setup() {

 // initialize serial communications at 9600 bps:

 Serial.begin(9600);

 // initialize MIDI serial on the software serial pins:

 midi.begin(31250);

 //Reset the MIDI synth:

 pinMode(resetMIDI, OUTPUT);

 digitalWrite(resetMIDI, LOW);

 delay(20);

 digitalWrite(resetMIDI, HIGH);

 delay(20);

 // send a MIDI control change to change to the GM sound bank:

 sendMidi(0xB0, 0, 0);

}

428 MAKING THINGS TALK

 loop() cycles through all the
instruments in the bank. For each
instrument, it performs a MIDI
Program change to select the instru-
ment; then, it cycles through each of
the 16 channels. For each channel, it
plays notes from 21 (A0, the lowest
note on an 88-key piano) to 109 (C8,
the highest note).

noteOn(), noteOff(), and sendMidi()
are methods to send MIDI

commands. The sendMidi() method
just sends the three bytes you give it.
The noteOn() and noteOff() methods
use a bitwise OR operation to combine
the command (0x80 or 0x90) with the
channel into a single byte.

When you run this sketch, you should
hear all the sounds your synth can
make on the first bank of sounds.

8

8

void loop() {

 //Cycle through all the instruments in the bank:

 for(int instrument = 0 ; instrument < 127 ; instrument++) {

 Serial.print(" Instrument: ");

 Serial.println(instrument + 1);

 // Program select. Has only one status byte:

 sendMidi(0xC0, instrument, 0);

 // change channels within the instrument:

 for (int thisChannel = 0; thisChannel < 16; thisChannel++) {

 Serial.print("Channel: ") ;

 Serial.println(thisChannel + 1);

 for (int thisNote = 21; thisNote < 109; thisNote++) {

 // note on

 noteOn(thisChannel, thisNote, 127);

 delay(30);

 // note off

 noteOff(thisChannel, thisNote, 0);

 delay(30);

 }

 }

 }

}

//Send a MIDI note-on message. Like pressing a piano key

//channel ranges from 0-15

void noteOn(byte channel, byte note, byte velocity) {

 sendMidi((0x90 | channel), note, velocity);

}

//Send a MIDI note-off message. Like releasing a piano key

void noteOff(byte channel, byte note, byte velocity) {

 sendMidi((0x80 | channel), note, velocity);

}

void sendMidi(int cmd, int data1, int data2) {

 midi.write(cmd);

 midi.write(data1);

 midi.write(data2);

}

Protocols Revisited 429

Figure 11-5

Spark Fun Musical Instrument shield

attached to an Arduino and an

infrared ranger. The 100µF capacitor

smoothes the sensor's readings a bit,

but it's optional if your sensor gives

reliable readings without it.

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

P
ow

er

M
usical Instrum

ent S
hield

-
+

S
peaker

R
eset

R
ight

Left
S
peaker
-

+

M
ID
I-In

R
eset

G
N
D

G
N
D

+5V

R
S
T

V
IN

+3.3V 0 1 2 3 4 5Analog In

G
N
D

13 12 11A
R
E
F

10 9 8 7 6 5 4 3 2 TX R
X

Of course, you can't
be a self-respecting

MIDI enthusiast until you've built your
first theremin. It's like calling yourself a
writer before you've written your auto-
biography—it's just not done! Waving at
a distance ranger to make notes is a rite
of passage in MIDI-land. So, here's your
first MIDI theremin program. This one's
a bit different than most, as you'll see.

The global variables include a threshold
setting for the infrared ranger, and a
variable to hold the previous reading.

setup() opens communications and
resets the shield.

 Wave at It /*

 Stinger player

 Context: Arduino

*/

#include <SoftwareSerial.h>

// set up a software serial port to send MIDI:

SoftwareSerial midi(2, 3);

const int midiResetPin = 4; // Musical instrument shield's reset pin

const int threshold = 100; // sensor threshold

int lastReading = 0; // last sensor reading

void setup() {

 // initialize hardware serial and MIDI serial:

 Serial.begin(9600);

 midi.begin(31250);

 // reset the musical instrument shield:

 resetMidi(midiResetPin);

}

430 MAKING THINGS TALK

The loop() reads the sensor, and
when it crosses a threshold, it triggers
a method called playStinger() that
plays a sequence of notes.

playStinger() plays a sequence
of notes with a sequence of pauses in
between. To do this, it calls notes from
an array using noteOn() and noteOff(),
and then pauses, according to the rest
times given by an array.

noteon(), noteOff(), and sendMidi() are
the same as in the previous example,
and you can copy them from there.

resetMidi() takes the reset from
the previous example out of setup()
and puts it in its own method.

When you've uploaded this sketch, say
the following:

"A guy walks into a bar and says
'OUCH!'"

Then wave your hand over the IR
ranger. You're a comedian! And you've
made your first MIDI instrument!

8

8

8

void loop() {

 // read the sensor:

 int sensorReading = analogRead(A0);

 Serial.println(sensorReading);

 // if the sensor's higher than the threshold and

 // was lower than the threshold last time,

 // then play the stinger:

 if (sensorReading <= threshold

 && lastReading > threshold) {

 playStinger();

 }

 // save the current reading for next time:

 lastReading = sensorReading;

}

void playStinger() {

 int note[] = {43, 41, 49};

 int rest[] = {70, 180, 750};

 // loop over the three notes:

 for (int thisNote = 0; thisNote < 3; thisNote++) {

 // Turn on note:

 noteOn(9, note[thisNote], 60);

 delay(rest[thisNote]);

 //Turn off the note:

 noteOff(9, note[thisNote], 60);

 // a little pause after the second note:

 if (thisNote == 1) {

 delay(50);

 }

 }

}

//NOTE: the noteOn(), noteOff() and sendMidi() methods from the previous

//example go here.

void resetMidi(int thisPin) {

 // Reset the Musical Instrument Shield:

 pinMode(thisPin, OUTPUT);

 digitalWrite(thisPin, LOW);

 delay(100);

 digitalWrite(thisPin, HIGH);

 delay(100);

}

Protocols Revisited 431

DMX512
DMX512 is another binary protocol worth knowing about.
It's a real-time serial protocol for communicating between
stage-lighting control systems and lighting dimmers. It has
been the industry standard for stage lighting and show
control equipment for a couple of decades now. It’s also
used to control special-effects machines, moving lights,
projection systems, and more.

DMX512 uses the RS-485 serial protocol as its physical
layer. RS-485 is a bus-style serial protocol, meaning you
can have several devices sharing the same transmit and
receive lines, as long as each has a unique address. It
uses differential signaling so that signal wires can be very
long—up to 1200m. DMX512 devices generally use an
XLR-style connector, either three pin or five pin, though
many devices now use an RJ-45 Ethernet-style connector.

At 250kbps, DMX512 is fast for a serial protocol; it's fast
enough that you can’t just send it as regular TTL serial
data from a microcontroller. However, there is a DMX
library for Arduino called Simple DMX, and there are a

few shields on the market that have DMX connectors
on them. I've only tested two personally, both of which
work well: the Tinker DMX shield is available from the
Arduino Store at http://store.arduino.cc/ww/, and Daniel
Hirschmann's Super DMX shield is available from http://
www.hirschandmann.com/2011/super-dmx-shield-for-
arduino/. The former lets you add your own connector; the
latter has XLR, RJ-45 connectors, and terminals for you to
add your own. Further notes can be found on the Arduino
playground site at www.arduino.cc/playground/Learning/
DMX. For more on DMX, see www.opendmx.net.

Like MIDI, DMX is an aging protocol. The lighting industry
has started to develop its successor, Advanced Controller
Network, or ACN, which can run over Ethernet. Over the
next few years, you can expect to see it grow in promi-
nence. For more on show control protocols in general, John
Huntington’s book Control Systems for Live Entertain-
ment (Focal Press) can’t be beat.
X

Figure 11-6

Tinker DMX shield, left, and Daniel Hirschmann's

Super DMX shield, right. Both allow you to commu-

nicate with DMX512-based lighting and show control

systems.

432 MAKING THINGS TALK

The Structure and Syntax of
Text-Based Protocols

You've seen a number of text-based protocols through-
out this book, and you've even written a few of your own.
Protocols are basically ways of structuring data. Some
protocols simply relay information, and others give
commands—either explicitly or implicitly—through a
request. It's worth reviewing some of their grammars so
that when you run into similar ones, you'll know what to
look for.

Simple Data Formats
The simplest was the comma-separated value string you
wrote for Monski Pong. Comma-separated values (CSV)
and tab-separated values (TSV) are ubiquitous, and it's
common to end a CSV string with a newline, or a newline
and carriage return. The NMEA-0183 protocol used by
GPS receivers is a good example of CSV in practice.

You also saw a few examples of organizing data in name-
value pairs. Any time you have a list of items, and each has
a name associated with it, you've got a name-value pair.
The environment variables in PHP—including $_GET, $_
POST, $_REQUEST, and $_SERVER—give you name-value
pairs. In programming languages, associative arrays are
basically lists of name-value pairs.

You've also used a few Internet transfer protocols, like
HyperText Transfer Protocol (HTTP) and Simple Mail
Transfer Protocol (SMTP). They share a common format
as well: they open with a command like GET or POST, and
then follow with properties of the transfer, each on its own
line. Each line starts with the description of the property,
like the content-length, separated from the actual value by
a colon. The header of the transfer is separated from the
body of the message by two newlines, and the message is
usually closed with two newlines as well. Any data coming
from the client was sent as name-value pair arrays,
separated by a colon for information about the transfer,
or by an ampersand for data items in the content of the
transfer. Take a second look at this HTTP POST request
from Chapter 2 as an example:

POST /age_checker.php HTTP/1.1

Host: example.com

Connection:Close

Content-Type: application/x-www-form-urlencoded

Content-length: 16

name=tom&age=14

Everything in the header is a parameter of the request:
who you're requesting from, the connection type, the type
of content to be exchanged, the content length. Everything
in the body is a parameter of the content: name and age.
Having a clear separation between the header formatting
and the content formatting makes it easier to separate
them when writing a program, as you've already seen.

Structured Data Formats
When you've got data to exchange that's more complex
than a list of name-value pairs, you need a structure for it.
For example, imagine an array of sensors spread around
your house:

Address Location Last read Value

1 kitchen 12:30:00
PM

60

2 living room 05:40:00
AM

54

3 bathroom 01:15:00
AM

23

4 bedroom 09:25:00
AM

18

5 hallway 06:20:00
AM

3

You've got more than just a list of single items, and more
than just a few name-value pairs. In fact, each line of the
table is a list of name-value pairs. This is where a struc-
tured data format comes in handy. JavaScript Object
Notation, or JSON, is a popular notation format for struc-
tured data like this.

Protocols Revisited 433

JSON represents each cell of the table as a name-value pair. Each line is a comma-separated list of pairs, enclosed in
curly braces. The whole table is a comma-separated list of lists, like so:

[{"Address":1,"Location":"kitchen","Last read":"12:30:00 PM","value":60},

{"Address":2,"Location":"living room","Last read":"05:40:00 AM","value":54},

{"Address":3,"Location":"bathroom","Last read":"01:15:00 AM","value":23},

{"Address":4,"Location":"bedroom","Last read":"09:25:00 AM","value":18},

{"Address":5,"Location":"hallway","Last read":"06:20:00 AM","value":3}]

This way of formatting data is relatively simple. The punctuation that separates each element is just a single character,
so you can scan through it one character at a time and know when you're done with each element. Because it's text,
it's human-readable as well as machine-readable. Spaces, newlines, and tabs aren't considered part of the structure of
JSON, so you can reformat it for easier reading like so:

[

 {

 "Address":1,

 "Location":"kitchen",

 "Last read":"12:30:00 PM",

 "value":60

 },

 {

 "Address":2,

 "Location":"living room",

 "Last read":"05:40:00 AM",

 "value":54

 },

 {

 "Address":3,

 "Location":"bathroom",

 "Last read":"01:15:00 AM",

 "value":23

 },

 {

 "Address":4,

 "Location":"bedroom",

 "Last read":"09:25:00 AM",

 "value":18

 },

 {

 "Address":5,

 "Location":"hallway",

 "Last read":"06:20:00 AM",

 "value":3

 }

]

The advantage of a data interchange format like JSON
is that it's lightweight, meaning there aren't a lot of extra
bytes needed to structure the information you want to
send. It gives you more power than a simple list but is still
efficient to send from a server to a client. You can send
JSON as the body of an HTTP request, and as long as
there's a program on the client that can parse it, you've got
a quick way to exchange complex data.

When you've got something more complex to represent,
you need a markup language. Markup languages provide
a way to describe the structure of a text document in
detail. Markup languages divide data into the content and
the markup, a series of descriptive tags for organizing
the content. The content is what you want to present; the
markup describes how to present the content, what to do
with it—and in some cases—how to interpret it.

Markup tags are typically strings of text separated from
the content by a special pair of punctuation marks. You've
seen them frequently in HTML:

<title> this is the document title</title>

If a tag has any attributes, they go inside the tag brackets
as well:

A link

Strict markup languages like XML always expect that
every opening tag has a closing tag. Markup languages
are strict in their formatting because they're designed to
be machine-readable. A computer program can't assume
where you meant to put a closing tag, so it will just keep
looking until it finds the next one. If it finds a second
opening tag before it gets to a closing tag, it gets confused.

434 MAKING THINGS TALK

Markup languages describe the structure of the document
and how it's to be presented, but they don't tell you
anything about what's in the document. They are to text
documents what MIDI is to music: it describes the param-
eters of how to play a note without telling you anything
about the actual timbre of the note.

You may have noticed that none of the transfer protocols
you saw used the characters < and >. That is one reason
why HTML uses these for tag markup. In parsing an HTTP
response, you can know that you've reached the main text
when you hit the first < character. Similarly, wiki markup
typically uses square brackets, [and], to enclose tags.
This helps distinguish it from HTML or XML markup.
That way, the same document can contain both types of
markup without causing conflict.

The bytes that form a web page can pass through a lot of
programs before they reach the end, each using a different
protocol. When each protocol is designed to take the
others into account—as you can see with HTTP, HTML,
and wiki markup languages—it's easy for each program to
parse the bytes that matter to it and leave the rest alone.

Most of the time, you don't need all the information you're
given in a typical information transfer. Knowing the proto-
col's structure and syntax not only helps you understand
what's said, it also helps you determine what to ignore.
Having to evaluate every chunk of data you receive can tax
your system (and your patience) quite a bit. But when you
know what you can ignore, you win. For example, consider
the HTTP POST request that Twilio sends in Chapter 10.
There's a huge amount of data there, more than 500
bytes. The only part you cared about, though, was the
Digits property, so your sketch just scanned through the
incoming stream of text, not saving anything until it saw
the string "Digits". That kind of scanning and ignoring is
central to good data parsing.

Markup vs. Programming
Languages
Markup languages are primarily descriptive languages, not
always active ones. They are interpreted by the program
that displays them. For example, consider HTML, or
HyperText Markup Language. HTML describes what a
page should look like, but it doesn't have verbs to tell the
browser to initiate action. It might describe an element
to be displayed, such as a movie or audio file, and specify

that the element be played on loading. There aren't HTML
commands to make anything happen once the page is
loaded. Markup languages usually rely on an outside actor,
like the user, to prompt action.

In contrast, programming languages initiate action based
on their own internal logic. Programming languages are
sets of commands that make things happen. Your job as
a programmer is to structure a set of commands to make
things happen they way you want them to.

Programming languages have variables and arrays to
manage simple data, but they generally don't dictate how
you format complex data. The assumption is that you'll
come up with a data format or protocol, and then use
the programming language to read it byte-by-byte and
interpret it, or to assemble it byte-by-byte. Useful pro-
gramming languages come with libraries that can read and
write common data formats, which you've seen through-
out this book. Most of the libraries you used were designed
to read or write a given data format. HTML5 represents a
good combination of a markup language (HTML and CSS)
and a programming language (JavaScript) that allows
designers and developers to create full applications in a
browser.

By now you've noticed that programming languages can
be somewhat unforgiving when you leave out a comma
or a semicolon, or get the capitalization of a word wrong.
This is because the text of the programming language
you write is actually a sort of markup language for the
compiler. The compiler reads your text and translates it into
machine language, so the text you write has to be machine-
readable, just as markup languages and data formats do.
The challenge to designing a good programming language
is similar to designing a good data protocol: you want it to
be efficient for the machine to read and interpret, yet still
readable by humans.

The key to interpreting any data protocol—from the most
simple comma-separated list to the most complex pro-
gramming or markup language—is to start by asking what
it's designed to do, and then look closely at its structure
to see how it's organized. As you can see, many different
protocols and languages share similar elements of punc-
tuation or structure, so knowing one helps you to learn
others.
X

Protocols Revisited 435

Representational State Transfer
Underlying the HyperText Transfer Protocol (HTTP) is a principle known as Representa-

tional State Transfer, or REST. It's not a protocol—it's more of an architectural style for

information exchange. Though it started with the Web, it has applications in other areas.

Understanding a little about REST will not only help you understand other systems, it

will design your own communications protocols as well. Once you know about it, you

can never get enough REST in your life.

The basic idea of REST is this: there is a thing somewhere
on a network. Maybe it's a database, or maybe it's a
microcontroller controlling your household appliances,
like you made in the previous chapter. You either want to
know what state it's in, or you want to change its state.
REST gives you a way to describe, or represent, the state
of the thing on the Net, and to transfer that representation
to a remote user. REST is an addressing scheme for any
remote thing.

You've been using REST already—it's what HTTP is all
about. You want to know about the thing, you make a
request to GET that information or to POST changes to
the thing. The thing responds to your request, either with
a representation of the state of affairs (for example, the
HTML page delivered by the air conditioner controller,
which included representations of the temperature and
the state of the thermostat), or by changing the state of
affairs (for example, by updating the thermostat setting).

In RESTful thinking, URLs are nouns that describe things,
and requests are the verbs that act on nouns. The prop-
erties of things are described in the URL, separated by
slashes. For example, here's a RESTful description of one
of an Arduino's pins:

/pin/A0/

If you want to know the state of that pin, you might say to
the Arduino:

GET /pin/A0/

The Arduino would then reply with the state of pin A0,
a number between 0 and 1023. Or, perhaps you want to
change the state of a digital output pin. You might do this:

POST /pin/D2/1/

The Arduino would know that it should set digital pin 2 to
be an output, and set it high (1 =HIGH). In this scenario,
the Arduino is the server—serving you up representations
of its state—and you're the client.

There are three important elements to this exchange:

1. The representation (called a resource) and its attributes
are separated by slashes. You can think of the attributes
like the properties of an object.

2. The verb is the request: whether you want to get some
information or change the state of the thing, you start
with the verb. The verbs are HTTP's verbs: GET, POST,
PUT, and DELETE (the last two are used less often).

3. The description is technology-independent. There's no
actual mention as to whether the resource is delivered
to you as an HTML page or XML from a web server, or
whether it's printed by a PHP or Ruby script on a server,
a C/C++ program running on an Arduino, or black
magic. It doesn't matter how the result is generated,
you just want to know what the state of things is, and
it's the server's job to do that.

The beauty of being technology-independent is that you
can use REST for just about any control interface. For
example, Open Sound Control, or OSC, a protocol for
musical controllers that's designed to supersede MIDI,
is RESTful. ACN, the Advanced Controller Networking
protocol designed to replace DMX512, is also RESTful. It's
also independent of the transport mechanism, and it can
be sent over Ethernet, serial, or any other physical data
transmission. REST provides a standard way of naming, or
addressing, things so that you keep using that addressing
scheme when you change environments, programming
tools, or network technologies. It's simple enough that you
can read it with a limited processor, and general enough
to describe most anything you want information about or
want to control.

436 MAKING THINGS TALK

There's another advantage to REST when designing
websites: if you change the programming environment you
use to run your site, you don't have to change the URLs.
The client never sees the .php, .rb (Ruby), or .pl (Perl) file
extension, so it doesn't know or care what programming
environment powers your service. If you want to change
languages, go ahead! The site structure can stay the same.

To design RESTfully on the Web, think of the site or device
you're making in terms of its properties, and come up with
an addressing scheme that gives clients access to view
and change those properties appropriately. Practically, what
it means is that all the URLs of your site end at the /. There's
no index.html (or anything .html), and no GET query string.
Query parameters are passed using POST, and they're
generally the last item in the address, as you'll see below.
Following are two examples: one is a traditional website
and the other is a physical device on a network.

A Traditional Web Service
Perhaps you're making a social media site for runners to
compare their daily runs. As part of it, each runner has a
profile with various attributes for each day's run: the date
(day, month, and year), the distance of the run, and the
time of the run. For a run on 31 January 2012, the URLs to
address those attributes might look like this.

To get the distance:

http://myrun.example.com/runnerName/31/1/2012/
distance/

To set the distance to 12.56km:

http://myrun.example.com/runnerName/31/1/2012/
distance/12.56

To set the time to 1 hour, 2 minutes, 34 seconds:

http://myrun.example.com/runnerName/31/1/2012/
time/1:02:34

Notice how you can tell a call that gets the value of a
parameter from one that sets the value: the former has
nothing following the name of the parameter.

A Web-Based Device
Imagine you're building a device that controls the window
blinds in your office. There are 12 windows, each with its
own blind. The blinds can be positioned variably, in a range
from 1 to 10. The client can get the state of any blind, or
you can set it. The URLs to see the state of the windows
might look like this.

To see them all at once:

http://mywindows.example.com/window/all

To see an individual window (window number 2):

http://mywindows.example.com/window/2

To set a window's blind halfway down:

http://mywindows.example.com/window/2/50

To close them all:

http://mywindows.example.com/window/all/0

If you don't like these particular addressing schemes,
you could make your own, of course. Just follow the basic
RESTful style of /object/attribute/newValue to get the
value of a parameter, and /object/attribute/newValue to
set it.

What the actual interface returned by the URL looks like is
up to you. You might choose to make a graphic that shows
images of the windows with blinds, or you might show the
result in text only. RESTful architecture just determines
where to find something, not what you'll find there.

RESTful addresses are designed to be easy for a computer
to parse. All you have to do is to separate the incoming
request into substrings on the slashes, look at each
substring to see what it is, and act appropriately on the
substrings that follow it. They're also easy for people to
read. A URL like the ones above is much more comprehen-
sible than the equivalent GET request:

http://myrun.example.com/?runnerName=George&day=
31&month=1&year=2012&distance=12.56

The project that follows shows you how to set up a
PHP-based server that can parse RESTful addresses.
X

Protocols Revisited 437

If you've only done static HTML web

design before, you're probably used to the

idea that the slashes in a URL tell you in

what directory on a server the final HTML

file resides. However, it doesn't have to be

that way. You can tell the server how to

interpret the URL. In this project, you'll do

just that.

Back in the "Network Identification" section of Chapter 9,
you wrote a PHP script that printed out all of the environ-
ment variables returned by the server when you make an
HTTP request. One of them was called REQUEST_URI. It
gave you the string of text that follows the GET request
from the client. That's the variable you want access to if
you plan to build a RESTful web service. Each of the pieces
of the request URI will be part of your interface, just like in
the example URLs shown previously.

MATERIALS

 » Account on a web server

Fun with REST

Project 33

It's most likely that your web server is running the Apache
web server program. If so, you can create a special file
inside any directory called .htaccess that determines the
behavior of the server with respect to that directory. You
can hide files and subdirectrories, password protect the
directory, and more.

For this project, you'll set up a base directory for the
project, and change the .htaccess file so that the server
redirects anything that looks like a subdirectory to the
script you're writing. Then you'll use the REQUEST_URI
variable to make your own RESTful interface.

NOTE: URI stands for Uniform Resource Indicator. It's a synonym

for Uniform Resource Locator, or URL, the term commonly used

for web addresses.

Start by
making

a new directory on your web server. Call
it myservice. Inside it, make a new file
called .htaccess. Files that begin with a
dot are invisible files on the Linux and
Mac OS X operating systems. So it's
best to make this file directly on the
server, either through the command
line or your favorite web-editing tool.
Here's the text of the file.

This file tells the server to rewrite client
HTTP requests starting with the name
of this directory on your account. It
takes any string after the directory
name and replaces it with the index file,
index.php.

 Change the Access RewriteEngine On

put in the base path to your directory:

RewriteBase /~username/myservice

redirect anything after the base directory to index.php:

RewriteCond %{REQUEST_FILENAME} -s [OR]

RewriteCond %{REQUEST_FILENAME} -l

RewriteRule ̂ .*$ - [NC,L]

RewriteRule ̂ .*$ index.php [NC,L]

In order for this to work, your web host needs to

be running Apache's MOD_REWRITE module on its

server. It's a pretty common module, so it's likely

that it is, but if you find that this script doesn't work as

described, check with your system administrator to see

whether MOD_REWRITE is enabled.

!

438 MAKING THINGS TALK

Here's the index.php
file. It takes the $_

REQUEST_URI variable and splits it up
into an array of strings, using the slash
(/) as the points on which to split.

Once you've saved this to the server,
try entering the following URL in a
browser:

http://www.myserver.com/myservice/
this/is/a/list/of/restful/parameters/

You should get a response in the
browser like this:

<?php

/*

 RESTful reader

 Context: PHP

*/

// split the URI string into a list:

$parameters = explode("/", $_SERVER['REQUEST_URI']);

// print out each of the elements of the list:

 foreach($parameters as $item) {

 echo "Item: ";

 echo $item."
";

 }

?>

 Read It

Item:

Item: myservice

Item: this

Item: is

Item: a

Item: list

Item: of

Item: restful

Item: parameters

Now that you've got anything that comes in from the client
in an array, you can do whatever you want with it. This is
where things get interesting. From here, you can write a
program to look for and act on different elements in the
list. The following is a brief example that would pull out
the distance and time parameters based on the runners'
website example above.

Protocols Revisited 439

Take out the foreach()
block from the previous

example and replace it as shown here.
New lines are shown in blue.

Type the URL as follows into your
browser (change the hostname and
path as needed):

http://www.example.com/
myService/runnerName/31/1/2012/
distance/12.45/time/0:45:34

When you type this into the browser,
you'll get back:

Your distance: 12.45

Your time: 0:45:34

<?php

// split the URI string into a list:

$$parameters = explode("/", $_SERVER['REQUEST_URI']);

$position = array_search('distance', $parameters);

if ($position) {

 $distance = $parameters[$position+1];

 echo "Your distance: ".$distance."
";

}

$position = array_search('time', $parameters);

if ($position) {

 $time = $parameters[$position+1];

 echo "Your time: ".$time."
";

}

?>

Modify It

When you combine this approach with standard
HTML forms using HTTP POST, you have two
ways of passing in parameters, and your URLs

reflect the state of the resource. It makes for a powerful
and flexible way to build the architecture of a web service,
resulting in URLs that are both machine-readable and
easier for humans to understand.

Every server-side programming language has a variety of
frameworks designed to make REST easier to implement.
PHP frameworks like Cake and CodeIgniter, Ruby frame-
works like Rails and Sinatra, and many others attempt
to make it easier for you to build applications, and their
application programming interfaces (APIs) are designed to
encourage you to build in a RESTful way. With these, you
can often build proxy applications that take data in a more
complex format, and summarize it in a simpler format for
the more limited devices in your system.
X

440 MAKING THINGS TALK

Conclusion

As you can see by now, the physical interfaces that are
the most flexible are usually the ones that are the most
ephemeral on the network. They get turned on and off,
they connect through private networks, and they use
limited processors to save size, weight, and power. They're
not always capable of doing everything that a dedicated
web server can do, nor are they available at all times.
However, these are not limitations when such devices are
used in conversation with dedicated servers.

As hubs of your projects, use public, persistent servers
that have public addresses and are always on the Net.
They can store messages for physical devices that aren't
online and deliver them later. They can act as proxies
to take care of things for which simpler devices aren't
designed, like complex data management or authentica-
tion. Don't be afraid to use tools and protocols in ways not
thought of by their original designers. Make the technology
fit the person's needs.

Making things talk to each other always comes back to
two questions. Who are you serving in making what you're
making? What does that person need, and how can you
best give it to her?

To design a flexible network of physical things that's really
useful to humans, you have to think about the person's
needs and actions first. Then, it's all about the rules of love
and networking:

• Listen More Than You Speak
• Never Assume
• Agree on How You Say Things
• Ask Politely for Clarification

The Internet of Things is useless if those things don't
improve the quality of our lives and the ways in which we
communicate with each other.

By definition, networked devices don't stand alone. If you're connecting a

device to the Internet, you should take advantage of the power it offers. The

more tools and protocols you know, the easier and more fun that is. Consider

advantages offered by servers that have public addresses—and plenty of

computing horsepower to spare. Consider combinations of wired and wireless

protocols to give the things you build maximum freedom to respond to their

physical environments.

Protocols Revisited 441

442 MAKING THINGS TALK

Where to Get Stuff
Many different hardware suppliers and software sources are mentioned

in this book. This appendix provides a list of those parts and a summary

of the vendors, along with a brief description of each. It’s organized into

three sections: Supplies, Hardware, and Software.

Appendix
MAKE: PROJECTS

444 MAKING THINGS TALK

Here’s a shopping list of

the parts used in this book.

Each part lists the projects

in which it’s used.

If there are updates to this list, you’ll
find a link to them at http://oreilly.
com/catalog/0636920010920.

DISTRIbuTOR KEy
• A Arduino Store (http://store.

arduino.cc/ww/)
• AF Adafruit (www.adafruit.com)
• CR CoreRFID (www.rfidshop.com)
• D Digi-Key (www.digikey.com)
• F Farnell (www.farnell.com)
• J Jameco (http://jameco.com)
• L LessEMF (www.lessemf.com)
• MS Maker SHED

(www.makershed.com)
• P Pololu (www.pololu.com)
• RS RS (www.rs-online.com)
• SF SparkFun (www.sparkfun.com)
• SH Smarthome

(www.smarthome.com)
• SS Seeed Studio

(www.seeedstudio.com)

Infrastructure

 » Personal computer Used in all
projects.

 » Ethernet connection to the
Internet Used in many projects.

 » Project enclosure Used in most
projects.

 » 1/16-inch Mat board Used in
projects: 8, 26, 27 for project
enclosures.

 » 1 bluetooth-enabled personal
computer Used in projects: 3, 4,
11, 18, 19. If your laptop doesn’t
have a Bluetooth radio, use a USB
Bluetooth adapter. SF WRL-09434,
F 1814756

 » Android device Used in project: 31.

Microcontrollers, Shields, and
Prototyping Boards

 » Arduino uno module Used in
projects: 1, 2, 3, 9, 10, 11, 15, 16, 20,
21, 26, 32.
D 1050-1019-ND, J 2121105,
SF DEV-09950, A A000046,
AF 50, F 1848687, RS 715-4081,
SS ARD132D2P, MS MKSP4

 » Arduino Fio module Used in
project: 10.
SF DEV-10116

 » Arduino Ethernet board Used in
projects: 6, 7, 8, 13, 14, 27, 29.
Alternatively, an Uno-compatible
board (above) with an Ethernet
shield will work.
SF DEV-09026, J 2124242,
A A000056, AF 201, F 1848680

 » LilyPad Arduino Used in project:
31.
SF DEV-09266, A A000011

 » Arduino WiFi shield Used in
project: 12, but it can be used in
any of the Ethernet projects.
A A000058

 » Arduino wireless shield Used in
projects: 10, 13, 14.
A A000064 or A000065.
Alternative shields: SF WRL-09976,
AF 126, F 1848697, RS 696-1670,
SS WLS114A0P

 » RFID shield Used in project: 27.
SF DEV-10406, A T040030 or
T040031

 » Spark Fun Musical Instrument
shield Used in project: 32.
SF DEV-10587

 » Solderless breadboard Used in
projects: 2, 3, 5, 6, 7, 9, 10, 11, 12, 19,
20, 21, 27. Alternatively, you can use
prototyping shields for Arduino.
D 438-1045-ND, J 20723 or 20601,
SF PRT-00137, F 4692810, AF 64,
SS STR101C2M or STR102C2M,
MS MKKN2

Supplies » Prototyping shields for
Arduino Used in project: 26.
Also an alternative to solderless
breadboards in all projects, but
you’ll still need a tiny breadboard
with them.
AF 51, A A000024, SF DEV-07914,
MS MSMS01
breadboards for protoshields:
SF PRT-08802, AF included with
board, D 923273-ND

 » Perforated printed circuit board
Used in projects: 8, 27.
D V2018-ND, J 616673, SS
STR125C2B, F 4903213, RS 159-5420

Communications Modules

 » FTDI-style uSb-to-Serial adapter
Used in most projects.
SF DEV-09718 or DEV-09716, AF 70
or 284, A A000059, MS MKAD22,
D TTL-232R-3V3 or TTL-232R-5V

 » bluetooth Mate module Used in
projects: 3, 4, 11, 18, 19, 31.
SF WRL-09358 or WRL-10393

 » Digi Xbee 802 .15 .4 RF modules
Used in projects: 10, 14, 17.
J 2113375, SF WRL-08664, AF 128,
F 1546394, SS WLS113A4M,
MS MKAD14

 » uSb-Xbee adapter Used in
projects: 10, 14, 17.
J 32400, SF WRL-08687, AF 247

 » Interface module: X10 One-Way
Interface module Used in project:
26.
SH 1134B

 » X10 modules Used in project: 26.
SH 2002 or 2000.

 » RFID reader Used in projects: 25,
26.
CR IDI003 or IDI004, SF SEN-
08419

 » RFID tags Used in projects: 25, 26.
CR WON002, SF COM-10169

 » 1 SonMicro SM130 RFID read/
write module Used in project: 27.
SF SEN-10126

 » Mifare RFID read/write tags
Used in project: 27.
SF SEN-10127

APPENDIX 445

 » 13 .56MHz antenna Used in
project: 27.
A C000027

 » SD card reader that can read
MicroSD Available at any local
electronics or office-supply store.
Used in projects: 29, 30.
MicroSD card Used in projects:
29, 30.
IP-based camera Used in projects:
29, 30. D-Link DCS-930L

Breakout Boards and
Connectors

 » LilyPad Xbee Used in project: 14.
SF DEV-08937

 » Xbee Explorer Regulated Used in
project: 14.
SF WRL-09132

 » Gas sensor breakout board Used
in project: 13.
SF BOB-08891, P 1479 or 1639

 » 3-wire JST connector pigtail
Used in project: 15.
SF SEN-08733

 » 9V battery clip Used in projects:
3, 14.
D 2238K-ND, J 101470, SF PRT-
09518, F 1650675

 » Female power plug, 2 .1mm ID,
5 .5mm OD Used in project: 3.
D CP-024A-ND, J 159506, F 1737256

 » Wire-wrapping wire Used in
project: 5.
D K445-ND, J 22577, SF PRT-
08031, F 150080

 » Wire-wrapping tool Used in
project: 5.
J 242801, F 441089, RSH 276-1570,
S TOL-00068

 » 0 .1-inch male header pins Used
in projects: 5, 10, 14, 15, 16, 19, 20,
25, 26, 27.
D A26509-20-ND, J 103377, SF PRT-
0011, F 1593411

 » 2mm female header rows Used in
projects: 10, 14.
J 2037747, D 3M9406-ND, F
1776193

 » 2mm 5-pin socket Used in
projects: 25, 26.
SF PRT-10519

 » 2mm 7-pin socket Used in
projects: 25, 26.
SF PRT-10518

 » 6 pin stackable header Used in
project: 27.
SF PRT-09280, AF 85

 » 8-conductor wire Used in project:
27.
D AE08A-5-ND, F 1301013

 » Interface cable for GPS module
Used in project: 19.
SF GPS-00465, P 28146

 » RFID breakout board Used in
projects: 25, 26.
SF SEN-08423

 » 4-wire phone cable with RJ-11
connector
Used in project: 26.
D A1642R-07-ND, J 115617,
F 1335141

 » 2-pin Screw Terminal Used in
projects: 29, 30.
SF PRT-08432, D 732-2030-ND,
F 1792766, RS 189-5893

 » 3-pin Screw Terminal Used in
projects: 29, 30.
SF PRT-08235, D 732-2031-ND,
F 1792767, RS 710-0166

Common Components

 » 100-ohm resistor Used in
project: 8.
D 100QBK-ND, J 690620,
F 9337660, RS 707-8625

 » 220-ohm resistor Used in
projects: 5, 8, 9, 11, 20, 26.
D 220QBK-ND, J 690700,
F 9337792, RS 707-8842

 » 1-kilohm resistor Used in projects:
5, 13, 14, 29, 30.
D 1.0KQBK-ND, J 29663,
F 1735061, RS 707-8669

 » 10-kilohm resistors Used in
projects: 2, 6, 9, 11, 12, 13, 14, 20.
D 10KQBK-ND, J 29911, F 9337687,
RS 707-8906

 » 4 .7-kilohm resistor Used in
projects: 14, 27.
D CF14JT4K70CT-ND, J 691024,
F 735033, RS 707-8693

 » 10-kilohm potentiometers Used
in projects: 10, 11, 13, 14, 27, 29, 30.
J 29082, SF COM-09939,
F 350072, RS 522-0625

 » 100-kilohm resistors Used in
project: 14.
D 100KQBK-ND, J 29997,
F 9337695, RS 707-8940

 » 270-kilohm resistor Used in
project: 31.
J 691446, D P270KBACT-ND,
RS 163-921, F 1565367

 » LEDs Used in projects: 7, 8, 10, 11,
20, 26, 29, 30.
D 160-1144-ND or 160-1665-ND,
J 34761 or 94511, F 1015878, RS
247-1662 or 826-830, SF COM-
09592 or COM-09590

 » RGb LED, common cathode Used
in project: 1.
D 754-1492-ND, J 2125181,
SF COM-00105, F 8738661, RS
713-4888

 » Infrared LED Used in project: 9.
J 106526, SF COM-09469,
F 1716710, RS 577-538, SS
MTR102A2B

 » 5V regulator Used in project: 13,
14, 19.
J 51262, D LM7805CT-ND,
SF COM-00107, F 1860277, RS
298-8514

 » 3 .3V regulator Used in projects:
10, 14.
J 242115, D 576-1134-ND, SF COM-
00526, F 1703357, RS 534-3021

 » 1µF capacitor Used in projects:
10, 14.
J 94161, D P10312-ND, F 8126933,
RS 475-9009

 » 10µF capacitor Used in projects:
10, 14, 15.
J 29891, D P11212-ND, F 1144605,
RS 715-1638

 » 100µF capacitor Used in projects:
13, 32.
J 158394, D P10269-ND,
F 1144642, RS 715-1657

446 MAKING THINGS TALK

 » 4700µF electrolytic capacitor
Used in project: 14.
J 199006, D P10237-ND,
F 1144683, RS 711-1526

 » TIP120 Darlington NPN
transistor Used in project: 13.
D TIP120-ND, J 32993, F 9804005

 » 1N4004 power diode Used in
project: 13.
D 1N4004-E3 or 23GI-ND, J 35992,
F 9556109, RS 628-9029

 » 2N3906 PNP-type transistor
Used in projects: 14, 29, 30.
J 178618, D 2N3906D26ZCT-
ND, SF COM-00522, F 1459017,
RS 294-328

 » 9V battery Used in projects: 3, 14.
 » 9–12V DC power supply Used in

project: 13.
J 170245, SF TOL-00298, AF 63,
F 636363, P 1463

 » Lithium Polymer ion battery
Used in project: 31.
SF PRT-00341, AF 258, RS 615-
2472, F 1848660

 » uSb LiPoly charger Used in project:
31.
A 259, SF PRT-10217

Specialty Components

 » Voltmeter Used in project: 7.
SF TOL-10285, F 4692810, RS 244-
890

 » MAX8212 voltage monitor Used
in project: 14.
D MAX8212CPA+-ND, F 1610130

 » solar cell Used in project: 14.
SF PRT-07840, P 1691

 » 16x2 character LCD Used in
project: 27.
SF LCD-00709

 » Relay Control PCb Used in
projects: 29, 30.
SF COM-09096

 » Relay Used in project: 29, 30.
SF COM-00101, D T9AV1D12-12-
ND, F 1629059

 » 1N4148 diode Used in projects:
29, 30.
SF COM-08588, F 1081177,
D 1N4148TACT-ND, RS 544-3480

 » PowerSwitch Tail Alternative part
used in projects: 29, 30.
SF COM-09842, AF 268

Sensors

 » Flex Sensor resistors Used in
project: 2.
D 905-1000-ND, J 150551,
SF SEN-10264, AF 182, RS 708-
1277, MS JM150551

 » Momentary switches or
pushbuttons Used in projects: 2,
8, 9, 11.
D GH1344-ND, J 315432, SF COM-
09337, F 1634684,
RS 718-2213, MS JM315432

 » Force-sensing resistors, Interlink
400 series Used in project: 5.
D 1027-1000-ND, J 2128260,
SF SEN-09673

 » web camera Used in project: 5.
 » Photocells (light-dependent
resistors) Used in projects: 6, 12.
D PDV-P9200-ND, J 202403,
SF SEN-09088, F 7482280, RS
234-1050

 » 2-axis joystick Used in project: 8.
J 2082855, SF COM-09032,
AF 245, F 1428461

 » Accelerometer Used in projects:
8, 21.
J 28017, SF SEN-00692, AF 163,
RS 726-3738, P 1247, MS MKPX7

 » Hanwei gas sensor Used in
project: 13.
SF SEN-08880, SEN-09404, or
SEN-09405, P 1480, 1634, 1633,
1481, 1482, or 1483

 » Sharp GP2y0A21 infrared ranger
Used in project: 15.
D 425-2063-ND, SF SEN-00242,
RS 666-6570, P 136

 » Maxbotix LV-EZ1 ultrasonic
ranger Used in projects: 16, 32.
SF SEN-00639, AF 172, P 726,
SS SEN136B5B

 » EM-406A GPS receiver module
Used in project: 19.
SF GPS-00465 P 28146 AF 99

 » ST Microelectronics LSM303DLH
digital compass Used in project:
20.
SF SEN-09810, RS 717-3723,
P 1250

 » LED tactile button Used in
project: 20.
SF COM-10443 and BOB-10467

 » Temperature sensor Used in
projects: 29, 30.
AF 165, D TMP36GT9Z-ND,
F 1438760, RS 427-351

Miscellaneous

 » Ping-pong ball Used in project: 1.
 » Small pink monkey Used in

projects: 2, 3.
 » cat Used in projects: 5, 29, 30.
 » cat mat Used in project: 5.
 » thick pieces of wood or thick
cardboard, about the size of the
cat mat Used in project: 5

 » Lighting filters Used in projects:
6, 12.

 » Triple-wall cardboard Used in
project: 8.

 » Velcro Used in projects: 8, 31.
 » Cymbal monkey Used in project:

13.
 » Conductive ribbon Used in

project: 31.
SF DEV-10172

 » Conductive thread Used in
project: 31.
SF DEV-10120, L A304

 » Shieldit Super Conductive Fabric
Used in project: 31.
L A1220-14

 » Hoodie Used in project: 31.
 » Embroidery thread Used in

project: 31.

APPENDIX 447

Hardware

Abacom Technologies
Abacom sells a range of RF transmit-
ters, receivers, and transceivers, and
serial-to-Ethernet modules.
www.www.abacom-tech.com
email: abacom@abacom-tech.com
õ 3210 Wharton Way
Mississauga ON L4X 2C1, Canada

Aboyd Company
The Aboyd Company sells art supplies,
costumes, novelties, cardboard
standups, home décor, and more.
They’re also a good source of Charley
Chimp cymbal-playing monkeys.
www.aboyd.com
email: info@aboyd.com
≈ +1-888-458-2693
≈ +1-601-948-3477 International
∆ +1-601-948-3479
õ P.O. Box 4568
 Jackson, MS 39296, USA

Acroname Robotics
Acroname sells a wide variety of
sensors and actuators for robotics
and electronics projects. They’ve got
an excellent range of esoteric sensors
like UV-flame sensors, cameras, and
thermal-array sensors. They’ve got a
lot of basic distance rangers as well.
They also have a number of good
tutorials on their site on how to use
their parts.

www.acroname.com
email: info@acroname.com
≈ +1-720-564-0373
∆ +1-720-564-0376.
 4822 Sterling Dr.
 Boulder, CO 80301-2350, USA

Adafruit Industries
Adafruit makes a number of useful
open source DIY electronics kits,
including an AVR programmer, an
MP3 player, and more.
www.adafruit.com
email: sales@adafruit.com

Arduino Store
The Arduino Store sells Arduino
microcontroller boards and shields,
as well as TinkerKit parts and acces-
sories for Arduino selected by the
Arduino team. It includes some of the
Arduino team’s favorite third-party
accessories.
http://store.arduino.cc/ww/
õ GHEO SA
via soldini, 22
CH-6830 Chiasso, Switzerland

Atmel
Atmel makes the AVR microcon-
trollers that are at the heart of the
Arduino, Wiring, and BX-24 modules.
They also make the ARM microcon-
troller that runs the Make controller.
www.atmel.com
≈ +1-408-441-0311
õ 2325 Orchard Parkway
 San Jose, CA 95131, USA

CoreRFID
CoreRFID sells a variety of RFID
readers, tags, and other RFID
products.
www.rfidshop.com
e-mail: info@corerfid.com
≈ +44 (0) 845-071-0985
õ +44 (0) 845-071-0989
õ Dallam Court
Dallam Lane
Warrington, WA2 7LT, United Kingdom

D-Link
D-link makes a number of USB,
Ethernet, and WiFi products, including
the D-link IP-based WiFi camera used
in Chapter 10.
www.dlink.com
e-mail: productinfo@dlink.com
≈ +1-800-326-1688

Devantech/Robot Electronics
Devantech makes ultrasonic ranger
sensors, electronic compasses,
LCD displays, motor drivers, relay
controllers, and other useful add-ons
for microcontroller projects.
http://robot-electronics.co.uk
e-mail: sales@robot-electronics.co.uk
≈ +44 (0)195-345-7387
∆ +44 (0)195-345-9793
õ Maurice Gaymer Road
Attleborough
Norfolk, NR17 2QZ, England

Digi
Digi makes XBee radios, radio
modems, and Ethernet bridges.
www.digi.com
≈ +1-877-912-3444
∆ +1-952-912-4952
õ 11001 Bren Road East
Minnetonka, MN 55343, USA

Digi-Key Electronics
Digi-Key is one of the U.S.’s largest
retailers of electronics components.
They’re a staple source for things you
use all the time—resistors, capacitors,
connectors, some sensors, bread-
boards, wire, solder, and more.
www.digikey.com
≈ +1-800-344-4539 or
≈ +1-218-681-6674
∆ +1-218-681-3380
õ 701 Brooks Avenue South
 Thief River Falls, MN 56701, USA

This list includes all

vendors for current and

past editions.

KEY
≈ Phone / ★ Toll free
∆ Fax
õ Mailing address

448 MAKING THINGS TALK

ELFA
ELFA is one of Northern Europe’s
largest electronics components
suppliers.
www.elfa.se
email: export@elfa.se
≈ +46 8-580-941-30
õ S-175 80 Järfälla, Sweden

Farnell
Farnell supplies electronics compo-
nents for all of Europe. Their catalog
part numbers are consistent with
Newark in the U.S., so if you’re working
on both sides of the Atlantic, sourcing
Farnell parts can be convenient.
http://uk.farnell.com
email: sales@farnell.co.uk
≈ +44-8701-200-200
∆ +44-8701-200-201
õ Canal Road,
 Leeds, LS12 2TU, United Kingdom

Figaro USA, Inc.
Figaro Sensor sells a range of gas
sensors, including volatile organic-
compound sensors, carbon-monoxide
sensors, oxygen sensors, and more.
www.figarosensor.com
email: figarousa@figarosensor.com
≈ +1-847-832-1701
∆ +1-847-832-1705
õ 3703 West Lake Ave., Suite 203
 Glenview, IL 60026, USA

Future Technology Devices
International, Ltd. +(FTDI)
FTDI makes a range of USB-to-Serial
adapter chips, including the FT232RL
that’s on many of the modules in
this book.
www.ftdichip.com
email: admin1@ftdichip.com
≈ +44 (0) 141-429-2777
õ 373 Scotland Street
 Glasgow, G5 8QB, United Kingdom

Glolab
Glolab makes a range of electronic
kits and modules, including several
useful RF and IR transmitters,
receivers, and transceivers.
www.glolab.com
email: lab@glolab.com

Gridconnect
Gridconnect distributes networking
products, including those from
Lantronix and Digi.
www.gridconnect.com
email: sales@gridconnect.com
≈ +1 630-245-1445
∆ +1 630-245-1717
≈★ +1-800-975-GRID (4743)
õ 1630 W. Diehl Road
 Naperville, IL 60563, USA

Images SI, Inc.
Images SI sells robotics and electron-
ics parts. They carry a range of RFID
parts, force-sensing resistors, stretch
sensors, gas sensors, electronic kits,
speech-recognition kits, solar energy
parts, and microcontrollers.
www.imagesco.com
email: imagesco@verizon.net
≈ +1-718-966-3694
∆ +1-718-966-3695
õ 109 Woods of Arden Road
 Staten Island, NY 10312, USA

Interlink Electronics
Interlink makes force-sensing resistors,
touchpads, and other input devices.
www.interlinkelectronics.com
email: specialty@interlink
 electronics.com
≈ +1-805-484-8855
∆ +1-805-484-8989
õ 546 Flynn Road
 Camarillo, CA 93012, USA

IOGear
IOGear make computer adapters. Their
USB-to-Serial adapters are good, and
they carry Powerline Ethernet products.
www.iogear.com
email: sales@iogear.com
≈★ +1-866-946-4327
≈ +1-949-453-8782
∆ +1-949-453-8785
õ 23 Hubble Drive
 Irvine, CA 92618, USA

Jameco Electronics
Jameco carries bulk and individual
electronics components, cables,
breadboards, tools, and other staples
for the electronics hobbyist or
professional.
http://jameco.com

email: domestic@jameco.com
international@jameco.com
custservice@jameco.com
≈ +1-800-831-4242
 Toll-free 24-hour order line
≈ +1-650-592-8097
 International order line
∆ +1-650-592-2503 International
∆ +1-800-237-6948★ Toll-free fax
∆ +001-800-593-1449★

 Mexico toll-free fax
∆ +1-803-015-237-6948★

 Indonesia toll-free fax
õ 1355 Shoreway Road
 Belmont, CA 94002, USA

Keyspan
Keyspan makes computer adapters.
Their USA-19xx series of USB-to-
Serial adapters are very handy for
microcontroller work.
www.keyspan.com
email: info@keyspan.com
≈ +1-510-222-0131 Info/sales
≈ +1-510-222-8802 Support
∆ +1-510-222-0323
õ 4118 Lakeside Dr
 Richmond, CA 94806, USA

APPENDIX 449

Lantronix
Lantronix makes serial-to-Ethernet
modules: the XPort, the WiPort, the
WiMicro, the Micro, and many others.
www.lantronix.com
email: sales@lantronix.com
≈ +1-800-526-8766
≈ +1-949-453-3990
∆ +1-949-450-7249
õ 5353 Barranca Parkway
 Irvine, CA 92618, USA

Libelium
Libelium makes an XBee-based
product and other wireless products.
www.libelium.com
email: info@libelium.com
õ Libelium Comunicaciones
 Distribuidas S.L.
 Maria de Luna 11, Instalaciones
 CEEIARAGON, C.P: 50018
 Zaragoza, Spain

Linx Technologies
Linx makes a number of RF receivers,
transmitters, and transceivers.
www.linxtechnologies.com
email: info@linxtechnologies.com
≈ +1-800-736-6677 U.S.
≈ +1-541-471-6256 International
∆ +1-541-471-6251
õ 159 Ort Lane
 Merlin, OR 97532, USA

Low Power Radio Solutions
LPRS makes a number of RF receivers,
transmitters, and transceivers.
www.lprs.co.uk
email: info@lprs.co.uk
≈ +44-1993-709418
∆ +44-1993-708575
õ Two Rivers Industrial Estate
 Station Lane, Witney
 Oxon, OX28 4BH, United Kingdom

Maker SHED
Launched originally as a source
for back issues of MAKE Magazine,
the Maker SHED now has a variety
of stuff for makers, crafters, and
budding scientists.
www.makershed.com
email: help@makershed.com
≈+1-800-889-8969
õ1005 Gravenstein Hwy N
Sebastopol, CA 95472, USA

Making Things
Making Things makes the MAKE
controller, and originated the now-
discontinued Teleo controllers. They do
custom hardware-engineering solutions.
www.makingthings.com
email: info@makingthings.com
∆ +1-415-255-9513
õ 1020 Mariposa Street, #2
 San Francisco, CA 94110, USA

Maxim Integrated Products
Maxim makes sensors, communica-
tions chips, power-management
chips, and more. They also own Dallas
Semiconductor. Together, they’re one
of the major sources for chips related
to serial communication, temperature
sensors, LCD control, and much more.
www.maxim-ic.com
email: info2@maxim-ic.com
≈ +1-408-737-7600
∆ +1-408-737-7194
õ 120 San Gabriel Drive
 Sunnyvale, CA 94086, USA

Microchip
Microchip makes the PIC family of
microcontrollers. They have a very
wide range of microcontrollers, for
just about every conceivable purpose.
www.microchip.com
≈ +1-480-792-7200
õ 2355 West Chandler Blvd.
 Chandler, AZ, 85224-6199, USA

Mouser
Mouser is a large retailer of elec-
tronic components in the U.S. They
stock most of the staple parts used
in the projects in this book, such
as resistors, capacitors, and some
sensors. They also carry the FTDI
USB-to-Serial cable.
www.mouser.com
email: help@mouser.com
õ 1000 North Main Street
 Mansfield, TX 76063, USA

NetMedia
NetMedia makes the BX-24 micro-
controller module and the SitePlayer
Ethernet module.
www.basicx.com
siteplayer.com
email: sales@netmedia.com
≈ +1-520-544-4567
∆ +1-520-544-0800
õ 10940 N. Stallard Place
 Tucson, AZ 85737, USA

Newark In One Electronics
Newark supplies electronics compo-
nents in the U.S. Their catalog part
numbers are consistent with Farnell in
Europe, so if you’re working on both
sides of the Atlantic, sourcing parts
from Farnell and Newark can
be convenient.
www.newark.com
email: somewhere@something.com
≈ +1-773-784-5100
∆ +1-888-551-4801
õ 4801 N. Ravenswood
 Chicago, IL 60640-4496, USA

450 MAKING THINGS TALK

New Micros
New Micros sells a number of micro-
controller modules. They also sell a
USB-XBee dongle that allows you
to connect Digi XBee radios to a
computer really easily. Their dongles
also have all the necessary pins
connected for reflashing the XBee’s
firmware serially.
www.newmicros.com
email: nmisales@newmicros.com
≈ +1-214-339-2204

Parallax
Parallax makes the Basic Stamp
family of microcontrollers. They also
make the Propeller microcontroller, and
a wide range of sensors, beginners’
kits, robots, and other useful tools for
people interested in electronics and
microcontroller projects.
www.parallax.com
email: sales@parallax.com
≈★ +1-888-512-1024 Toll-free sales
≈ +1-916-624-8333
 Office/international
∆ +1-916-624-8003
õ 599 Menlo Drive
 Rocklin, California 95765, USA

Phidgets
Phidgets makes input and output
modules that connect desktop and
laptop computers to the physical
world.
www.phidgets.com
email: sales@phidgets.com
≈ +1-403-282-7335
∆ +1-402-282-7332
õ 2715A 16A NW
 Calgary, Alberta T2M3R7, Canada

Pololu
Pololu makes a variety of electronic
components and breakout boards for
robotics and other projects.
www.pololu.com
email: www@pololu.com
≈ +1-702-262-6648
≈ +1-877-776-5658 U.S. only
∆ + 1-702-262-6894
õ 3095 E. Patrick Ln. #12
Las Vegas, NV 89120, USA

RadioShack
Hooray! RadioShack has begun
to realizedthat the DIY electronics
market in the U.S. never went away,
and they’re carrying more parts again.
By the time you read this, maybe
they’ll be carrying Arduinos as well.
Check the website for part numbers,
and call your local store first to see
whether they’ve got what you need.
It’ll save you time.
www.radioshack.com

Reynolds Electronics
Reynolds Electronics makes a number
of small kits and modules for RF and
infrared communications, IR remote
control, and other useful add-on
functions for microcontroller projects.
www.rentron.com
email: sales@rentron.com
≈ +1-772-589-8510
∆ +1-772-589-8620
õ 12300 Highway A1A
 Vero Beach, Florida, 32963, USA

Roving Networks
Roving Networks makes and sells
Bluetooth radio modules for electron-
ics manufacturers. Their radios are
at the heart of Spark Fun’s Bluetooth
Mate modules.
www.rovingnetworks.com
email: info@rovingnetworks.com
≈ +1-408-395-6539
∆ +1-603-843-7550
õ 102 Cooper Court
Los Gatos, CA 95032, USA

RS Online
RS Online is one of Europe’s largest
electronics retailers. They sell
worldwide.
www. rs-online.com
email: general@rs-components.com
≈ 0845-850-9900
∆ 01536-405678

Samtec
Samtec makes electronic connectors.
They have a very wide range of
connectors, so if you’re looking for
something odd, they probably
make it.
www.samtec.com
email: info@samtec.com
≈ +1-800-SAMTEC-9

Seeed Studio
Seeed Studio makes a number of
useful and inventive open source elec-
tronics parts.
www.seeedstudio.com
email: techsupport@seeedstudio.com
≈ +86-755-26407752
õ Room 0728, Bld 5,
Dong Hua Yuan,
NanHai Ave. NanShan dist.
Shenzhen 518054 China

APPENDIX 451

SkyeTek
SkyeTek makes RFID readers, writers,
and antennas.
www.skyetek.com
≈ +1-720-565-0441
∆ +1-720-565-8989
õ 11030 Circle Point Road, Suite 300
 Westminster, CO 80020, USA

Smarthome
Smarthome makes a wide variety of
home-automation devices, including
cameras, appliance controllers, X10,
and INSTEON.
www.smarthome.com
email: custsvc@smarthome.com
≈ 1-800-762-7846
≈ + 1-800-871-5719 Canada
≈ +1-949-221-9200 International
õ 16542 Millikan Avenue
 Irvine, CA 92606, USA

Spark Fun Electronics
Spark Fun makes it easier to use all
kinds of electronic components. They
make breakout boards for sensors,
radios, and power regulators, and
they sell a variety of microcontroller
platforms.
www.sparkfun.com
email: spark@sparkfun.com
õ 2500 Central Avenue, Suite Q
 Boulder, CO 80301, USA

Symmetry Electronics
Symmetry sells ZigBee and Bluetooth
radios, serial-to-Ethernet modules, WiFi
modules, cellular modems, and other
electronic communications devices.
www.semiconductorstore.com
≈ +1-877-466-9722
≈ +1-310-643-3470 International
∆ +1-310-297-9719
õ 5400 West Rosecrans Avenue
 Hawthorne, CA 90250, USA

TI-RFID
TIRIS is Texas Instruments’ RFID
division. They make tags and readers for
RFID in many bandwidths and
protocols.
www.tiris.com
≈ +1-800-962-RFID (7343)
∆ +1-214-567-RFID (7343)
õ Radio Frequency
 Identification Systems
 6550 Chase Oaks Blvd., MS 8470
 Plano, TX 75023, USA

Trossen Robotics
Trossen Robotics sells a range of RFID
supplies and robotics. They have a
number of good sensors, including
Interlink force-sensing resistors, linear
actuators, Phidgets kits, RFID readers,
and tags for most RFID ranges.
www.trossenrobotics.com
email: jenniej@trossenrobotics.com
≈ +1-877-898-1005
∆ +1-708-531-1614
õ 1 Westbrook Co. Center, Suite 910
 Westchester, IL 60154, USA

Uncommon Projects
Uncommon Projects makes the YBox,
a text-overlay device that puts text from
web feeds on your TV.
www.uncommonprojects.com
ybox.tv
email: info@uncommonprojects.com
õ 68 Jay Street #206
 Brooklyn, NY 11201, USA

452 MAKING THINGS TALK

Most of the software listed

in this book is open source.

In the following listings,

anything that’s not open

source is noted explicitly as

a commercial application.

If there’s no note, you can

assume it’s open.

Arduino
Arduino is a programming environ-
ment for AVR microcontrollers. It’s
based on Processing’s programming
interface. It runs on Mac OS X, Linux,
and Windows operating systems.
www.arduino.cc

Asterisk
Asterisk is a software private
branch exchange (PBX) manager
for telephony. It runs on Linux
and Unix operating systems.
www.asterisk.org

AVRlib
AVRlib is a library of C functions for a
variety of tasks using AVR processors.
It runs on Mac OS X, Linux, and
Windows operating systems as a
library for the avr-gcc compiler.
hubbard.engr.scu.edu/avr/avrlib

avr-gcc
The GNU avr-gcc is a C compiler and
assembler for AVR microcontrollers.
It runs on Mac OS X, Linux, and
Windows operating systems.
www.avrfreaks.net/AVRGCC

Software CCS C
CCS C is a commercial C compiler for
the PIC microcontroller. It runs on
Windows and Linux operating systems.
www.ccsinfo.com

CoolTerm
CoolTerm is a freeware (though not
open source) serial terminal appli-
cation for Mac OS X and Windows
written by Roger Meier.
http://freeware.the-meiers.org

Dave’s Telnet
Dave’s Telnet is a telnet application
for Windows.
http://dtelnet.sourceforge.net

Eclipse
Eclipse is an integrated development
environment (IDE) for programming
in many different languages. It’s
extensible through a plug-in architec-
ture, and there are compiler links to
most major programming languages.
It runs on Mac OS X, Linux, and Windows.
www.eclipse.org

Evocam
Evocam is a commercial webcam
application for Mac OS X.
http://evological.com

Exemplar
Exemplar is a tool for authoring sensor
applications through behavior rather
than through programming. It runs on
Mac OS X, Linux, and Windows operat-
ing systems as a plug-in for Eclipse.
http://hci.stanford.edu/research/
exemplar

Fwink
Fwink is a webcam application
for Windows.
www.lundie.ca/fwink

Girder
Girder is a commercial home
automation application for Windows.
www.girder.nl

GitHub
GitHub is a host for git, a version-
control tool for programming source
code of any language. Git and github
are great tools to share your code.
http://git-scm.com
https://github.com

Java
Java is a programming language.
It runs on Mac OS X, Linux, and
Windows operating systems, and
many embedded systems as well.
http://java.sun.com

Macam
Macam is a webcam driver for
Mac OS X.
http://webcam-osx.sourceforge.net/

Max/MSP
Max is a commercial graphic
data-flow authoring tool. It allows
you to program by connecting
graphic objects rather than writing
text. Connected with Max are MSP,
a real-time audio-signal processing
library, and Jitter, a real-time video-
signal processing library. It runs on
Mac OS X and Windows operating
systems.
www.cycling74.com

APPENDIX 453

PEAR
PEAR is the PHP Extension and
Application Repository. It hosts
extension libraries for PHP scripting.
http://pear.php.net

PHP
PHP is a scripting language that is
especially suited for web develop-
ment and can be embedded into
HTML. It runs on Mac OS X, Linux,
and Windows operating systems.
www.php.net

PicBasic Pro
PicBasic Pro is a commercial BASIC
compiler for PIC microcontrollers.
It runs on Windows.
http://melabs.com

Processing
Processing is a programming language
and environment designed for the non-
technical user who wants to program
images, animation, and interaction. It
runs on Mac OS X, Linux, and Windows.
www.processing.org

Puredata (PD)
Puredata (PD) is a graphic data-flow
authoring tool. It allows you to
program by connecting graphic
objects rather than writing text. It’s
developed by one of the original
developers of Max, Miller Puckette.
It runs on Mac OS X, Linux, and
Windows operating systems.
http://puredata.info

PuTTY SSH
PuTTY is a telnet/SSH/serial port
client for Windows.
www.puttyssh.org

QR Code Library
QR Code Library is a set of libraries
for encoding and decoding QR Code
2D barcodes. It runs on Mac OS X,
Linux, and Windows as a library for
Java.
http://qrcode.sourceforge.jp

Dan Shiffman’s
Processing Libraries
Dan Shiffman has written a number
of useful libraries for Process-
ing, including the pqrcode library
used in this book (www.shiffman.
net/p5/pqrcode). He’s also got
an SFTP library (www.shiffman.
net/2007/06/04/sftp-with-java-pro-
cessing) and a sudden-motion sensor
library for Mac OS X (www.shiffman.
net/2006/10/28/
processingsms).

Sketchtools NADA
NADA is a proxy tool
for connecting programming envi-
ronments with hardware devices.
Originally a commercial tool, it’s since
been open sourced.
code.google.com/p/nadamobile

TinkerProxy
TinkerProxy is a TCP-to-Serial proxy
application.
code.google.com/p/tinkerit/wiki/
TinkerProxy

Twilio
Twilio is a commercial IP
telephony provider. They provide
application programming inter-
faces that allow you to connect
telephone calls to web applica-
tions.
www.twilio.com

UDP Library for Processing
Hypermedia’s UDP library for
Processing enables you to com-
municate via UDP from Process-
ing. It runs on Mac OS X, Linux,
and Windows as a library for
Processing.
hypermedia.loeil.org/processing

Wiring
Wiring is a programming environ-
ment for AVR microcontrollers. It’s
based on Processing’s program-
ming interface. It runs on Mac OS
X, Linux, and Windows operating
systems.
www.wiring.org.co

Index
Symbols
$$$ command, 69, 194
$ symbol, 17
& (AND) logical operator, 423
< character, 85
> character, 85
+++ command, 68, 194, 230
| (OR) logical operator, 423
<< (shift left operator), 423
>> (shift right operator), 423
~ symbol, 13
^ (XOR) logical operator, 424

A
Abacom Technologies, 447
Aboyd Company, 447
absolute path, 13
accelerometers

measuring rotations, 290, 292
PROJECT 21: Determining Attitude

Using an Accelerometer,
263, 290–298

ACN (Advanced Controller Network-
ing), 431, 435

acquisition
defined, 265
distance ranging and, 267

Acroname Easier Robotics, 447
active distance ranging, 267, 272
active RFID systems, 315
Adafruit Industries

about, 447
accelerometers, 290
Ethernet Shield, 119
SD card breakout board, 376
XBee Adapter Kit, 197
XBee USB Adapter Board, 193

adapter boards, 39
Adaptive Design Association, 163–164
addressing schemes, 71, 79–81
ADH Tech, 395
Adobe Illustrator, 25
Advanced Controller Networking

(ACN), 431, 435
AIM (AOL instant messenger), 151
AIRNow web page, 127–139
Air Quality Meter, Networked (project

7)

project overview, 127–139
supplies for, 117

Allan, Alasdair, 396
alligator clip test leads, 7
American Standards Association, 54
American Symbolic Code for Informa-

tion Interchange. See ASCII
character set

analog input circuits
about, 30
usage example, 33

analog radio transmission, 190
analogRead() method (Arduino), 268,

293
analog-to-digital converters, 238
analogWrite() method (Arduino), 48
AND (&) logical operator, 423
Andraos, Mouna, 261, 298
Android devices

PROJECT 31: Personal Mobile Data-
logger, 365, 401–414

setting up Processing for, 396–400
USB and, 414

anodes, defined, 46
antenna design, 190
AOL instant messenger (AIM, 151
Apache

MOD_REWRITE module, 437
PHP scripts and, 15

API (application programming
interface), 387

App Inventor environment, 396
appliance control modules, 322
application layer

about, 40
TTL serial protocol, 42
understanding by building a

project, 46–49
USB protocol, 42

application programming interface
(API), 387

Arduino modules
about, 20–21, 452
changes to version 1.0, 27
Ethernet library, 120–122
flow control and, 62–63
inputs and outputs for, 24, 25
installation process, 24–26
LEDs on, 27–28

listening for incoming serial data,
29

programming environment
depicted, 27

Serial Monitor, 31, 53, 230
serial ports, 29
shields for, 22
solderless breadboards and, 30, 31
USB-to-serial adapters and, 45, 119
variations of, 21, 32

Arduino playground, 187
Arduino store site, 447
Area/Code site, 312
Arnall, Timo, 301, 316
ArrayList data type, 154
ASCII character set

about, 54–55
carriage return, 123, 194
Hayes AT command protocol, 68
linefeed, 123
PHP support, 86

associative arrays, 432
Asterisk telephony server, 366, 386,

452
asynchronous serial communication

about, 40, 41, 421
Bluetooth and, 64
flow control and, 62

ATCN command, 204
ATDH command, 196
ATDL command, 246
ATIS command, 235
Atmel microcontrollers, 23, 447
ATMY command, 231, 246
ATND command, 230
ATRE command, 234
attitude

defined, 290
PROJECT 21: Determining Attitude

Using an Accelerometer,
263, 290–298

attributes, defined, 388
ATVR command, 231
available() function (Serial library),

121
avr-gcc, 452
AVRlib library, 452

456 MAKING THINGS TALK

B
Bağdatlı, Mustafa, 401, 402
balance boards, 163–166
Banzi, Massimo, 21
Barcia-Colombo, Gabriel, 72
bar code recognition

about, 312
PROJECT 24: 2D Bar Code Recog-

nition Using Webcam, 302,
313–315

scanned images and, 315
batteries and battery snap adapters

common components, 8
PROJECT 3: Wireless Monski Pong,

66
purchasing, 7

baudrate, 69
Beagle Board, 118
begin() method

Ethernet library, 139
SD library, 375

beginPacket() method (UDP library),
229

Beim, Alex, 181
binary protocols, 422–424, 431
biometric tracking, 401–414
Bishop, Durrell, 309
bits

masking, 423–424
reading and writing, 423
shifting, 423

bitwise operators, 423–424
blink() method (Processing), 135,

203, 212
Bluetooth protocol

about, 64
802.15.4 and, 226
PROJECT 3: Wireless Monski Pong,

64–67
PROJECT 4: Negotiating in

Bluetooth, 39, 68–71
PROJECT 11: Bluetooth Transceiv-

ers, 183, 206–215
PROJECT 18: Reading Received

Signal Strength Using
Bluetooth Radios, 263, 276

PROJECT 19: Reading GPS Serial
Protocol, 278–285

PROJECT 31: Personal Mobile Data-
logger, 365, 401–414

radio signal strength, 275
boolean data type, 11

Boxall, John, 395
breadboards, solderless. See solder-

less breadboards
breakout boards

used in projects, 445
XBee, 197, 200

Brevig, Alexander, 288
broadcast messages

defined, 193
querying for devices using UDP,

227–230
querying for XBee radios using

802.15.4, 230–231
UDP considerations, 226

BSD environment, 11
BtSerial library, 407, 410
Buechley, Leah, 402
Button library, 288
byte data type, 11

C
C language, 11
calibrating compasses, 287
call-and-response technique, 63
cameras

face recognition algorithms, 309
making infrared visible, 186
network, 384–385
PROJECT 9: Infrared Control

of a Digital Camera, 182,
188–189

Canonical name (CNAME) record,
383

capacitors
common components, 8
purchasing, 7

captive portals, 219
carriage return character, 123, 194
carrier waves, 185
cascade files, 310
cascade() method (OpenCV library),

310
catcam

PROJECT 5: Networked Cat,
99–100, 110–111

PROJECT 29: Catcam Redux, 364,
369–383

cathode, defined, 46
CCS C compiler, 452
cd command, 13

chat servers
defined, 151
PROJECT 8: Networked Pong, 150,

153–155
Chip Select (CS) pin, 119
chmod command, 14
circuits

about, 366
analog input, 30, 33
digital input, 30

classes
constructor methods and, 168
defined, 166
instances of, 168
instance variables and, 168

clearing the bit, 423
Clear to Send (CTS, 45
Client library

connected() method, 121
connect() method, 138, 142

client-server model
defined, 82
email and, 88
PROJECT 5: Networked Cat, 105
PROJECT 8: Networked Pong, 150,

155–177
PROJECT 29: Catcam Redux, 364,

369–383
web browsing and, 82–86
writing test programs, 143–146

Clock pin, 119
close() function (SD library), 376
CNAME (Canonical name) record,

383
Cohen, Jonathan, 25, 309
color recognition

about, 305
answering machines and, 309
lighting tricks, 308
PROJECT 22: Color Recognition

Using a Webcam, 302,
306–309

command-line interface
about, 11–12
controlling file access, 14
creating files, 14
deleting files, 15
PHP scripts and, 15–17
serial communication tools, 17–20
troubleshooting messages, 81
usage overview, 13–14
viewing files, 14

INDEX 457

command mode
about, 68
Hayes AT command protocol and,

68
PROJECT 4: Negotiating in

Bluetooth, 69
switching modes, 68, 194

comma-separated values (CSV), 432
communications modules, 444–445
communications protocols.

See protocols
compasses. See digital compasses
computers. See personal computers
conditional statements

about, 11
debugging, 141
if() statement, 61, 385
if-then statements, 11
while() statement, 379–380

connected() method (Client library),
121

connect() method
BtSerial library, 408, 410
Client library, 138, 142

constructor methods, 168
control connections, 31
Control panel modules, 322
converters, serial-to-USB, 7
Cooking Hacks site, 395
CoolTerm program

about, 18, 452
PROJECT 10: Duplex Radio Trans-

mission, 194, 196
CoreRFID, 447
Cousot, Stephane, 227
Crites, Tom, 321
CS (Chip Select) pin, 119
CSS3 standard, 391
CSV (comma-separated values), 432
CTS (Clear to Send), 45
Culkin, Jody, 25

D
data formats, 432–434
datagrams

defined, 226
directed, 246

data layer
about, 40
RS-232 serial protocol, 43
TTL serial protocol, 42
USB protocol, 42

datalogging (project 31), 365,
401–414

data mode
about, 68
Hayes AT command protocol and,

68
PROJECT 4: Negotiating in

Bluetooth, 69
switching modes, 68

data types, 11
date() function (PHP), 17
Dave’s Telnet, 452
dBm (decibel-milliwatts), 275
DDNS (Dynamic DNS), 383
debounce technique, 162
debugging methods, 140–142
decibel-milliwatts (dBm), 275
decimal notation, 80
decodeImage() method (pqrcode

library), 314
DELETE command (HTTP), 86
deleting files, 15
delimiters, defined, 56
desoldering pumps, 6
detect() method (OpenCV library),

311
Devantech/Robot Electronics, 447
Device Manager (Windows), 18, 26
DHCP (Dynamic Host Control

Protocol), 81, 138
diagnostic tools

about, 140–146
control panel modules, 322
SMRFID Mifare v1.2, 336
Wi-Fi shield, 219

diagonal cutters, 6
Digi, 447
Digi-Key Electronics, 447
digital cameras

face recognition algorithms, 309
making infrared visible, 186
PROJECT 9: Infrared Control

of a Digital Camera, 182,
188–189

digital compasses
calibrating, 287
PROJECT 20: Determining Heading

Using a Digital Compass,
263, 286–289

digital input circuit, 30
digital radio transmission, 190
diodes, common components, 8

directed messages
about, 246–247
PROJECT 14: Relaying Solar Cell

Data Wirelessly, 248–257
directionality

defined, 185
infrared, 186

directly connected networks, 77
distance ranging

about, 267
active, 267, 272
multipath effect, 276
passive, 267, 272
products supporting, 267
PROJECT 15: Infrared Distance

Ranger Example, 262,
268–269

PROJECT 16: Ultrasonic Distance
Ranger Example, 263,
270–271

PROJECT 17: Received Signal
Strength Using XBee Radios,
263, 273–275

PROJECT 18: Reading Received
Signal Strength Using
Bluetooth Radios, 263, 276

RFID technology and, 316
triangulation, 277
trilateration, 267, 277

dist() function (Processing), 307
D-link, 447
DMX512 protocol, 421, 431
DNS (Domain Name System), 81, 138
dnServerIP() method (Ethernet

library), 138
documentation, 25
Domain Name System (DNS), 81, 138
drawing tools, 25
draw() method (Processing), 11, 20
DSO Nano oscilloscope, 34
Duplex Radio Transmission (project

10)
communication between microcon-

trollers, 204
configuring XBee modules serially,

193–199
programming microcontrollers to

user XBee module, 200–204
project overview, 193
supplies for, 182

duty cycle, defined, 235

458 MAKING THINGS TALK

Dynamic DNS (DDNS), 383
Dynamic Host Control Protocol

(DHCP), 81, 138

E
EAN bar code symbology, 312
Echo Mode, 69
Eclipse IDE, 452
EEPROM library, 374
8-bit controllers, 23
802.15.4 standard

Bluetooth and, 226
querying for XBee radios, 230–231

electrical interfaces, 2
electrical layer

about, 40
RS-232 serial protocol, 43
TTL serial protocol, 42
USB protocol, 42

elements, defined, 387
ELFA, 448
email programs

about, 88
mobile phone support, 368
PROJECT 5: Networked Cat, 95–99
text messaging and, 393–394

embedded modules
PROJECT 7: Networked Air Quality

Meter, 117, 127–139
troubleshooting, 140–146

end-of-transmission (ETX) byte, 318
endPacket() method (UDP library),

229, 253
Environmental Protection Agency, 127
environment variables

HTTP support, 353–354
mail, 357–359
name-value pairs and, 432
PHP support, 17

EPanorama site, 186
Ethernet cables, 7
Ethernet library

about, 120–122
begin() method, 139
dnsServerIP() method, 138
gatewayIP() method, 138
localIP() method, 138
PROJECT 6: Hello Internet! Daylight

Color Web Server, 122
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 243
subnetMask() method, 138

Ethernet protocol, 79
Ethernet shield

about, 22
Adafruit, 119
Arduino, 118
debugging methods, 140
PROJECT 6: Hello Internet! Daylight

Color Web Server, 120–126
PROJECT 7: Networked Air Quality

Meter, 127–139
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 239
PROJECT 27: Tweets from RFID,

343
ETX (end-of-transmission) byte, 318
events

about, 96
PROJECT 5: Networked Cat, 96

Evocam webcam application, 452
Exemplar tool, 452
exists() method (SD library), 376
eXtensible Markup Language (XML),

387–391

F
face detection

about, 309
PROJECT 23: Face Detection Using

a Webcam, 302, 310–311
falling edge of the clock, 289
Faludi, Robert, 195, 248, 249
Fan, Doria, 75
Faraday cage, 191
Faraday, Michael, 191
Farnell (vendor), 448
feedback loops

interactive systems and, 151
PROJECT 8: Networked Pong, 150,

153–177
fgetss() function (PHP), 131
Figaro USA, Inc., 448
file formats, 376
files

controlling access to, 14
creating, 14
deleting, 15
invisible, 13
lock, 18
uploading to servers, 101–102
viewing, 14

$_FILES variable (PHP), 101

firmware
reading, 335, 345
SonMicro readers and, 333–334,

336
upgrading on XBee radios, 231

float data types
about, 11
PROJECT 2: Monski Pong, 57

flow control
animation and, 62–63
PROJECT 2: Monski Pong, 50–61
PROJECT 3: Wireless Monski Pong,

64–67
flush() function (SD library), 376
F() notation, 346
fopen() function (PHP), 132
force-sensing resistors (FSRs)

about, 89
common components, 8
PROJECT 5: Networked Cat, 89–98

foreach() statement, 439
for-next loops, 11
Freescale site, 292
frequency division multiplexing, 192
Fritzing tool, 25
Fry, Ben, 11
FSRs (force-sensing resistors)

about, 89
common components, 8
PROJECT 5: Networked Cat, 89–98

FTDI (Future Technology Devices
International, Ltd.), 448

FTDI USB-to-serial adapter, 119
FTDI USB-to-TTL serial cable, 39, 43,

45
Fun with MIDI (project 32)

project overview, 427–430
supplies for, 418

Fun with REST (project 33), 437–439
Future Technology Devices Interna-

tional, Ltd. (FTDI), 448
Fwink webcam application, 452

G
Galvanic skin response, 401–414
game controllers, joystick, 156–162
gateway addresses, 122
gatewayIP() method (Ethernet

library), 138
General MIDI instrument specifica-

tion, 425

INDEX 459

geocoding
about, 265
PROJECT 28: IP Geocoding,

355–361
GET command (HTTP)

about, 86–87
PROJECT 5: Networked Cat, 109
PROJECT 29: Catcam Redux, 379

$_GET environment variable, 17
Girder application, 452
GitHub site, 25, 321, 452
Global Positioning System. See GPS
global variables, 104, 107
Glolab, 448
GNU screen program, 18
Google Accessory Development Kit,

414
Google Voice, 366, 386
$GPGGA sentence, 280, 284
$GPGSV sentence, 280, 284
$GPRMC sentence, 280, 284
GPRS module, 395
GPS (Global Positioning System)

about, 267
distance ranging and, 272
multipath effect, 276
PROJECT 19: Reading GPS Serial

Protocol, 263, 278–285
purchasing accessories, 285
trilateration and, 277

graphing results, 254–257
Gridconnect, 448
guard time, 194

H
handshake method (call-and-

response), 63
hardware address

about, 79
composition of, 80

hardware vendors, 447–451. See
also specific vendors

Hartman, Kate, 220
Hasson, Meredith, 415
Hayes AT command protocol

about, 68
GPRS support, 395
switching modes, 68

header pins
common components, 8
PROJECT 5: Networked Cat, 93
purchasing, 7

headers, defined, 56
Heading, Determining Using a Digital

Compass (project 20)
project overview, 286–289
supplies for, 263

Headset Profile (Bluetooth), 64
Heathcote, Chris, 266, 267
heave translation, 290, 292
Hello Internet! Daylight Color Web

Server (project 6)
project overview, 120–126
supplies for, 117

Hello, Wi-Fi! (project 12)
project overview, 217–218
supplies for, 183

helping hands, purchasing, 6
hexadecimal notation, 80, 424
HID (Human Interface Device) Profile,

64
Hirschmann, Daniel, 431
home automation

PROJECT 26: RFID Meets Home
Automation, 303, 321–328

X10 protocol and, 322
home directory, 13
hook-up wire

common components, 8
purchasing, 7

HTML5 standard, 391–392
HTML (HyperText Markup Language)

about, 434
embedding PHP in, 16

HTTP 200 OK header, 380
HTTP 404 File Not Found header, 380
HTTP_ACCEPT_LANGUAGE environ-

ment variable, 354
HTTP (HyperText Transfer Protocol)

about, 84, 432
environment variables, 353–354
REST principle, 435–436
supported commands, 86–87

HTTP_USER_AGENT environment
variable, 354

HTTP user agents, 355–356
hubs, defined, 78
Human Interface Device (HID) Profile,

64
Huntington, John, 431

Hypermedia UDP library for Process-
ing, 453

HyperText Markup Language (HTML)
about, 434
embedding PHP in, 16

HyperText Transfer Protocol (HTTP)
about, 84, 432
environment variables, 353–354
REST principle, 435–436
supported commands, 86–87

I
I2C protocol

about, 119, 289, 421
PROJECT 27: Tweets from RFID,

345
SonMicro readers and, 333, 420

identification. See also physical iden-
tification; RFID technology

about, 301
network identification, 301,

353–359
PROJECT 22: Color Recognition

Using a Webcam, 302,
306–309

PROJECT 23: Face Detection Using
a Webcam, 302, 310–311

PROJECT 24: 2D Bar Code Recog-
nition Using Webcam, 302,
313–315

PROJECT 25: Reading RFID tags in
Processing, 302

PROJECT 27: Tweets from RFID,
303

PROJECT 28: IP Geocoding,
355–361

video identification, 305
IDEs (integrated development envi-

ronments), 20
ID Innovations, 316, 318–320, 328
idle mode, 204
if() statement, 61, 385
if-then statements, 11
images

bar code recognition and, 315
capturing and uploading, 102–106

Images SI Inc., 448
IMAP (Internet Message Access

Protocol), 88
induction property, 190

460 MAKING THINGS TALK

infrared communication
about, 185
data protocols, 186
how it works, 185–187
making it visible, 186
PROJECT 9: Infrared Control

of a Digital Camera, 182,
188–189

PROJECT 15: Infrared Distance
Ranger Example, 262,
268–269

sniffing IR signals, 187
troubleshooting, 186

Infrared Control of a Digital Camera
(project 9)

project overview, 188–189
supplies for, 182

Infrared Distance Ranger Example
(project 15)

project overview, 268–269
supplies for, 262

Inkscape tool, 25
instances, defined, 168
instance variables, 168
Institute for Interaction Design, 20
int data type

about, 11
scaling functions and, 57

integrated development environ-
ments (IDEs), 20

interactive systems
feedback loops and, 151
PROJECT 8: Networked Pong, 150,

153–177
Interactive Telecommunications

Program (ITP), 248
interface modules, 322
Inter-Integrated Circuit. See I2C

protocol
Interlink Electronics, 448
Internet Message Access Protocol

(IMAP), 88
Internet Protocol addresses. See IP

addresses
Internet Relay Chat (IRC), 151
internet transfer protocols, 432
intervalometers, 190
inverted logic, 43
invisible files, 13
IOGear, 43, 448
IP addresses

about, 79

constructing, 80
decimal notation and, 80
DHCP support, 138
DNS support, 81, 138
finding for hosts, 134–137
locating things and, 265
private, 81, 126
PROJECT 6: Hello Internet! Daylight

Color Web Server, 122
PROJECT 28: IP Geocoding,

355–361
public, 81, 126

IP Geocoding (project 28)
mail environment variables,

357–359
project overview, 355–357

IRC (Internet Relay Chat), 151
IR communication. See infrared com-

munication
IR LEDs, 185–187
is_bool() function (PHP), 17
is_int() function (PHP), 17
ISO 14443 standard, 317
ISO 15693 standard, 316
isset() function (PHP), 17
is_string() function (PHP), 17
ITP (Interactive Telecommunications

Program), 248

J
Jameco Electronics, 448
JAN bar code symbology, 312
Java language

about, 452
classes and, 166
Processing language and, 11

JavaScript language, 391
JavaScript Object Notation (JSON),

432–433
Johansson, Sara, 301
joystick game controllers, 156–162
JSON (JavaScript Object Notation),

432–433

K
Kaufman, Jason, 75
Keyspan (vendor), 43, 448
Knörig, André, 25
Konsole program, 12

L
lamp control modules, 322, 325
Lantronix modules, 118, 449
LeafLabs Maple controller, 23
LEDs

on Arduino board, 27–28
common components, 8
IR, 185–187
opto-isolators and, 425
PROJECT 1: Type Brighter RGB LED

Serial Control, 38, 46–49
PROJECT 7: Networked Air Quality

Meter, 133
PROJECT 8: Networked Pong,

156–158, 161
PROJECT 10: Duplex Radio Trans-

mission, 193
PROJECT 29: Catcam Redux, 377
purchasing, 7
PWM and, 127
troubleshooting support, 140

Lehrman, Paul D., 425
less editor, 14
Libelium, 395, 449
lighting filters, 120, 121
linefeed character, 123
Linux environment

Arduino/Wiring modules and, 21,
26

Bluetooth support, 65, 71
capturing and uploading images,

102
IP addressing and, 80
remote access applications for,

11, 12
screen programs and, 18
serial communication tools, 18
terminal emulation programs, 18
test chat server, 153
TextFinder library, 133
X-CTU software, 231

Linx Technologies, 449
LiquidCrystal library, 343
listen() method (UDP library), 229
list() function (Serial library), 296
loadStrings() method (Processing),

98, 412
localhost address, 82
localIP() method (Ethernet library),

138

INDEX 461

location
about, 261
determining orientation, 286
network location, 264–266
physical location, 264–266
popular techniques, 266
PROJECT 15: Infrared Distance

Ranger Example, 262,
268–269

PROJECT 16: Ultrasonic Distance
Ranger Example, 263,
270–271

PROJECT 17: Received Signal
Strength Using XBee Radios,
263

PROJECT 18: Reading Received
Signal Strength Using
Bluetooth Radios, 263, 276

PROJECT 19: Reading GPS Serial
Protocol, 263, 278–285

PROJECT 20: Determining Heading
Using a Digital Compass,
263, 286–289

PROJECT 21: Determining Attitude
Using an Accelerometer,
263, 290–298

PROJECT 32: Fun with MIDI, 418,
427–430

PROJECT 33: Fun with REST,
437–439

lock files, 18
logical layer

about, 40
RS-232 serial protocol, 43
TTL serial protocol, 42
USB protocol, 42

logical operators, 423–424
logout command, 15
London, Kati, 220
loopback address, 82
loop() method (Processing), 20, 229
Lotan, Gilad, 248, 249, 258
LPRS (Low Power Radio Solutions),

449
ls command, 14

M
MAC addresses

about, 79
composition of, 80
PROJECT 6: Hello Internet! Daylight

Color Web Server, 122

Macam webcam driver, 452
Mac OS X environment

Arduino/Wiring modules and, 21,
24

Bluetooth support, 65, 71
capturing and uploading images,

102
IP addressing and, 79
network settings panel, 79
ping tool, 82
remote access applications, 12
screen programs and, 18
serial communication tools, 18
terminal emulation programs, 18
test chat server, 153
TextFinder library, 133
USB protocol and, 43
X-CTU software, 231

Madsen, Leif, 386
Maker Notebooks, 25
Maker Shed, 449
Making Things, 449
man command, 15
map() function (Processing), 20, 57
marbles as physical tokens, 309
Margolis, Michael, 133
markup languages, 433–434
Master In, Slave Out (MISO) pin, 119,

376
Master Out, Slave In (MOSI) pin, 119,

376
MAX3232 chip, 44
Maxbotix, 420
Maxim Integrated Products, 449
Maxim Technologies, 44
Max tool, 452
Mazurov, Oleg, 414
Media Access Control addresses.

See MAC addresses
Meier, Roger, 18
Melo, Mauricio, 75
mesh networks, 249
messages. See sending messages
Microchip microcontrollers, 23, 449
microcontrollers

about, 23
Arduino module, 20–21
Atmel AVR, 23
attaching to mobile phone

networks, 395
common analog sensors, 8
common batter snap adapters, 8

common capacitors, 8
common diodes, 8
common header pins, 8
common LEDs, 8
common potentiometers, 8
common push buttons, 8
common resistors, 8
common solderless breadboards, 8
common transistors, 8
common voltage regulators, 8
communication between, 204
connecting, 215
defined, 3
8-bit controllers, 23
GPRS for, 395
hook-up wire, 8
making mobile, 205
Microchip PIC, 23
MIDI support, 425
mobile phones and, 366–367
physical interfaces, 3
physical tools, 5–9
process overview, 3
programming to use XBee module,

200–204
purchasing modules, 7
serial ports and, 17–18
32-bit controllers, 23
used in projects, 444
Wiring module, 20–21
XBee and, 197

microSD cards, 377
microwave range, 191
MIDI Manufacturers’ Organization

site, 425
MIDI (Musical Instrument Digital

Interface)
about, 423, 425–426
command bytes, 424, 425
General MIDI instrument specifica-

tion, 425
noteOff() method, 428
noteOn() method, 428
PROJECT 32: Fun with MIDI, 418,

427–430
resetMidi() method, 430
sendMidi() method, 428
status bytes, 425

462 MAKING THINGS TALK

Mifare protocol
about, 317
PROJECT 27: Tweets from RFID,

329
reading from tags, 343
writing to tags, 335

MISO (Master In, Slave Out) pin, 119,
376

mkdir command, 13
mkdir() method (SD library), 376
MMS (Multimedia Message Service),

393
mobile phones

about, 366–368
microcontrollers and, 366–367,

395
native applications for, 368,

396–400
PROJECT 29: Catcam Redux, 364,

369–383
PROJECT 30: Phoning the Thermo-

stat, 365, 386–400
PROJECT 31: Personal Mobile Data-

logger, 365, 401–414
modems

about, 64
Bluetooth support, 64
defined, 78
Hayes AT command protocol, 68
serial-to-Ethernet, 118

MOD_REWRITE module, 437
Mok, Jin-Yo, 149, 178
Monski Pong (project 2)

project overview, 50–60
supplies for, 39

Monski Pong, Wireless (project 3)
adjusting program, 65–66
project overview, 64–67
supplies for, 39

MOSI (Master Out, Slave In) pin, 119,
376

most significant bit, 423
most significant digit, 423
MoSync platform, 392
Mouser (vendor), 449
MSP library, 452
Mulligan, Ryan, 288
Multi Camera IR Control library,

188–189
Multimedia Message Service (MMS),

393
multimeters, 6

multipath effect, 276
multiplexing, 191
Murphy, Glenn, 280
Musical Instrument Digital Interface.

See MIDI
Myers, Ryan, 72
mystery radio error, 184

N
NADA tool, 453
nameservers, 81
name-value pairs, 432
nano editor, 14
National Marine Electronics Associa-

tion, 278
native applications for mobile phones,

368, 396–400
navigational terms, 290
nearfield communications (NFC), 329
needlenose pliers, 6
Negotiating in Bluetooth (project 4)

project overview, 68–71
supplies for, 39

netmask, 80, 122
NetMedia, 449
network cameras, 384–385
network communication

about, 37
layers of agreement, 40
PROJECT 1: Type Brighter RGB LED

Serial Control, 38, 46–49
PROJECT 2: Monski Pong, 39,

50–60
PROJECT 3: Wireless Monski Pong,

39, 64–67
PROJECT 4: Negotiating in

Bluetooth, 39, 68–71
PROJECT 5: Networked Cat, 76,

89–111
as session-based, 226

Networked Air Quality Meter (project
7)

project overview, 127–139
supplies for, 117

Networked Cat (project 5)
capturing and uploading images,

102–106
final assembly, 106–111
project overview, 89–98
sending mail from the cat, 98–99
supplies for, 76
uploading files to servers, 101–102

web page for cat cam, 99–100
web page for web cam, 110–111

Networked Pong (project 8)
anatomy of player object, 166–168
balance board client, 163–166
client-side overview, 155–156
joystick client, 156–162
main server program, 168–177
project overview, 153
server-side overview, 166
supplies for, 150
test chat server, 153–155

network identification
about, 301, 353–354
PROJECT 28: IP Geocoding,

355–361
network interface modules

about, 118–119
PROJECT 6: Hello Internet! Daylight

Color Web Server, 117,
120–126

Network library
about, 11
PROJECT 5: Networked Cat, 104
serverEvent() method, 155, 168,

172, 174
network location, 264–266
network maps, 77–79
network protocols, 3
network servers, 3
network stack, 118
Nevarez, Ariel, 415
Newark In One Electronics, 449
New Micros (vendor), 450
New York University, 248
NFC (nearfield communications), 329
Nguyen, Tuan Anh T., 1
9-pin serial connector, 43
NMEA 0183 protocol, 278–280, 285
node discovery, 230
node identifier, 231
Nordberg, J., 261, 298
noteOff() method (MIDI), 428
noteOn() method (MIDI), 428
nslookup command, 134

O
objects

communication considerations,
2, 4

interface elements and, 2
physical tools for, 5–9
software tools for, 9–12

INDEX 463

O’Brien, Derrick, 280
octets (IP addresses), 80
Olivero, Giorgio, 25
omnidirectional transmission, 185
one-dimensional bar codes, 312
OpenCV library

about, 305
bar code recognition, 313
cascade() method, 310
color recognition methods, 306
detect() method, 311
face detection methods, 310

OpenSSH program, 12
Open Systems Interconnect (OSI)

model, 40
operational codes, 423
optical recognition

defined, 304
limitations, 315

opto-isolators, 425
O’Reilly Emerging Technology Confer-

ence, 266
orientation

PROJECT 20: Determining Heading
Using a Digital Compass,
286–289

PROJECT 21: Determining Attitude
Using an Accelerometer,
290–298

types of sensors, 286
OR (|) logical operator, 423
oscilloscopes

about, 34
making infrared visible, 186
purchasing, 6
sniffing IR signals, 187

OSI (Open Systems Interconnect)
model, 40

Oslo School of Architecture and
Design, 301

P
Pablo, Angela, 248, 249, 258
packet length, 56, 240
packets, defined, 56
packet switching, 81–82
Paek, Joo Youn, 37
Pakhchan, Syuzi, 402
PAN (Personal Area Network) ID, 196,

234

Parallax
about, 450
Basic Stamp microcontroller, 23,

29
RFID technology, 317

parent directory, 13
parsePacket() method (UDP library),

229, 255
passive distance ranging, 267, 272
passive RFID systems, 315
pattern recognition, 309
payloads, defined, 56
PBASIC language, 23
PD (Puredata) tool, 453
PEAR (PHP Extension and Application

Repository), 453
Peek, Jerry, 15
peek() method (SD library), 376
perf boards, 156, 158
permissions, changing, 14, 358
Personal Area Network (PAN) ID, 196,

234
personal computers

about, 3
mobile phones and, 366
physical interface, 3
types of, 3–4

Personal Mobile Datalogger (project
31)

circuits, 402
coding, 405–414
construction, 402–405
project overview, 401
supplies for, 365

Phidgets (vendor), 450
PhoneGap platform, 392
Phoning the Thermostat (project 30)

project overview, 386
supplies for, 365
text messaging, 393–395

photocells, 120, 121
PHP Extension and Application

Repository (PEAR), 453
PHP language

about, 15, 453
additional information, 17
ASCII strings and, 86
creating scripts, 16–17
date() function, 17
embedding in HTML pages, 16
fgetss() function, 131
fopen() function, 132

handling variables, 17
identifying installed version, 15
is_bool() function, 17
is_int() function, 17
isset() function, 17
is_string() function, 17
preg_match function, 132
Processing language and, 17
reading web pages, 130–137
sending email, 88

physical identification. See also RFID
technology

about, 301, 304
bar code recognition, 312–315
color recognition, 305–308
face detection, 309–312
marbles as physical tokens, 309
pattern recognition, 309
PROJECT 22: Color Recognition

Using a Webcam, 302,
306–309

PROJECT 23: Face Detection Using
a Webcam, 302, 310–311

PROJECT 24: 2D Bar Code Recog-
nition Using Webcam, 302,
313–315

shape recognition, 309
video identification, 305

physical interfaces
defined, 2
physical tools for, 5–9
types of computers and, 3

physical layer
about, 40
protocol considerations, 419–420
RS-232 serial protocol, 43
TTL serial protocol, 42
USB protocol, 42

physical location
distance ranging, 267
network location and, 264–266

physical objects
about, 2
identifying, 304–305
interface elements and, 2

physical tools
about, 5–9
debugging methods, 140

PICAXE environment, 23
PicBasic Pro, 29, 453
ping command, 81, 134
pitch rotation, 290, 292

464 MAKING THINGS TALK

Player object (project 8), 166–168
pliers, needlenose, 6
Pololu (vendor), 288, 450
POP (Post Office Protocol), 88
port numbers

defined, 83
private IP addresses and, 126

position() method (SD library), 376
POST command (HTTP)

about, 86–87
multipart, 106
PROJECT 5: Networked Cat, 104,

110
PROJECT 29: Catcam Redux, 379

$_POST environment variable, 17
POSTNET bar code symbology, 312
Post Office Protocol (POP), 88
potentiometers

common components, 8
defined, 30
PROJECT 11: Bluetooth Transceiv-

ers, 209
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 238
PROJECT 27: Tweets from RFID,

343, 347
purchasing, 7
usage example, 33

power connectors, 6
power supplies, 6, 344
Power Switch Tail, 372
pqrcode library, 314
preg_match() function (PHP), 132
print() function

SD library, 376
Serial library, 54, 121

println() function
SD library, 376
Serial library, 121

private IP addresses, 81, 126
Processing language. See

also specific methods
about, 9–11, 453
additional information, 11
Android apps and, 396
Arduino/Wiring modules and, 20
classes and, 166
flow control and, 62–63
libraries supported, 227
PHP language and, 17

profiles, defined, 64

programming languages, 434. See
also specific languages

PROJECT 1: Type Brighter RGB LED
Serial Control

project overview, 46–49
supplies for, 38

PROJECT 2: Monski Pong
project overview, 50–60
supplies for, 39

PROJECT 3: Wireless Monski Pong
adjusting program, 65–66
project overview, 64–67
supplies for, 39

PROJECT 4: Negotiating in Bluetooth
project overview, 68–71
supplies for, 39

PROJECT 5: Networked Cat. See
also PROJECT 5: Networked
Cat: Catcam Redux

capturing and uploading images,
102–106

final assembly, 106–111
project overview, 89–98
sending mail from the cat, 98–99
supplies for, 76
uploading files to servers, 101–102
web page for cat cam, 99–100
web page for web cam, 110–111

PROJECT 6: Hello Internet! Daylight
Color Web Server

project overview, 120–126
supplies for, 117

PROJECT 7: Networked Air Quality
Meter

project overview, 127–139
supplies for, 117

PROJECT 8: Networked Pong
anatomy of player object, 166–168
balance board client, 163–166
client-side overview, 155–156
joystick client, 156–162
main server program, 168–177
project overview, 153
server-side overview, 166
supplies for, 150
test chat server, 153–155

PROJECT 9: Infrared Control of a
Digital Camera

project overview, 188–189
supplies for, 182

PROJECT 10: Duplex Radio Transmis-
sion

communication between microcon-
trollers, 204

configuring XBee modules serially,
193–199

programming microcontrollers to
user XBee module, 200–204

project overview, 193
supplies for, 182

PROJECT 11: Bluetooth Transceivers
circuits, 206–207
commands, 207–209
connecting two microcontrollers,

215
connecting two radios, 209–215
project overview, 206
supplies for, 183

PROJECT 12: Hello, Wi-Fi!
project overview, 217–218
supplies for, 183

PROJECT 13: Reporting Toxic
Chemicals in the Shop

circuits, 235–238
common problems, 242
project overview, 232–234
radio settings, 234–235
reading XBee protocol, 238–245
supplies for, 224

PROJECT 14: Relaying Solar Cell Data
Wirelessly

circuits, 248–253
graphing results, 254–257
project overvew, 248
radio settings, 248
supplies for, 225

PROJECT 15: Infrared Distance
Ranger Example

project overview, 268–269
supplies for, 262

PROJECT 16: Ultrasonic Distance
Ranger Example

project overview, 270–271
supplies for, 263

PROJECT 17: Received Signal
Strength Using XBee Radios

project overview, 273–275
supplies for, 263

INDEX 465

PROJECT 18: Reading Received Signal
Strength Using Bluetooth
Radios

project overview, 276
supplies for, 263

PROJECT 19: Reading GPS Serial
Protocol

project overview, 278–285
supplies for, 263

PROJECT 20: Determining Heading
Using a Digital Compass

project overview, 286–289
supplies for, 263

PROJECT 21: Determining Attitude
Using an Accelerometer,
290–298

PROJECT 22: Color Recognition Using
a Webcam

project overview, 306–309
supplies for, 302

PROJECT 23: Face Detection Using a
Webcam

project overview, 310–311
supplies for, 302

PROJECT 24: 2D Bar Code Recogni-
tion Using Webcam

project overview, 313–315
supplies for, 302

PROJECT 25: Reading RFID tags in
Processing

project overview, 318–320
supplies for, 302

PROJECT 26: RFID Meets Home Auto-
mation

project overview, 321–328
supplies for, 303

PROJECT 27: Tweets from RFID
circuits, 329–332, 343–346
construction, 351–352
project overview, 329
saving program memory, 346–351
SonMicro communications

protocol, 333–335
supplies for, 303
troubleshooting, 350
writing Mifare tags, 335

PROJECT 28: IP Geocoding
mail environment variables,

357–359
project overview, 355–357

PROJECT 29: Catcam Redux. See
also Processing language:
Networked Cat

circuits, 372–373
coding, 373–383
project overview, 369–371
supplies for, 364

PROJECT 30: Phoning the Thermo-
stat

project overview, 386
supplies for, 365
text messaging, 393–395

PROJECT 31: Personal Mobile Data-
logger

circuits, 402
coding, 405–414
construction, 402–405
project overview, 401
supplies for, 365

PROJECT 32: Fun with MIDI
project overview, 427–430
supplies for, 418

PROJECT 33: Fun with REST, 437–439
protocols. See also specific protocols

binary, 422–424, 431
defined, 2–3
good habits for, 5
making connections, 419–421
network, 3
planning physical system, 421
PROJECT 1: Type Brighter RGB LED

Serial Control, 46–49
PROJECT 2: Monski Pong, 50–60
PROJECT 32: Fun with MIDI, 418,

427–430
PROJECT 33: Fun with REST,

437–439
REST principle, 435–436
serial, 3
text, 422–424, 432–434

prototyping boards
about, 156
depicted, 158
used in projects, 444

prototyping shields, 7
PSTN (public switched telephone

network), 386
public IP addresses, 81, 126
public switched telephone network

(PSTN), 386
pull-down resistors, 30
pull-up resistors, 30

pulses
carrier waves and, 185
communication protocols and, 2

pulse width modulation (PWM), 127,
234

pulse width ratio, 235
Puredata (PD) tool, 453
push buttons

common components, 8
PROJECT 11: Bluetooth Transceiv-

ers, 209
purchasing, 7

PUT command (HTTP), 86
PuTTY program

about, 18, 453
configuring serial connection, 19
disconnecting connection, 18
downloading, 12, 84

PWM (pulse width modulation), 127,
234

Python language, 395

Q
QR code

about, 305, 312
PROJECT 24: 2D Bar Code Rec-

ognition Using Webcam,
313–315

QRcode library, 453
Quantified Self meetups, 401
querying for devices

UDP support, 227–230
using 802.15.4, 230–231

Quicktime program, 102

R
RabbitCore processors, 118
radio frequency (RF) shields, 191
Radio Shack, 450
radios, purchasing, 216
radio transceivers. See transceivers
radio transmission. See also signal

strength
about, 185, 190
digital and analog, 190
node discovery, 230
node identifier, 231
PROJECT 10: Duplex Radio Trans-

mission, 182, 193–205
PROJECT 17: Received Signal

Strength Using XBee Radios,
263, 273–275

466 MAKING THINGS TALK

PROJECT 18: Reading Received
Signal Strength Using
Bluetooth Radios, 263, 276

read() function (Serial library), 121
Reading GPS Serial Protocol (project

19)
project overview, 278–285
supplies for, 263

Reading Received Signal Strength
Using Bluetooth Radios
(project 18)

project overview, 276
supplies for, 263

Reading RFID tags in Processing
(project 25)

project overview, 318–320
supplies for, 302

Reas, Casey, 11
received signal strength (RSSI), 273
Received Signal Strength Using XBee

Radios (project 17)
project overview, 273–275
supplies for, 263

receive() method (UDP library), 228
receive pin (RX), 45, 215, 240
receivers

defined, 185
distance ranging and, 272

Rectangle object (Java), 310
relative path, 13
Relaying Solar Cell Data Wirelessly

(project 14)
circuits, 248–253
graphing results, 254–257
project overvew, 248
radio settings, 248
supplies for, 225

REMOTE_ADDR environment
variable, 354

remove() method (SD library), 376
Reporting Toxic Chemicals in the

Shop (project 13)
circuits, 235–238
common problems, 242
project overview, 232–234
radio settings, 234–235
reading XBee protocol, 238–245
supplies for, 224

Representational State Transfer
(REST)

about, 435–436
PROJECT 33: Fun with REST,

437–439

$_REQUEST environment variable, 17,
85, 406

Request to Send (RTS), 45
resetMidi() method (MIDI), 430
resistors

common components, 8
PROJECT 5: Networked Cat, 89
pull-down, 30
pull-up, 30
purchasing, 7

REST (Representational State
Transfer)

about, 435–436
PROJECT 33: Fun with REST,

437–439
Revolution Education, 23
Reynolds Electronics, 186, 450
RFID technology

about, 304, 315–317
bar code recognition and, 315
PROJECT 25: Reading RFID tags in

Processing, 302, 318–320
PROJECT 26: RFID Meets Home

Automation, 303, 321–328
PROJECT 27: Tweets from RFID,

329–350
testing circuits, 324

RF (radio frequency) shields, 191
ring networks, 77
rising edge of the clock, 289
RJ-11 jacks, 321
RJ-45 connectors, 431
RMC data, 280
rm command, 15
rmdir command, 14
rmdir() method (SD library), 376
Rogue Robotics, 22
roll rotation, 290, 292
root directory, 13
rotate() method (Processing), 297
rotations

defined, 290
depicted in three dimensions, 292
measuring, 290, 292

routers
defined, 78
gateway addresses, 122
port numbers and, 126

Roving Networks, 69, 206, 450
RS-232 serial protocol, 43, 421
RS-485 protocol, 421, 431
RS Online, 450

RSSI (received signal strength), 273
RTS (Request to Send), 45
RX (receive pin), 45, 215, 240
rxvt program, 12

S
safety goggles, 6
Samtec (vendor), 450
scalar variables, 17
Schelling, Nahana, 415
Schneider, Andrew, 223
screen programs

closing down, 18
defined, 18

screwdrivers, 6
SD cards

best practices, 376–377
reading from, 375
writing to, 376

SD library
about, 376
adding, 375
begin() method, 375
close() function, 376
exists() method, 376
flush() function, 376
mkdir() method, 376
peek() method, 376
position() method, 376
print() function, 376
println() function, 376
remove() method, 376
rmdir() method, 376
seek() method, 376
size() method, 376
write() function, 376

Seeed Studio, 34, 450
seek() method (SD library), 376
Seidle, Nathan, 372
send() method (UDP library), 227
sending messages

broadcast messages, 193, 226–231
directed messages, 246–257
good habits for, 4
HTTP commands, 86–87
packet switching and, 81–82
PROJECT 5: Networked Cat, 95–99
PROJECT 10: Duplex Radio Trans-

mission, 193
sessions versus, 226
troubleshooting, 81

sendMidi() method (MIDI), 428

INDEX 467

sendPacket() method (UDP library),
229

sensors
common components, 8
determining distance, 267
feedback loops and, 151
PhoneGap platform, 392
purchasing, 7
used in projects, 446

sentences (NMEA protocol), 279
serial buffer, 62
serial clock pin, 289
serial communication. See also asyn-

chronous serial communi-
cation; synchronous serial
communication

about, 3, 17, 28–30
debugging methods, 140–142
defined, 40
Linux environment, 18
Mac OS X environment, 18
NMEA 0183 protocol, 278
picking protocols, 420–421
Windows environment, 18

serial data pin, 289
Serial library

about, 11
available() function, 121
list() function, 296
print() function, 54, 121
println() function, 121
read() function, 121
write() function, 54, 121

Serial Monitor (Arduino), 31, 53, 230
Serial Peripheral Interface. See SPI
Serial Port Profile (SPP), 64, 401
serial ports

about, 17
Arduino/Wiring modules, 29
closing, 18, 57
releasing, 18, 57
usage considerations, 18
Windows environment, 18

serial-to-Ethernet modems, 118
serial-to-USB converters, 7
serverEvent() method (Network

library), 155, 168, 172, 174
servers

defined, 82
making public, 383
PROJECT 8: Networked Pong,

166–177

uploading files to, 101–102
web browsing and, 83
writing test programs for, 146

server-side scripts, 15
Service Discovery Protocol, 64
Session Initiation Protocol (SIP),

386–387
sessionless networks

about, 223
broadcast messages, 227–231
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 224,
232–245

PROJECT 14: Relaying Solar
Cell Data Wirelessly, 225,
248–257

sessions versus messages, 226
sessions

defined, 152, 226
messages versus, 226

setting the bit, 423
setup() method (Processing), 11, 20
Setz, Sebastian, 188
SFTP library, 453
shape recognition, 309
shields. See also Ethernet shield

compatibility considerations, 22
defined, 22
depicted for Arduino module, 22
making, 22
used in projects, 444
Wireless, 199

Shiffman, Daniel, 11, 313, 453
shift left operator (<<), 423
shift right operator (>>), 423
Short Messaging Service (SMS)

about, 393–394
mobile phone support, 368

signal connections, 31
signal strength

distance ranging and, 267, 272
measuring, 275
PROJECT 17: Received Signal

Strength Using XBee Radios,
263, 273–275

PROJECT 18: Reading Received
Signal Strength Using
Bluetooth Radios, 263, 276

RFID systems and, 316
SIM cards, 395
SimpleDmx library, 431

Simple Mail Transfer Protocol
(SMTP), 88, 432

SIP (Session Initiation Protocol),
386–387

size() method (SD library), 376
Sjaastad, Mosse, 301
sketches

defined, 9
flow control and, 62

Sketchtools NADA tool, 453
Sklar, David, 17
Skyetek, 451
Skyhook site, 267
Slave Select (SS) pin, 119
Slavin, Kevin, 312
SM13X FU tool, 336
Smarthome (vendor), 322, 451
smartphones. See mobile phones
Smith, Jared, 386
SMRFID Mifare v1.2 diagnostic

software, 336
SMS (Short Messaging Service)

about, 393–394
mobile phone support, 368

SMTP (Simple Mail Transfer Protocol),
88, 432

sockets
defined, 152
PROJECT 8: Networked Pong, 150,

153–177
software interfaces, 2, 4
software objects

about, 2
interface considerations, 2, 4

software oscilloscopes, 34
SoftwareSerial library, 321, 324
software tools. See also specific

software
list of, 452–453
Processing tool, 9–11
remote access applications, 11–12

Solaris environment, 11
soldering irons and solder, 6
solderless breadboards

Arduino/Wiring modules and, 30,
31

common components, 8
perf boards and, 156
purchasing, 7

sonMicroEvent() method (SonMicro-
Reader library), 339

SonMicroReader library, 335, 339

468 MAKING THINGS TALK

SonMicro readers
about, 317, 420
PROJECT 27: Tweets from RFID,

303, 329–356
Spark Fun Electronics

about, 451
Bluetooth Mate radio, 32, 39,

68–71, 206–215, 278–285
Breakout Board, 194
GPRS support, 395
GPS receivers, 285
musical instrument shield, 418, 425
music instrument shield, 429
RFID technology, 316, 319, 330
SD card shield, 376
XBee Explorer, 193, 201

SPI library
about, 119
PROJECT 6: Hello Internet! Daylight

Color Web Server, 122
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 243
SPI (Serial Peripheral Interface)

about, 119, 421
connections supported, 119
PROJECT 6: Hello Internet! Daylight

Color Web Server, 122
SD cards and, 376

SPP (Serial Port Profile), 64, 401
Spreadtrum Technologies, 395
Sridhar, Sonali, 261, 298
Sriskandarajah, Sai, 220
ssh program, 12
SSID, 217
SS (Slave Select) pin, 119
star networks, 77
start-of-transmission (STX) byte, 318
state machines, 346
Strang, John, 15
String data type, 11
STX (start-of-transmission) byte, 318
subnetMask() method (Ethernet

library), 138
subnet masks, 80, 122
subnets, defined, 80
supplies. See also under specific

projects
breakout boards, 445
common components, 445–446
communications modules,

444–445
connectors, 445

infrastructure, 444
microcontrollers, 444
miscellaneous, 446
prototyping boards, 444
sensors, 446
shields, 444
specialty components, 446

surge translation, 290, 292
sway translation, 290, 292
switches, defined, 78
Symmetry Electronics, 451
synchronous serial communication

about, 40, 41, 421
SPI and, 119
X10 protocol and, 322

T
tab-separated values (TSV), 432
tags, defined, 387
tails, defined, 56
TCP/IP stack, defined, 118
TCP (Transmission Control Protocol)

about, 152, 226
PROJECT 8: Networked Pong, 150,

153–177
UDP and, 226

telephone answering machine, 309
telnet

escape key combination, 153
network modules and, 118
reliability of, 12
Windows limitations, 84

terminal emulation programs
about, 17–18
OpenSSH and, 12
PROJECT 4: Negotiating in

Bluetooth, 69
Terminal program, 12
test leads, alligator clip, 7
test programs

for clients, 143–145
for servers, 146

Texas Instruments, 23, 316
TextFinder library

PROJECT 7: Networked Air Quality
Meter, 133

PROJECT 11: Bluetooth Transceiv-
ers, 209

PROJECT 29: Catcam Redux, 378
text messaging, 393–395
text protocols, 422–424, 432–434

thermostats
PROJECT 29: Catcam Redux, 364,

369–383
PROJECT 30: Phoning the Thermo-

stat, 365, 386–400
32-bit microcontrollers, 23
tilt() method (Processing), 296, 297
time-division multiplexing, 191
Tinker DMX shield, 431
TinkerKit RFID shield, 330
TinkerProxy application, 453
TI-RFID, 451
Todino-Gonguet, Grace, 15
tools

diagnostic, 140–146, 322, 336
physical, 5–9
serial communication, 17–20
software, 9–12

transceivers
about, 3, 185, 192
PROJECT 10: Duplex Radio Trans-

mission, 193
PROJECT 11: Bluetooth Transceiv-

ers, 183, 206–215
transfer protocols, 432
transistors

common components, 8
purchasing, 7

translate() method (Processing), 297
translations

depicted, 290
depicted in three dimensions, 292

Transmission Control Protocol.
See TCP

transmit pin (TX), 45, 215, 240
transmitters, defined, 185
triangulation, 277
trilateration

about, 267, 277
PROJECT 19: Reading GPS Serial

Protocol, 263, 278–285
Trossen Robotics, 451
troubleshooting

embedded modules, 140–146
IR projects, 186
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 242
PROJECT 27: Tweets from RFID,

350
sending messages, 81
X10 projects, 325

TSV (tab-separated values), 432

INDEX 469

TTL serial protocol
about, 421
defined, 42
GPRS support, 395
RFID technology and, 317
RS-232 adapters and, 43
SonMicro readers and, 420

TTL-to-RS-232 converters, 44
Tully, Tim, 425
Tweets from RFID (project 27)

circuits, 329–332, 343–346
construction, 351–352
project overview, 329
saving program memory, 346–351
SonMicro communications

protocol, 333–335
supplies for, 303
troubleshooting, 350
writing Mifare tags, 335

Twilio
about, 366, 386, 453
PROJECT 30: Phoning the Thermo-

stat, 365, 386–400
TwiML markup schema, 388–390
Twitter-related project. See PROJECT

27: Tweets from RFID
TWI (Two-Wire Interface), 119, 421
two-dimensional bar codes, 312, 315
Two-Wire Interface (TWI), 119, 421
TX (transmit pin), 45, 215, 240
Type Brighter RGB LED Serial Control

(project 1)
project overview, 46–49
supplies for, 38

U
UART (Universal Asynchronous

Receiver-Transmitter), 324,
419

Ubuntu environment
Bluetooth support, 65, 71
capturing and uploading images,

102
IP addressing and, 80
Software Update tool, 26
TextFinder library, 133

UDP library
about, 227, 453
beginPacket() method, 229
endPacket() method, 229, 253
listen() method, 229
parsePacket() method, 229, 255

receive() method, 228
send() method, 227
sendPacket() method, 229

UDP (User Datagram Protocol)
about, 152, 226
datagram support, 226, 246
querying for devices, 227–230
TCP and, 226

Ultrasonic Distance Ranger Example
(project 16)

project overview, 270–271
supplies for, 263

Uncommon Projects, 451
Universal Asynchronous Receiver-

Transmitter (UART), 324,
419

Universal Product Code (UPC), 312
Universal Serial Bus (USB) protocol

about, 42, 43, 421
Android devices and, 414

Unix environment
command-line interface and, 11
command user manual, 15
invisible files, 13

UPC (Universal Product Code), 312
upgrading firmware on XBee radios,

231
USB-A-to-Mini-B cable, 39
USB cables, 7
USB-to-RS-232 adapters, 43
USB-to-serial adapters

Arduino modules and, 43, 45, 119
depicted, 39
PROJECT 4: Negotiating in

Bluetooth, 69
PROJECT 6: Hello Internet! Daylight

Color Web Server, 120
PROJECT 11: Bluetooth Transceiv-

ers, 207
PROJECT 27: Tweets from RFID,

330
XBee radios and, 230

USB-to-TTL serial cable, 43, 45
USB-to-XBee adapters

PROJECT 17: Received Signal
Strength Using XBee Radios,
273

purchasing, 197
USB (Universal Serial Bus) protocol

about, 42, 43, 421
Android devices and, 414

User Datagram Protocol. See UDP

V
Van Meggelen, Jim, 386
variables

environment, 17, 353–354, 432
global, 104, 107
instance, 168
PHP considerations, 17
scalar, 17

Verify function (Arduino), 26
video identification, 305
viewing files, 14
Virtual Terrain Project, 265
voice communications

GPRS and, 395
mobile phone support, 368

VoIP (Voice over IP), 386–387
voltage dividers

defined, 30
usage example, 33

voltage regulators
common components, 8
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 236
purchasing, 7
variations of, 32

voltage triggers, 248

W
web browsing

about, 82–86
mobile phones and, 368
PROJECT 5: Networked Cat, 89–111

webcams
PROJECT 5: Networked Cat,

99–100, 110–111
PROJECT 22: Color Recognition

Using a Webcam, 302,
306–309

PROJECT 23: Face Detection Using
a Webcam, 302, 310–311

PROJECT 24: 2D Bar Code Recog-
nition Using Webcam, 302,
313–315

PROJECT 29: Catcam Redux, 364,
369–383

web interfaces, 118
web scrapers

about, 127
PROJECT 7: Networked Air Quality

Meter, 117, 127–139

470 MAKING THINGS TALK

web servers
PROJECT 6: Hello Internet! Daylight

Color Web Server, 117,
120–126

TCP support, 152
WEP keys, 217, 218
while() statement, 379–380
Windows environment

Arduino/Wiring modules and, 21,
26

Bluetooth support, 65, 71
capturing and uploading images,

102
IP addressing and, 79
network settings panel, 79
ping tool, 82
remote access applications, 12
serial communication tools, 18
telnet limitations, 84
terminal emulation programs, 18
test chat server, 153
TextFinder library, 133
X-CTU software, 231

wire, hook-up
common components, 8
purchasing, 7

wireless communication
about, 184
diagnostics, 219
PROJECT 3: Wireless Monski Pong,

39, 64–67
PROJECT 9: Infrared Control

of a Digital Camera, 182,
188–189

PROJECT 10: Duplex Radio Trans-
mission, 182, 193–205

PROJECT 11: Bluetooth Transceiv-
ers, 183, 206–215

PROJECT 12: Hello, Wi-Fi!, 183,
217–218

PROJECT 14: Relaying Solar
Cell Data Wirelessly, 225,
248–257

purchasing modules, 216
radio signal strength, 275
types of, 185

Wireless Monski Pong (project 3)
adjusting program, 65–66
project overview, 64–67
supplies for, 39

Wireless shields, 199
Wire library, 288, 289

wire strippers, 6
Wiring module

about, 20–21, 453
depicted, 21
inputs and outputs for, 24
installation process, 24–26
programming environment

depicted, 27
serial ports, 29
solderless breadboards and, 30

WizNet module, 119
Wordpress blogs, 25
Worldkit, 265
WPA2 encryption, 217
WPA encryption, 217, 218
write() function

SD library, 376
Serial library, 54, 121

X
X10 protocol

about, 321–322
synchronization problems, 325
testing output, 325
unit codes, 324

XBee radios
about, 32
configuring serially, 193–199
factory default settings, 234
mesh networking and, 249
mounting on breakout board, 194
programming microcontrollers to

use, 200–204
PROJECT 13: Reporting Toxic

Chemicals in the Shop, 224,
232–245

PROJECT 17: Received Signal
Strength Using XBee Radios,
263, 273–275

purchasing, 195
purchasing accessories, 197
querying for using 802.15.4,

230–231
signal strength, 275
upgrading firmware on, 231

XBee-to-USB serial adapters, 193
X-CTU software, 231
X-Mailer field, 359
XML (eXtensible Markup Language),

387–391
XOR (^) logical operator, 424
xterm program, 12

Y
yaw rotation, 290, 292

Z
ZigBee protocol, 249

Four hot Arduino kits from the makers
behind MAKE and Maker Faire!

The Ultimate Microcontroller Pack includes everything
you need to dive right into the world of microcontollers.
The 100+ components allow you to complete nearly
any online tutorial without having to source individual
parts. Everyone from beginners to advanced users will
appreciate all that the Ultimate Microcontroller Pack
has to offer.

ultimate Microcontroller
Pack

You never know when you'll find yourself in a MacGyver
moment. It can happen anywhere, at any time. Wouldn't
it be easier to hack those electronics with some real
components instead of a rubber band and a paper clip?
The Mintronics: Survival Pack from the Maker Shed con-
tains over 60 useful components for making, hacking,
and modifying electronic circuits and repairs on the go.

Mintronics: Survival Pack

>>

Save 15%
With coupon code:
TALK
Offer expires at midnight on 12/31/2011

The ultimate open source prototyping shield for
Arduino & compatible microcontrollers. Create your
circuits the way you want, and easily changes without
having to solder.

MakerShield Kit

Arduino is a tool for making computers that can sense
and control more of the physical world than your desk-
top computer!

Arduino uno

	Preface
	Who This Book Is For
	What You Need to Know
	Contents of This Book
	On Buying Parts
	Using Code Examples
	Using Circuit Examples
	Acknowledgments for the First Edition
	Note on the Second Edition

	Chapter 1. The Tools
	It Starts with the Stuff You Touch
	It’s About Pulses
	Computers of All Shapes and Sizes
	Good Habits
	Tools
	Using the Command Line
	Using an Oscilloscope
	It Ends with the Stuff You Touch

	Chapter 2. The Simplest Network
	Supplies for Chapter 2
	Layers of Agreement
	Making the Connection: The Lower Layers
	Type Brighter
	Monski Pong

	Flow Control
	Wireless Monski Pong
	Negotiating in Bluetooth

	Conclusion

	Chapter 3. A More Complex Network
	Supplies for Chapter 3
	Network Maps and Addresses
	Networked Cat

	Conclusion

	Chapter 4. Look, Ma, No Computer! Microcontrollers on the Internet
	Supplies for Chapter 4
	Introducing Network Modules
	Hello Internet!

	An Embedded Network Client Application
	Networked Air-Quality Meter

	Programming and Troubleshooting Tools for Embedded Modules
	Conclusion

	Chapter 5. Communicating in (Near) Real Time
	Supplies for Chapter 5
	Interactive Systems and Feedback Loops
	Transmission Control Protocol: Sockets & Sessions
	Networked Pong

	The Clients
	Conclusion

	Chapter 6. Wireless Communication
	Supplies for Chapter 6
	Why Isn’t Everything Wireless?
	Two Flavors of Wireless: Infrared and Radio
	Infrared Control of a Digital Camera

	How Radio Works
	Duplex Radio Transmission
	Bluetooth Transceivers

	Buying Radios
	What About WiFi?
	Hello WiFi!

	Conclusion

	Chapter 7. Sessionless Networks
	Supplies for Chapter 7
	Sessions vs. Messages
	Who’s Out There? Broadcast Messages
	Reporting Toxic Chemicals in the Shop

	Directed Messages
	Relaying Solar Cell Data Wirelessly

	Conclusion

	Chapter 8. How to Locate (Almost) Anything
	Supplies for Chapter 8
	Network Location and Physical Location
	Determining Distance
	Infrared Distance Ranger Example
	Ultrasonic Distance Ranger Example
	Reading Received Signal Strength Using XBee Radios
	Reading Received Signal Strength Using Bluetooth Radios

	Determining Position Through Trilateration
	Reading the GPS Serial Protocol

	Determining Orientation
	Determining Heading Using a Digital Compass
	Determining Attitude Using an Accelerometer

	Conclusion

	Chapter 9. Identification
	Supplies for Chapter 9
	Physical Identification
	Color Recognition Using a Webcam
	Face Detection Using a Webcam
	2D Barcode Recognition Using a Webcam
	Reading RFID Tags in Processing
	RFID Meets Home Automation
	Tweets from RFID

	Network Identification
	IP Geocoding

	Conclusion

	Chapter 10. Mobile Phone Networks and the Physical World
	Supplies for Chapter 10
	One Big Network
	CatCam Redux
	Phoning the Thermostat

	Text-Messaging Interfaces
	Native Applications for Mobile Phones
	Personal Mobile Datalogger

	Conclusion

	Chapter 11. Protocols Revisited
	Supplies for Chapter 11
	Make the Connections
	Text or Binary?
	MIDI
	Fun with MIDI

	Representational State Transfer
	Fun with REST

	Conclusion

	Appendix. Where to Get Stuff
	Supplies
	Hardware
	Software

	Index

